Skip to main content
. 2020 Aug 24;20(17):4777. doi: 10.3390/s20174777

Table 5.

The network architecture of our MDD-Net model.

Layer Output Shape Filter (Kernel size, Stride Size, Number)
Convolution2D (None,60,50,24) 3×3,1×1,24
AveragePooling2D (None,30,25,24) 3×3,2×2
Dense block 1 (None,30,25,36) [3×3,1×1,48conv3×3,1×1,12conv]×3
Transition block 1 (None,15,13,18) [3×3,1×1,30conv3×3,2×2pooling]
Dense block 2 (None,15,13,30) [3×3,2×2,48conv3×3,2×2,12conv]×3
Transition block 2 (None,8,7,15) [3×3,1×1,33conv3×3,2×2pooling]
Dense block 3 (None,8,7,27) [3×3,2×2,48conv3×3,2×2,12conv]×3
Maxpooling2D (None,4,4,27) 3×3,2×2
Conv block 1 (None,30,25,24) [3×3,1×1,96conv3×3,1×1,24conv]
Concatenation 1 (None,30,25,96) None
Maxpooling2D (None,15,13,96) 3×3,2×2
Conv block 2 (None,15,13,12) [3×3,1×1,12 conv]
Conv block 3 (None,15,13,24) [3×3,1×1,96conv3×3,1×1,24conv]
Concatenation 2 (None,15,13,108) None
Maxpooling2D (None,8,7,108) 3×3,2×2
Conv block 4 (None,8,7,12) [3×3,1×1,12 conv]
Conv block 5 (None,8,7,24) [3×3,1×1,96conv3×3,1×1,24conv]
Concatenation 3 (None,8,7,108) None
Maxpooling2D (None,4,4,108) 3×3,2×2
Concatenation 4 (None,4,4,135) None
Maxpooling2D (None,2,2,135) 3×3,2×2
GlobalMaxPooling2D (None,135) None
Softmax 4 None