Table 6.
Reported Focus (Yes/No) | Liberal (95% Training) | Conservative (10% Training) | ||||||
---|---|---|---|---|---|---|---|---|
Model | AUC | F1 | Precision | Recall | AUC | F1 | Precision | Recall |
Constant | 0.46 | 0.64 | 0.56 | 0.75 | 0.50 | 0.64 | 0.56 | 0.75 |
K-Nearest Neighbors (k = 3) | 0.87 | 0.80 | 0.80 | 0.80 | 0.81 | 0.79 | 0.79 | 0.79 |
Logistic Regression | 0.54 | 0.64 | 0.56 | 0.75 | 0.52 | 0.64 | 0.69 | 0.75 |
Naïve Bayes | 0.68 | 0.64 | 0.56 | 0.75 | 0.66 | 0.66 | 0.68 | 0.74 |
Decision Tree (depth = 4) | 0.73 | 0.75 | 0.81 | 0.80 | 0.71 | 0.74 | 0.74 | 0.77 |
Support Vector Machine | 0.51 | 0.61 | 0.61 | 0.61 | 0.53 | 0.64 | 0.62 | 0.67 |
Neural Network | 0.54 | 0.64 | 0.56 | 0.75 | 0.52 | 0.64 | 0.68 | 0.75 |
AdaBoost | 0.86 | 0.90 | 0.90 | 0.90 | 0.72 | 0.78 | 0.78 | 0.78 |
Random Forest | 0.96 | 0.90 | 0.90 | 0.91 | 0.85 | 0.81 | 0.81 | 0.82 |