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Abstract

Transforming growth factor (TGF)-β is a crucial enforcer of immune homeostasis and tolerance, 

inhibiting the expansion and function of many components of the immune system. Perturbations in 

TGF-β signaling underlie inflammatory diseases and promote tumor emergence. TGF-β is also 

central to immune suppression within the tumor microenvironments, and recent studies have 

revealed roles in tumor immune evasion and poor responses to cancer immunotherapy. Here we 

present an overview of the complex biology of the TGF-β family and its context-dependent nature. 

Then focusing on cancer, we discuss the roles of TGF-β signaling in distinct immune cell types 

and how this knowledge is being leveraged to unleash the immune system against the tumor.

eTOC

Massague and Batlle we present an overview of the complex biology of the TGF-β family and 

focusing on cancer, discuss the roles of TGF-β signaling in distinct immune cell types and how 

this knowledge is being leveraged in the clinic.

Introduction

Correct operation of the immune system in vertebrates requires constant regulation to ensure 

protection against extraneous agents and tolerance of self-antigens. To achieve this critical 

balance, several types of regulatory components act to impose restrain on the immune 

system. These components include dedicated cell types such as regulatory T (Treg) cells 

which limit the expansion of immune effector cells, checkpoint molecules such as CTLA-4 

and PD-1 which counterbalance antigen receptor signaling, and immunosuppressive 
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cytokines (Li and Flavell, 2008) the most prominent of which is transforming growth factor 

β (TGF-β).

TGF-β regulates the generation and effector functions of many immune cell types (Flavell et 

al., 2010; Sanjabi et al., 2017). It controls adaptive immunity by directly promoting the 

expansion of Treg cells, and by inhibiting the generation and function of effector T cells and 

antigen-presenting dendritic cells (Figure 1). TGF-β similarly controls the innate immune 

system by inhibiting natural killer (NK) cells and regulating the complex behavior of 

macrophages and neutrophils, thus forming a network of negative immune regulatory inputs.

These effects of TGF-β in immune regulation fall within a wider role of this cytokine and 

other members of its family in development, homeostasis and tissue regeneration. 

Malfunctions of this pathway cause congenital defects, fibrotic diseases, immune 

dysregulation and cancer. Most adult mammalian cell types respond to TGF-β with effects 

on cell proliferation, differentiation, adhesion, movement, metabolism, communication and 

death. Of particular interest here, TGF-β functions as a potent tumor suppressor by inducing 

growth inhibition and apoptosis in pre-malignant cells. Mutations that eliminate the TGF-β 
pathway or decouple it from apoptosis not only convert these cells into a full-blown 

malignant state but also allow them to use TGF-β to create an immune suppressive tumor 

microenvironment and produce additional stromal modifiers that foster tumor progression 

and metastasis.

The composition and function of the TGF-β signaling pathway, and the extensive role of the 

TGF-β family in development, homeostasis, and diseases including cancer have been 

reviewed in detail elsewhere (David and Massagué, 2018; Mullen and Wrana, 2017; 

Oshimori and Fuchs, 2012). Here, we focus on the role of TGF-β in immune regulation and 

its relevance to cancer. We provide an overview of the TGF-β signal transduction pathway, 

and summarize current knowledge about the production and mobilization of TGF-β from 

latent stores in the tumor microenvironment. We review how the effects of TGF-β are 

switched from tumor suppressive to pro-metastatic as cancers advance. We then focus on the 

profound effects of TGF-β on major cellular components of the adaptive and innate immune 

systems, and in this context we discuss recent progress in elucidating how the 

immunosuppressive role of TGF-β is enlisted by cancer cells to avert immune surveillance 

and to thwart cancer immunotherapy. We conclude with comments on the prospect of 

circumventing TGF-β signaling to improve the effectiveness of cancer immunotherapy.

Sources of TGF-β and regulation of its bioavailability

The thirty-two members of the TGF-β superfamily of ligands encoded in the human genome 

are grouped into the TGF-β and the bone morphogenetic protein (BMP) subfamilies based 

on sequence similarity and functional criteria (David and Massagué, 2018). The TGF-β 
subfamily comprises three TGF-β ligands (TGF-β1, TGF-β2 and TGF-β3), two Activins (A 

and B), Nodal, GDF1 (growth and differentiation factor 1), GDF3, GDF8 (also known as 

Myostatin), GDF9 and GDF11. The BMP subfamily includes 10 BMPs, several GDFs, and 

the Anti-Muellerian Hormone. Additional members encode antagonistic ligands and a few 

distant outliers. The three TGF-βs, and in particular TGF-β1, are the most relevant members 
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of the family from the standpoint of immune regulation. Although we do not discuss them 

here, emerging evidences also suggest important roles for BMPs and other TGF-β 
superfamily members in the immune system (Chen and ten Dijke, 2016).

TGF-β1, TGF-β2 and TGF-β3 are synthesized as pro-hormones that include a signal 

sequence, a large N-terminal portion called the latency-associated peptide (LAP), and a short 

C-terminal segment, which corresponds to the mature active cytokine monomer (Travis and 

Sheppard, 2014). Upon cleavage by the protease Furin in the Golgi complex, the dimeric 

bioactive portion remains non-covalently associated with the disulfide-linked LAP 

homodimer (Figure 2A). The crystal structure of this complex revealed that LAP encircles 

the active TGF-β portion and hinders the relevant contact sites of the cytokine with their 

cognate heterotetrameric receptors (Shi et al., 2011). In many cell types, the LAP 

homodimer is crosslinked by disulfide bonds to a family of proteins called latent TGF-β 
binding proteins (LTBPs) forming the so called large latent complex (LLC) (Travis and 

Sheppard, 2014). After secretion, LLCs interact with Fibrillin, an extracellular matrix 

(ECM) protein of the elastic fibers. Mutations in the Fibrillin 1 gene cause Marfan 

syndrome, a human disease characterized by joint laxity, skeletal deformities, and aortic 

aneurysms due to excessive TGF-β signaling (Verstraeten et al., 2016). TGF-β can also be 

anchored to the cell surface through association with transmembrane Glycoprotein A 

Repetitions Predominant Protein (GARP / LRRC32) (Tran et al., 2009; Wang et al., 2012) 

(Figure 2A) or the related Leucine-Rich Repeat-Containing Protein 33 (LRRC33)(Qin et al., 

2018). The expression of GARP is restricted to Treg cells, endothelium and platelets (Tran et 

al., 2009) whereas LRRC33 is expressed in macrophages and microglia (Qin et al., 2018), 

suggesting that these proteins regulate TGF-β signaling in restricted regions and particular 

contexts.

The release of active TGF-β from latent complexes is a tightly regulated process, achieved 

through enzymatic and non-enzymatic activities present in the extracellular space. The ECM 

protein Thrombospondin 1 binds to a specific sequence in LAP and prevents its association 

with the active TGF-β molecule. Supporting this mechanism, mutations in thrombospondin 

1 phenocopy several alterations present in TGF-β1 mutant mice including inflammation and 

epithelial hyperplasia (Crawford et al., 1998). Cleavage by extracellular serine proteases 

such as plasmin and cathepsin D, and several metalloproteases, including matrix 

metalloproteases MMP9 and MMP14, also release active TGF-β from its latent form (Travis 

and Sheppard, 2014) (Figure 2A).

The best understood mechanism of active TGF-β release from latent complexes involves 

either αvβ6 or αvβ8 integrin heterodimers, which bind to an Arg-Gly-Asp (RGD) integrin 

recognition motif present in the LAP domain of TGF-β1 and -β3 (Shi et al., 2011) (Figure 

2A). Upon cell contraction, tension exerted by the cytoskeleton is converted by integrins into 

a physical force on the latent TGF-β complex that unfolds LAP and releases the active 

cytokine (Shi et al., 2011). This phenomenon depends critically on the actin/myosin-

mediated contraction machinery (Giacomini et al., 2012), and it is facilitated by stiff 

substrates and by the presence of highly contractile cells such as myofibroblasts (Wipff et 

al., 2007). It also requires tethering of the small latent complex to the ECM via LTBP1 

(Annes et al., 2004). Supporting the validity of these findings, conditional ablation of 
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integrins β6 or β8 in Treg cells, dendritic cells, monocytes or macrophages leads to 

inflammatory phenotypes and loss of TGF-β-mediated immune tolerance (Kelly et al., 2017, 

2018; Travis and Sheppard, 2014). GARP also acts as a chaperone that orients latent TGF-

β1 for activation by integrins (Liénart et al., 2018) (Figure 2A). As discussed above, 

particular cell types including Tregs, platelets and macrophages expose TGF-β bound to 

either GARP or LRRC33 on the cell surface facilitating local TGF-β1 release and paracrine 

signaling (Liénart et al., 2018; Qin et al., 2018; Stockis et al., 2017; Tran et al., 2009).

In cancer cells, the release of active TGF-β1 mediated by GARP promotes TGF-β-driven 

epithelial-to-mesenchymal transition and immune evasion due to an expansion of 

tolerogenic Treg compartment (Metelli et al., 2016). Cancer cells can also evade the immune 

system by mobilizing active TGF-β1 through αvβ8 integrins (Takasaka et al., 2018). In 

some contexts, cells recruited to the tumor microenvironment (TME) act as mediators of this 

process. A prime example are platelets, which carry GARP-bound TGF-β on the cell 

surface. Mice knockout for GARP in platelets exhibit reduced TGF-β signaling in the TME 

and enhanced anti-tumor immune responses (Rachidi et al., 2017).

The TGF-β Signaling Pathway

The TGF-β pathway is a classic membrane–to–nucleus signaling process involving direct 

receptor-mediated activation of SMAD transcription factors. Activated SMAD proteins bind 

to multiple loci throughout the genome as dictated by partner transcription factors whose 

availability in a particular cellular context determines the response of this cell to TGF-β 
(Figure 2B). The components and operating logic of the pathway have been recently 

reviewed elsewhere (David and Massagué, 2018) and are only briefly summarized here.

TGF-β family members signal though paired transmembrane serine/threonine protein 

kinases known as the type I and type II receptors (Figure 2B). Mammalian genomes encode 

seven type I receptors, five type II receptors, and 8 SMAD proteins. TGFBR1 (also known 

as TβR-I and ALK5) and TGFBR2 (also known as TβR-II) function as TGF-β receptors. 

TGF-β1, TGF-β2 and TGF-β3 are the only ligands for the TGFBR1/TGFBR2 combination. 

SMAD2 and SMAD3 are substrates for TGF-β subfamily receptors, and SMAD1, SMAD5 

and SMAD8 for BMP subfamily receptors; these are referred as receptor-regulated SMADs 

or R-SMADs. SMAD4 is not a receptor substrate but binds to activated R-SMADs forming 

heterotrimeric transcriptional complexes. SMAD6 and SMAD7 are inhibitory molecules that 

suppress receptor and SMAD signaling functions. SMAD7-recruited SMURF1/2 ubiquitin 

ligases and counteracting ubiquitin specific peptidases (USP11, USP15) regulate TGF-β 
receptor degradation. The induction of SMAD6 and SMAD7 expression by TGF-β and 

BMP family members creates negative feedback loops.

SMAD proteins consist of globular N-terminal and C-terminal domains, known as the MH1 

and MH2 domains respectively, connected by a linker region. The MH1 domain in R-

SMADs and SMAD4 binds DNA, and the MH2 domain binds other SMADs, cooperating 

transcription factors, chromatin reader and modifying factors. The components of the TGF-

β–SMAD pathway are highly conserved, and the structural basis for many aspects of their 

interactions and function are known (Macias et al., 2015).
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TGF-β released from latent complexes binds to the receptors either directly or with the 

assistance of the accessory co-receptor betaglycan (BG, also known as TGF-β receptor type 

III, TGFBR3) (Figure 2B). Betaglycan is particularly important for TGF-β2 binding. In the 

TGF-β-driven receptor complex, TGFBR2 phosphorylates and activates TGFBR1, which 

then phosphorylates SMAD2 and SMAD3 at two C-terminal serine residues. Receptor-

phosphorylated SMAD2 and SMAD3 then form heterotrimeric complexes with SMAD4.

In the nucleus, activated SMAD complexes bind to hundreds of regulatory regions by 

interacting with other transcription factors ((Mullen et al., 2011; Trompouki et al., 2011; 

Wang et al., 2017), and see below)). Additional interactions with co-activators and co-

repressors determine the transcriptional effect. In these complexes, R-SMADs are 

phosphorylated by the RNA polymerase II kinases CDK8 and CDK9, which create sites for 

recruitment of additional cofactors. CDK8/9-mediated phosphorylation additionally primes 

SMADs for phosphorylation by glycogen synthase kinase 3β (GSK3β), which marks 

SMADs for polyubiquitination by the HECT-domain ubiquitin ligases NEDD4L and 

SMURF1, leading to SMAD degradation. Alternatively, R-SMADs are dephosphorylated 

and dissociated from DNA for new rounds of signal transduction.

SMAD signaling variants and non-SMAD TGF-β signaling

The phenotypes of SMAD knockouts demonstrate a central role of the SMAD pathway in 

the effects of TGF-β in different contexts, including in the regulation of the immune system. 

However, variant forms of SMAD signaling and TGF-β signaling mechanisms not involving 

SMAD proteins should be noted. SMAD4 is essential for most but not all TGF-β family 

responses. Exceptions include the development of the pancreas in mice (Bardeesy et al., 

2006) and the induction of the master transcription factor SOX4 in pancreatic epithelial 

progenitors (David et al., 2016), which require SMAD2/3 but not SMAD4. SMAD proteins 

also have non-transcriptional roles, a notable example being the regulation of Drosha-

mediated microRNA maturation by R-SMADs (Davis et al., 2008).

SMAD-independent forms of TGF-β signaling have been described (Heldin and Moustakas, 

2016; Massagué, 2012; Moustakas and Heldin, 2005). TGFBR2 directly phosphorylates the 

cell polarity regulator PAR6, which regulates tight junctions and cell migration (Ozdamar et 

al., 2005; Yi et al., 2010). TGF-β activates members of mitogen-activated protein kinase 

(MAPK) cascades including TGF-β-activated kinase 1 (TAK1) (Sorrentino et al., 2008), 

ERK (Lee et al., 2007), p38MAPK, JNK (Lee et al., 2007), and phosphatidylinositol 3-

kinase (PI3K) in cell cultures (Heldin and Moustakas, 2016). The adaptor protein TRAF6 

was shown to link TGF-β receptors to TAK1, p38MAPK and JNK activation (Sorrentino et 

al., 2008; Yamashita et al., 2008), but beyond this, the structural basis for coupling of TGF-β 
receptors to these various pathways remains unknown. Moreover, MAPK and PI3K 

pathways have their own potent agonists including mitogen receptor tyrosine kinases and 

cell metabolism sensors. Likewise, stress sensors regulate p38MAPK and JNK activation, 

whereas tumor necrosis factor (TNF), interleukin-1, and Toll-like receptors control TAK1 

activation, making the role of TGF-β as a regulator of these pathways in physiology and 

disease quite difficult to ascertain at present.
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Basis for contextual responses

Although the MH1 domain of all effector SMADs binds GC-rich, 5-bp motifs (CAGAC, 

GGCGC and others), the affinity of SMADs for these motifs is neither high nor specific 

enough to explain the selective recognition of target loci by TGF-β and BMP pathways, or 

the context-dependent nature of TGF-β action. Rather, activated SMAD complexes bind to 

hundreds of regulatory regions as dictated by context-defining transcription factors. In 

progenitor cells, lineage-determining transcription factors (LDTFs) play a dominant role in 

recruiting activated SMAD complexes (David and Massagué, 2018). This is exemplified by 

the interaction of the LDTF FOXH1 with Nodal-activated SMADs in mesendoderm 

progenitors. FOXH1 is a pioneer factor that binds to chromatin independently of TGF-β 
signaling and is then poised for recruitment of activated SMAD complexes (Charney et al., 

2017; Chen et al., 1996). Similarly, TGF-β-activated SMADs co-bind the genome with 

MYOD1 in myogenic progenitors to regulate myogenic differentiation and with PU.1 in pro-

B cells to regulate B cell differentiation (Mullen et al., 2011).

Several signal-driven transcription factors participate, together with LDTFs, as determinants 

of SMAD binding, providing integration of multiple inputs. Focusing on the immune 

system, TGF-β-activated SMADs cooperate with STAT5 and nuclear factor of activated T 

cells (NFAT) to induce FOXP3 expression in naïve CD4+ T cells, thus promoting their 

differentiation to a Treg phenotype (Tone et al., 2008), and with RORγ2 to induce a T helper 

17 (TH17) phenotype (Martinez et al., 2010; Zhou et al., 2008). SMADs together with the 

transcription factor RUNX3 regulate immunoglobulin class switching in B cells (Park et al., 

2005). In TGF-β-stimulated CD8+ T cells, SMADs collaborate with the transcription factor 

ATF1 to repress the expression of several cytolytic genes (Thomas and Massagué, 2005).

TGF-β and tumor progression

TGF-β functions as a tumor suppressor that can induce apoptosis in pre-malignant cells and 

inhibit proliferation in carcinoma cells. However, cancer cell clones that inactivate the TGF-

β pathway or decouple it from tumor suppressive effects under this selective pressure can 

use TGF-β for tumor progression. In this altered context, tumor-derived TGF-β can induce 

tumorigenic and pro-metastatic responses in cancer cells and the stroma, including the 

formation of an immune suppressive tumor microenvironment (Figure 3). The basis for this 

dual tumor suppressive and tumor promoting role of TGF-β has been reviewed in detail 

elsewhere (David and Massagué, 2018; Pickup et al., 2017) and is summarized hereunder.

Based on current human TCGA data sets, esophageal, gastric colorectal (CRC), and 

pancreatic (PDA) adenocarcinomas contain mutations or deletions in SMAD and TGF-β 
receptor genes in 25% to 50% of cases. Head and neck, bladder and endometrial 

adenocarcinomas, and cervical and lung squamous carcinomas harbor such mutations in 

10% to 20% of cases. SMAD4 inactivating mutations predominate in PDA and CRC, but 

mutations in SMAD2, SMAD3, TGFBR1 and TGFBR2 are also frequently observed. 

Collectively, these loss of function mutations provide evidence for the tumor suppressor role 

of the TGF-β pathway in human cancer. Genetically engineered mouse models of PDA and 

CRC indicate that TGF-β exerts its tumor suppressive functions mostly by blocking the 
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transition of premalignant cells to a more malignant phenotype (Figure 3). Evidence from 

human cancer also suggests that TGF-β pathway mutations accumulate during the malignant 

conversion step.

TGF-β is an archetypical growth inhibitory cytokine and inhibits cell proliferation through 

increased expression of the cyclin-dependent kinase (CDK) inhibitors p15INK4, p21CIP1, 

p27KIP1 and/or p57KIP2 (Hannon and Beach, 1994; Polyak et al., 1994; Reynisdóttir et al., 

1995; Scandura et al., 2004; Seoane et al., 2004) and downregulation of MYC expression 

(Chen et al., 2002; Pietenpol et al., 1990). However, oncogenically transformed cells harbor 

strong CDK activating signals that thwart the effectiveness of TGF-β-induced cytostasis as a 

tumor suppressive effect. Moreover, the capacity to enter a slow-cycling state is a basic 

feature of stem cells, one that enables these cells to evade immune surveillance and 

antimitotic chemotherapy. Therefore, not only is cytostasis a milder form of tumor 

suppression compared to apoptosis, but cytostasis may ultimately enable disseminated tumor 

cells to survive for the eventual initiation of metastasis (Malladi et al., 2016).

TGF-β triggers apoptosis in pre-malignant cells that suffer oncogenic stress, in from RAS 

oncogenes, as documented in genetically engineered mouse models of cancer and human 

cancer cell lines. Notably, TGF-β–SMAD signaling causes apoptosis in pancreatic 

progenitors harboring KRAS mutations (Bardeesy et al., 2006). Mouse skin and mucosal 

epithelia showed hyperproliferation offset by TGF-β-dependent apoptosis when harboring a 

HRAS oncogene, mild hyperplasia when harboring TGFBR2 deletion, and overt tumor 

formation when both alterations were combined (Guasch et al., 2007). Thus, in these and 

other cancers, oncogenic mutations sensitize premalignant cells to TGF-β-induced 

apoptosis.

Epithelial-to-mesenchymal transitions (EMTs) are processes by which epithelial progenitor 

cells lose polarity, downregulate cell-cell adhesions, migrate and invade for the purpose of 

generating or regenerating tissues (Nieto et al., 2016). EMTs occur during development, 

wound healing, and in pathologies including fibrosis and cancer. EMTs are driven by master 

EMT regulators including SNAIL, ZEB, TWIST, which function as transcriptional 

repressors of epithelial genes. TGF-β is a potent inducer of EMTs but this function critically 

depends on inputs from the RAS-MAPK pathway (David et al., 2016; Horiguchi et al., 2009; 

Janda et al., 2002). However, TGF-β-induced EMT is pro-apoptotic and tumor suppressive 

in pre-malignant pancreatic progenitors, owing to a conflict with a pro-epithelial program 

that TGF-β concomitantly induces in these cells (David et al., 2016). A pro-apoptotic role of 

TGFβ-induced EMT is also observed in mouse mammary epithelial cells (Gal et al., 2008).

Cancer cells with an intact TGF-β pathway can avert its pro-apoptotic effect by somehow 

decoupling EMT from apoptosis, which in turn allows the cancer cells to use EMT for 

tumorigenic advantage. Beyond the contribution of TGF-β-induced EMT to tumor invasion 

and metastatic dissemination, the TGF-β pathway induces gene responses that support the 

ability of cancer cells to infiltrate and colonize specific organs (David and Massagué, 2018). 

Examples include the ability of hormone receptor-negative breast cancer cells in primary 

tumors to respond to TGF-β with induction of angiopoietin-like 4, which enhances the 

extravasation of these cells as they move into the circulation and lodge into capillaries in the 
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lungs (Padua et al., 2008). Breast cancer cells to instead colonize the bone marrow respond 

to bone-derived TGF-β with induction of CXCR4, PTHrP, IL-11, CTGF and JAGGED1, 

which promote osteoclast mobilization and osteolytic metastasis (Figure 3) (Kakonen et al., 

2002; Kang et al., 2003; Sethi et al., 2011; Yin et al., 1999). In addition to these effects, 

growing evidence points at a major role of TGF-β as a mediator of immune suppression in 

the tumor microenvironment.

TGF-β suppression of tumorigenic inflammation

The master role of TGF-β signaling in controlling immune tolerance and inflammatory 

responses was first revealed by the analysis of mice with germline null mutations in the 

TGF-β1 gene, which die early after birth of multiorgan inflammation reminiscent of an 

autoimmune disorder (Kulkarni et al., 1993; Shull et al., 1992). Subsequently, it was shown 

that this phenotype can be rescued by loss of function mutations in either MHC class II 

(Letterio et al., 1996) or β2-microglobulin genes (Kobayashi et al., 1999) implying that loss 

of TGF-β1 causes an unrestrained adaptive T cell response. Similarly, mice expressing a 

dominant-negative TGFBR2 construct under the control of the CD4 promoter (Gorelik and 

Flavell, 2000) or bearing T cell-specific deletion of either Tgfbr2 (Li et al., 2006; Marie et 

al., 2006), Tgfbr1 (Liu et al., 2008) or Tgfb1 (Li et al., 2007) by means of a CD4-Cre driver, 

develop enhanced T cell activation leading to a severe inflammatory disease similar to that 

observed in Tgfb1−/− mice. These phenotypes are consequence of CD4+ T cell activation by 

self-antigens present in the periphery (Robinson and Gorham, 2007). Overall, these 

pioneering genetic experiments demonstrated that TGF-β signaling is required for the 

establishment and maintenance of T cell tolerance during thymic development.

When Tgfbr2 was ablated in T cells using the dLck-Cre driver, which is only turned on after 

thymocyte positive selection, mice survived to adulthood and neither displayed overt T cell 

activation nor inflammatory disease in homeostasis (Zhang and Bevan, 2012). However, T 

cells in these mice exhibited enhanced proliferation and acquisition of an exacerbated 

effector phenotype in a lymphopenic environment, which was triggered by weak T cell 

receptor (TCR) stimuli (Zhang and Bevan, 2012). Similar observations were made upon 

deletion of Tgfbr2 in peripheral T cells of adult mice using inducible a CD4-creERT2 allele 

(Śledzińska et al., 2013). Therefore, in peripheral T cells, a key function of TGF-β signaling 

is to restrain T cell expansion and activity in response to exogenous stimuli.

The inflammatory disorders caused by genetic loss of TGF-β signaling are particularly 

severe in the gastrointestinal tract. TGF-β pathway mutant mice develop either spontaneous 

colitis or are more susceptible to experimental colitis induced by treatment with dextran 

sulphate sodium (DSS) (Ihara et al., 2017; Kulkarni et al., 1993; Shull et al., 1992). These 

phenotypes are also evident in mice with TGF-β pathway deficiencies in either T cells or 

dendritic cells (Gorelik and Flavell, 2000; Ihara et al., 2017; Ramalingam et al., 2012; 

Śledzińska et al., 2013). In agreement with these findings, multiple studies have linked 

dysregulation of TGF-β signaling with pathogenesis of ulcerative colitis or Crohn’s disease 

(Ihara et al., 2017). These inflammatory syndromes predispose to the development of cancer. 

Transgenic mice that overexpressed TGF-β1 in T lymphocytes under control of the CD2 

promoter exhibited delayed tumor development in experimental models of azoxymethane-
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induced colonic tumorigenesis whereas expression of dominant negative TGFBR2 in T cells 

accelerated tumor progression in this model (Becker et al., 2004). This effect was linked to 

the modulation of IL6/STAT3 signaling in tumor cells, a cytokine input which promotes 

growth and survival of intestinal cancer cells in the context of inflammation (Becker et al., 

2004). Similarly, deletion of Smad4 in T cells led to spontaneous formation of epithelial 

cancers throughout the gastrointestinal tract as a result of increased levels of pro-

inflammatory cytokines IL5, IL6, IL11 and IL13 (Hahn et al., 2011; Kim et al., 2006).

TGF-β signaling also instructs a none-inflammatory program in macrophages of the 

intestinal epithelium, which exhibit a profound loss of response to inflammatory insults 

while retaining a bactericidal function (Smythies et al., 2005). This anergic phenotype is 

partially driven by TGF-β produced by intestinal stromal cells (Smythies et al., 2005). Mice 

that express dominant negative Tgfbr2 under the control of a macrophage-specific promoter 

display exacerbated colitis in response to the DSS treatment, an effect that correlates with 

increased production of proinflammatory cytokines such as IL33 (Rani et al., 2011).

Finally, fibroblast-specific Tgfbr2 knockout mice develop intraepithelial prostate neoplasias 

and invasive squamous cell carcinomas in the forestomach (Bhowmick et al., 2004). It was 

initially proposed that Hepatocyte Growth Factor (HGF) secretion by Tgfbr2 mutant 

fibroblasts led to hyperproliferation of adjacent epithelial cells in the affected tissues 

(Bhowmick et al., 2004). However, another study revealed DNA damage in epithelial cells 

of the forestomach due to extensive inflammation caused by loss of Tgfbr2 in fibroblasts 

(Achyut et al., 2013). This phenotype was enhanced by Helicobacter Pylori infection and 

ameliorated by anti-inflammatory drugs (Achyut et al., 2013).

Altogether, these studies highlight the pivotal role of TGF-β signaling in regulating 

tolerance and suppressing inflammatory reactions triggered by commensal and harmful 

antigens. Loss of TGF-β signaling in tissues exposed to these stimuli, such as the 

gastrointestinal tract, promotes exacerbated T cell activity and an unrestrained inflammatory 

reaction. These processes eventually result in DNA damage and increased levels of 

cytokines and growth factors, which foster an uncontrolled regenerative response and the 

onset of cancer (Figure 3).

Inhibition of Th1 helper and cytotoxic T cell responses by TGFβ

The most prominent and best-characterized T cell responses against cancers are mediated by 

cells of the Th1 subset. Naïve T cells cultured with TGF-β cannot differentiate into the Th1 

phenotype (Sad and Mosmann, 1994). Conversely, mice lacking TGFBR2 specifically on T 

cells display enhanced Th1 responses (Gorelik and Flavell, 2000; Li et al., 2006; Marie et 

al., 2006; Śledzińska et al., 2013; Zhang and Bevan, 2012). TGF-β signaling impinges on 

the earliest phase of T cell activation by dampening the initial Ca2+ influx triggered T Cell 

Receptor (TCR) stimulation (Chen et al., 2003a). Consistent with this finding, Tgfbr2 

mutant T cells exhibit increased sensitivity to TCR stimulation (Śledzińska et al., 2013). In 

addition, TGF-β signaling exerts an inhibitory role on T cell differentiation by silencing the 

expression of two Th1 master transcription factors, TBET and STAT4 (Gorelik et al., 2002; 

Lin et al., 2005). Blockade of STAT4 activation prevents the production of IFN-γ during the 
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priming phase, whereas loss of TBET expression impairs IFN-γ production during re-

stimulation of T cells after initial priming (Gorelik et al., 2002; Lin et al., 2005).

In addition to blocking Th1 differentiation, TGF-β inhibits T cell proliferation and effector 

function. Early studies revealed that during the priming phase, TGF-β silences the 

expression of IL-2, the cytokine that elicits subsequent CD4+ T cell proliferation (Brabletz 

et al., 1993). This effect is mediated by SMAD3 (McKarns et al., 2004) with SMAD4 in 

association with cofactor TOB1 (Tzachanis et al., 2001). A cytostatic and apoptotic response 

of T cells to TGF-β has also been linked to the control of several downstream cell-cycle 

regulators including c-Myc, p21Cip1 and p27Kip1 (Genestier et al., 1999; Wolfraim et al., 

2004). As we discussed in the previous section, in vivo experiments using genetically 

modified mouse models revealed that the main alteration of TGFBR2-deficient peripheral 

CD4+ and CD8+ T cells is enhanced TCR-dependent activation upon weak antigenic 

stimulation (Śledzińska et al., 2013; Zhang and Bevan, 2012). These studies also 

demonstrated that TGFBR2-deficient T cells exhibit enhanced effector phenotypes and 

functions, such as expression of the receptor KLRG1 and production of granzyme-B and 

IFN-γ (Śledzińska et al., 2013; Zhang and Bevan, 2012). TGF-β signaling directly inhibits 

the cytotoxic program of CD8+ T cells (Thomas and Massagué, 2005). Mechanistically, 

TGF-β-stimulated SMADs together with transcription factor ATF1 repress the promoters of 

several genes involved the lytic function of CD8+ T cells including granzyme B and IFNγ 
(Figure 4).

Echoing the above observations, widespread evidence supports a role for a TGF-β-rich TME 

in suppressing anti-tumor Th1 responses. Transgenic mice engineered to express dominant 

negative TGFBR2 in CD4+ and CD8+ T cells are resistant to tumor formation upon 

inoculation of syngeneic cancer cell lines, and this phenomenon is associated with a large 

expansion of tumor-reactive CD8+ T cells (Gorelik and Flavell, 2001). In an autochthonous 

genetic model of prostate cancer, TGF-β1 secreted by T cells was shown to mediate tumor 

evasion from adaptive immunity (Donkor et al., 2011). Authors reported that transgenic dn-

TGFBR2 T cells infiltrate both the tumor beds and the tumor-draining lymph nodes, and 

produce high amounts of IFN-γ and GZMB. These findings suggest a role for TGF-β 
signaling in inhibiting tumor antigen-specific T cell priming (Donkor et al., 2011). Similarly, 

adoptively transferred tumor-specific CD8+ T cells modified to express a dominant-negative 

TGFBR2 infiltrates the tumor mass, display enhanced secretion of IFNγ and cytotoxic 

products leading to anti-tumor responses in models of renal cancer (Wang et al., 2010). 

TGF-β attenuates the effector function of antigen-specific CD8+ cells obtained from 

melanoma patients, a phenomenon that segregates with decreased expression of TBET 

(Ahmadzadeh and Rosenberg, 2005). Repression of Eomesodermin (EOMES), a homologue 

of TBET that is required to establish the gene program of effector cytotoxic T cells (Cruz-

Guilloty et al., 2009; Pearce et al., 2003), has been also correlated with TGF-β-driven 

immune evasion in mouse models of melanoma (Yoon et al., 2013).

Tissue resident CD8+ memory cells T cells are maintained associated to tissues through 

expression of the αEβ7 integrin homodimer (also known CD103), which binds E-cadherin 

present in the epithelial cell junctions. TGF-β upregulates the expression of αE and β7 

subunits, thus facilitating the residence of CD8+ cell in tissues (El-Asady et al., 2005; Zhang 

Batlle and Massagué Page 10

Immunity. Author manuscript; available in PMC 2020 September 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and Bevan, 2013). In addition, downregulation of the transcription factors TBET and 

EOMES by TGF-β is necessary to specify the CD8+CD103+ phenotype (Mackay et al., 

2015). The role of CD8+CD103+ in cancer is not completely understood. Several studies 

have shown that a TGF-β-rich TME fosters CD8+CD103+ cells and that abundance of this T 

cell subset confers good prognosis (Mami-Chouaib et al., 2018). In addition, checkpoint 

immunotherapies reinvigorate their cytotoxic function leading to anti-tumor responses 

(Edwards et al., 2018; Mami-Chouaib et al., 2018). In sharp contrast, a recent study has 

provide evidence that TGF-β-induced CD8+CD103+ cells present in tumor beds exhibit a 

tolerogenic phenotype that facilitate immune evasion (Gabriely et al., 2017).

Induction of T regulatory phenotype by TGF-β signaling

Regulatory T cells (Tregs) suppress the function of effector T cells to maintain immune 

homeostasis and are present in low frequency in healthy tissues. However, their numbers 

increased in many cancers, where they enforce tolerance to tumor antigens and facilitate 

immune evasion. TGF-β is key to instruct the regulatory program on T cells. For example, 

suboptimally stimulated peripheral CD4+ T cells produce TGF-β, that in turn promotes their 

differentiation to the Treg stage (Strainic et al., 2013; Windhagen et al., 1995). TGF-β in 

combination with IL2 enforces a suppressor phenotype in ex vivo naïve CD4+ T cells by 

triggering expression of FOXP3, the master transcription factor of the Treg program (Chen 

et al., 2003b; Fantini et al., 2004). Consistent with these findings, genetic deletion of both 

Smad2 and Smad3 resulted in loss of FOXP3 upregulation by TGF-β (Takimoto et al., 

2010). Downstream of TGF-β receptors, SMADs cooperate with NFAT transcription factor 

to bind a distal regulatory element in the FOXP3 locus (Tone et al., 2008) (Figure 4). TGF-

β-driven induction of Tregs is counteracted by an environment rich in proinflammatory 

cytokines, which favors differentiation of CD4+ T cells towards an effector phenotype 

(Battaglia et al., 2013; Wei et al., 2007).

FoxP3 expression correlates with TGF-β levels in transcriptomic datasets of skin cutaneous 

melanoma and breast cancer (Ravi et al., 2018), and extensive evidence suggests that the 

TGFβ-rich environment characteristic of late stage cancers promotes differentiation of T 

cells to a Treg phenotype. High TGF-β levels secreted by cancer cells induce the Treg 

program on CD4+ T cells in models of pancreatic cancer (Moo-Young et al., 2009). 

Furthermore, TGF-β together with prostaglandin E2 trigger Th17-to-Treg 

transdifferentiation in tumors (Downs-Canner et al., 2017). Conversely, the inhibition of 

TGF-β and VEGF signaling synergistically reduces the number of Tregs and restores 

sensitivity to anti–PD-1 and anti–CTLA-4 treatment (Courau et al., 2016).

In addition to inducing a T regulatory program, TGF-β is utilized by Tregs to suppress anti-

tumor immune responses (Chen et al., 2005; Mempel et al., 2006). As we discussed above, 

Tregs carry latent TGF-β1 on their surface via disulfide linkage to transmembrane protein 

GARP for activation by αV integrins. In B16 melanoma explants, Tregs inhibit the cytotoxic 

function of CD8+ T cells whereas this immunosuppressive mechanism is prevented by 

neutralizing antibodies against surface-bound TGF-β (Budhu et al., 2017). Indeed, 

expression of GARP in tumor-infiltrating Tregs characterizes an enhanced suppressive 

phenotype that correlates with impaired anti-tumor T cell responses (Kalathil et al., 2013).

Batlle and Massagué Page 11

Immunity. Author manuscript; available in PMC 2020 September 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



TGF-β subversion of dendritic cell function

A central node in regulation of Th1 and Treg-mediated immune responses by TGF-β 
signaling are dendritic cells (DCs). DCs are the most potent antigen presenting cells and 

play key roles in tumor immunity. TGF-β inhibits antigen presentation capabilities of DCs in 

vitro by suppressing expression of MHC-II genes (Nandan and Reiner, 1997; Piskurich et 

al., 1998). Tgfbr2 deletion in DCs using CD11c-Cre driver causes multiorgan inflammation 

(Ramalingam et al., 2012). In tumor models, cancer cells instruct DCs to secrete TGF-β, 

which in turn promotes acquisition of a Treg phenotype by CD4+ T cells (Dumitriu et al., 

2009; Ghiringhelli et al., 2005). Furthermore, the TME redirects DC differentiation towards 

an immature myeloid cell phenotype with potent immune suppressor functions 

(Papaspyridonos et al., 2015). This phenotypic switch is mediated by transcriptional 

regulator ID1 downstream of TGF-β signaling (Papaspyridonos et al., 2015). The 

tolerogenic program of DCs is in part mediated by induction of immunosuppressing 

molecules indoleamine 2,3-dioxygenase (IDO) and arginase by TGF-β signaling 

(Belladonna et al., 2008; Pallotta et al., 2011). In models of breast cancer and melanoma, 

TGF-β signaling mediates immune evasion by upregulating IDO in plasmacytoid DCs and 

the CCL22 chemokine in myeloid DCs (Hanks et al., 2013). These altered DCs facilitate 

Treg cell infiltration and immune suppression (Hanks et al., 2013).

TGF-β suppression of Natural Killer cells

Natural killer (NK) cells respond rapidly to virus-infected cells and tumor cells through their 

unique capacity to recognize stressed cells in the absence of an adaptive response, allowing a 

rapid immune reaction. TGF-β signaling blocks NK function at multiple levels. It silences 

IFN-γ and TBET expression in NK cells, thus inhibiting Th1 responses (Laouar et al., 2005; 

Yu et al., 2006). This mechanism is counteracted by inflammatory signals, which decrease 

TGFBR2 levels and suppress downstream SMAD signaling in NK cells (Yu et al., 2006). 

The expression of NKG2D and NKp30, two surface receptors of NK cells that mediate the 

recognition of stressed and malignant transformed cells, is silenced by TGF-β signaling 

(Castriconi et al., 2003) (Figure 4). Indeed, there is an inverse correlation between TGF-β1 

and NKG2D levels in lung, colorectal carcinomas, and glioblastoma (Crane et al., 2010; Lee 

et al., 2004). In addition, the levels of DAP12, an adaptor of several cytotoxic receptors 

including NKG2D, are downregulated by TGF-β-induced miR-183 (Donatelli et al., 2014) 

(Figure 4).

A controversy exists regarding the role of TGF-β signaling in the ontogeny of NK cells. 

Early studies found increased NK cell numbers and accelerated maturation during infancy in 

transgenic mice that express a dominant negative TGFBR2 in NK cells under the control of 

the cd11c promoter (Laouar et al., 2005; Marcoe et al., 2012). In contrast, ablation of Tgfbr2 

in NK cells by means of the Ncr1-cre deleter strain did not cause alterations in NK cell 

distribution or development. However, these mice exhibited a reduced NK-mediated anti-

tumor response to lung metastasis formation (Viel et al., 2016). This study also reveal that 

TGF-β-mediated suppression of NK activity is due to impairment of mTOR metabolic 

signaling downstream of stimulatory cytokines such as IL15 (Viel et al., 2016). Finally, NK 

cells are plastic and can switch phenotype in response to TGF-β (Cortez et al., 2016). 
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Analysis of tumor models revealed that a TGF-β-rich TME facilitates immune evasion by 

enforcing transdifferentiation of NK cells to innate lymphoid cells type 1 (ILC1) which are 

devoid of cytotoxic function (Gao et al., 2017) (Figure 4). This process apparently requires 

SMAD4-independent TGF-β signaling (Cortez et al., 2017).

Regulation of macrophage behavior by TGF-β signaling

It is well established that the TME polarizes macrophages towards a phenotype with anti-

inflammatory, immune suppressive and proangiogenic functions, referred to as the M2 

phenotype. TGF-β is one of the main immunosuppressive cytokines produced by tumor 

associated macrophages (TAMs) and, as already mentioned, subsets of human macrophages 

can mobilize active TGF-β through the activity of integrin αvβ8 and MMP14 (Kelly et al., 

2018).

TGF-β instructs distinct programs in cells of the monocyte/macrophage lineage depending 

on the differentiation state and context. Early studies provided evidence that TGF-β acts as 

chemoattractant for monocytes to the sites of inflammation, and upregulates adhesion 

molecules that enable monocyte attachment to the ECM (Allen et al., 1990; Wahl et al., 

1993). A similar mechanism may operate in tumors. For example, in models of breast 

cancer, tumor cells secrete TGF-β, which upregulates CXCR4 in monocytes, while CXCL12 

secreted by perivascular fibroblasts attracts these monocytes to tumor beds (Arwert et al., 

2018). Subsequently, monocytes differentiate into perivascular macrophages and facilitate 

tumor cell extravasation by promoting blood vessel leakiness (Arwert et al., 2018).

TGF-β signaling in macrophages also inhibits anti-inflammatory responses mediated by 

transcription factor NF-κB. The inhibitory SMADs, SMAD6 and SMAD7, have been 

implicated in this process. TGF-β promotes degradation of MYD88, an adaptor protein 

utilized by all Toll-like receptors (TLRs), except TLR3, to activate NF-κB signaling. 

SMAD6 induced polyubiquitination of MYD88 through recruitment of E3-ubiquitin ligases 

SMURF1/2 in TGF-β-stimulated peritoneal macrophages (Lee et al., 2011; Naiki et al., 

2005) (Figure 4). SMAD6 also sequesters adaptor protein Pellino-1, which is required 

downstream of IL1R-TLR to promote an inflammatory response (Choi et al., 2006). 

Furthermore, TGF-β1 suppresses the inflammatory phenotype of macrophages by crosstalk 

with tumor necrosis factor signaling pathway through SMAD7, which blocks the activity of 

the TNF-induced kinase TAK1 (Hong et al., 2007). Although these mechanisms have not 

been formally investigated in the context of cancer, it is conceivable that a TGF-β-rich TME 

may contribute to immune evasion by dampening the inflammatory functions of 

macrophages. Indeed, the acquisition of a M2 phenotype in TAMs correlates with inhibition 

of NF-κB activity (Porta et al., 2009).

TGF-β signaling in myeloid cells of the neutrophil lineage

Neutrophils represent around 80% of all blood leukocytes and play key roles in controlling 

infection. Patients with various cancer types, including breast, lung and colorectal cancer, 

exhibit increased numbers of circulating neutrophils, often associated with poor prognosis 

(Gentles et al., 2015; Templeton et al., 2014). Functional analyses in models of cancer have 
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revealed important roles of neutrophils during tumor progression (Coffelt et al., 2016). 

Paralleling the phenomenon of TAM polarization, tumor-associated neutrophils (TANs) 

adopt either an anti-tumorigenic or protumorigenic program (Fridlender et al., 2009) (Figure 

4). In mice bearing mesothelioma tumors, treatment with TGF-β inhibitors enforces the anti-

tumorigenic phenotype in TANs that includes cytolytic activity and elevated expression of 

pro-inflammatory cytokines (Fridlender et al., 2009).

A debate exists about whether TANs represent mature neutrophils or rather immature 

polymorphonuclear cells (Coffelt et al., 2016; Gabrilovich, 2017). It is well established that 

chronic infection, inflammation, or cancer induce a persistent stimulation of myelopoiesis 

that results in the production of cells similar to neutrophils and monocytes in morphology 

and phenotype yet with potent ability to suppress immune responses (Coffelt et al., 2016; 

Gabrilovich, 2017). These cells termed myeloid-derived suppressor cells (MDSCs) infiltrate 

tumors and are important players during cancer immune evasion. 80% of MDSCs display a 

polymorphonuclear phenotype (PMN-MDSCs) similar to that of neutrophils and can be 

recognized in flow cytometry analysis by the neutrophil surface marker combination CD11b

+Ly6G+ (Coffelt et al., 2016; Gabrilovich, 2017). TGF-β signaling in MDSCs enhances 

tumor progression and metastasis in animal models. Depletion of MDSCs in a breast cancer 

model inhibited the therapeutic effects exerted by systemic administration of anti-TGF-β 
antibodies (Li et al., 2012). Indeed, mice with myeloid-specific deletion of Tgfbr2 were 

largely resistant to metastasis formation upon transplantation of syngeneic breast cancer, 

lung cancer and melanoma cell lines (Pang et al., 2013). This effect was linked to 

downregulation of type 2 cytokines in MDSCs and increased expression of IFNγ in CD8+ T 

cells leading to enhanced anti-tumor responses (Pang et al., 2013). Interestingly, in this 

study, primary tumor growth was not affected by loss of Tgfbr2 in myeloid cells, which 

suggests a specific role for TGF-β-activated MDSCs in the metastatic niche.

In contrast to the tumor promoting effects of TGF-β signaling in neutrophils and MDSCs, 

several studies have shown that genetic inhibition of TGF-β signaling in cancer cells results 

in recruitment of immature myeloid cells and MDSCs to the TME. A genetic mouse model 

of invasive colorectal cancer generated by inactivating Apc and Smad4 in the intestinal 

epithelium exhibited prominent infiltration with CCR1+ immature myeloid cells (Kitamura 

et al., 2007). Loss of TGF-β signaling in Apc mutant colon cancer cells led to upregulation 

of chemoattractant CCL9, which in turn mediates recruitment of the immature myeloid cell 

population (Kitamura et al., 2007). Furthermore, immature myeloid cells present in the TME 

expressed matrix metalloproteinases that facilitate tumor cell invasion and metastasis 

(Kitamura et al., 2007, 2010). In a similar study, knockout of Tgfbr2 in mammary carcinoma 

cells increased MDSC infiltration. In this case, the effect was mediated by upregulation of 

CXCL5 in Tgfbr2 deficient breast cancer cells (Yang et al., 2008). MDSCs also produced 

matrix metalloproteases that contributed to tumor cell invasion and metastasis in this model 

(Yang et al., 2008). Therefore, the anti-tumoral effects of TGF-β on cancer cells result, at 

least in part, from suppression of expression of myeloid cell chemoattractants.
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Cancer-associated fibroblasts and TGF-β-driven immune evasion

TME of advanced stage cancers is often characterized by an abundance of fibroblasts. These 

cancer-associated fibroblasts (CAFs) are a heterogeneous group of cells dedicated to 

producing the main components of the ECM including collagens, elastins, and fibronectin, 

but also an array of cytokines that regulate tumor properties. CAFs represent the main TGF-

β producers in many tumor types. A prime example is colorectal cancer, where CAFs secrete 

TGF-β1 and TGF-β3, and their abundance correlates with TGF-β pathway activity in 

distinct TME cell types, including T cells and macrophages (Calon et al., 2012, 2015). In 

addition, TGF-β activates a gene expression program in CAFs that is tightly associated with 

poor prognosis in CRC patients (Calon et al., 2012, 2015; Isella et al., 2015).

These findings are further strengthened by the fact that distinct molecular classifications of 

colorectal cancer have consistently identified a poor prognosis subtype characterized by 

elevated TGF-β levels and abundant CAFs (Calon et al., 2015; Guinney et al., 2015; Isella et 

al., 2015). The generation of genetic mouse models that develop human-like CRCs has 

offered insights into the interaction of the CAF-rich TGF-β-activated TME with the immune 

system (Tauriello et al., 2018). Elevated TGF-β levels produced by CAFs and other TME 

cell types exclude CD4+ and CD8+ T cells from the tumor center (Tauriello et al., 2018). T 

cell exclusion is associated with adverse outcome in colorectal cancer patients (Galon et al., 

2006). Treatment of these mouse colorectal models with the TGFBR1 inhibitor Galunisertib 

triggered T cell infiltration, and upon treatment, primary tumors and metastases became 

susceptible to checkpoint therapies (Tauriello et al., 2018). Dual Galunisertib/PDL1 therapy 

induced a potent immune response, with increased TBET and IFNγ levels in CD4+ T cells 

and elevated granzyme B production in CD8+ cells, which eradicated overt metastatic 

disease (Tauriello et al., 2018). Similar therapeutic responses to dual Galunisertib/PDL1 

treatment were observed in genetic mouse models of serrated colorectal cancer (Nakanishi et 

al., 2018).

A link between CAFs and immune evasion is further supported by another study that 

searched for determinants of response to checkpoint immunotherapies (Mariathasan et al., 

2018). By interrogating a transcriptomic cohort of urothelial cancer, authors found that a 

subset of patients that did not respond to PD-L1 treatment bore tumors rich in TGF-β-

activated CAF gene program. These tumors presented an immune-excluded phenotype 

(Mariathasan et al., 2018). This study further showed that treatment with an anti-Pan-TGF-β 
antibody reverted T cell exclusion and sensitized mouse tumor models to PD-L1 treatment 

(Mariathasan et al., 2018).

At present, the association between TGF-β-activated CAFs and cancer immune evasion 

remains largely correlative and therefore we can only speculate about the mechanisms 

utilized by CAFs to block T cell infiltration and function. CAFs secrete TGF-β, which can 

directly suppress several immune cell types through the mechanisms described herein. In 

addition, and by analogy with tissue fibrosis (Kim et al., 2018; Wipff et al., 2007), highly 

contractile CAFs may likely facilitate the release of active TGF-β from latent complexes 

stored in the TME. Alternatively (or additionally) particular genes activated by TGF-β 
signaling in CAFs may inhibit the migration and function of immune cells present in the 
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tumor stroma. Supporting this hypothesis, a transcriptomic signature of ECM genes driven 

by TGF-β in CAFs predicts failure of PD-1 therapy (Chakravarthy et al., 2018).

TGF-β-based immunotherapies

The development of therapies based on inhibiting the TGF-β pathway has had a slow 

progress. Its low priority in the pharmaceutical industry pipeline is likely explained by two 

observations. First, the long-standing evidence supporting a tumor suppressor role for the 

TGF-β pathway in several contexts, which raised concerns regarding the possibility that 

inhibition of TGF-β signaling could worsen rather than cure cancer. Second, the finding that 

first generation TGFBR1 inhibitors triggered overt cardiac toxicity in experimental models 

(Anderton et al., 2011). Nevertheless, as we discussed throughout this review article, over 

the past years it has become evident that genetic ablation of TGF-β signaling pathway 

components in distinct immune cell types, including CD4+, CD8+ T cells, NK or dendritic 

cells, triggers robust anti-tumor responses in preclinical models of cancer. These studies, 

together with the overwhelming evidence that late-stage tumors exploit TGF-β for invasion 

and metastasis, have sparked the development of multiple programs aimed at blocking TGF-

β signaling in cancer. Table I summarizes the main strategies, some of which are currently in 

clinical trials. The most extensively tested compound is Galunisertib (LY21577299), a small 

molecule that inhibits TGFBR1 kinase activity. Galunisertib in combination with 

gemcitabine has shown modest but significant therapeutic activity in a phase 2 clinical trial 

for pancreatic cancer (Melisi et al., 2018). Another phase 2 clinical trial demonstrated 

therapeutic responses in a subset of Hepatocellular carcinoma patients treated with 

Galunisertib as monotherapy (Faivre et al., 2014). Of note, Galunisertib displayed a safe 

profile across various clinical trials, without discernable cardiac toxicities (Kovacs et al., 

2015).

Preclinical studies suggest that the immunological effects of Galunisertib are strongly 

potentiated by combination with checkpoint inhibitors whereas TGF-β inhibition as 

monotherapy may exhibit limited efficacy (Holmgaard et al., 2018; Mariathasan et al., 2018; 

Nakanishi et al., 2018; Tauriello et al., 2018). Based on these findings, several clinical trials 

aimed at testing Galunisertib in combination with anti-PD1 antibodies have been recently 

launched. In addition, TGFBR1 small molecule inhibitors that are more potent and specific 

than Galunisertib have been developed and are currently being tested in patients. One of 

them, Vactosertib (TEW-7197), in combination with chemotherapy or antibodies against 

immune checkpoint molecules is in phase 1/2 clinical trials for several cancer types.

The use of antibodies that block systemic TGF-β has shown promising anti-tumor responses 

in multiple preclinical studies. For instance, treatment with the 1D11 anti-pan-TGF-β 
antibody enhances the priming of tumor-reactive CD8+ by dendritic cells upon irradiation of 

subcutaneous tumors (Vanpouille-Box et al., 2015). This combinatorial therapy inhibits 

tumor growth and metastases, and is further enhanced by treatment with PD-1 antibodies 

(Vanpouille-Box et al., 2015). In a similar study, radiotherapy in combination with blocking 

TGF-β antibodies enhances systemic anti-tumor responses as shown by analysis of non-

irradiated lesions in the same mice, i.e. abscopal effects (Rodríguez-Ruiz et al., 2019). A 

humanized derivative of the 1D11 antibody, Fresolimumab, is being evaluated for the 
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treatment of renal cell carcinoma, melanoma, non-small cell lung cancer, and metastatic 

breast cancer. Reported results from this clinical trial show that Fresolimumab in 

combination with focal radiotherapy increases the overall survival of patients with metastatic 

breast cancer (Formenti et al., 2018). This effect correlated with a large increase in the 

number of CD8+ central memory cell pool suggesting that the treatment triggered an 

immune response against the tumor (Formenti et al., 2018). Several other pan-TGF-β 
blocking antibodies are in phase 1 clinical trials (Table I).

There are ongoing efforts to develop TGF-β isoform-specific therapies. For example, the 

antibody XPA-42–089 binds TGF-β1 and TGF-β2 but not TGF-β3, and exhibit a robust 

synergism with PD-1 during the treatment of both genetic and mutagen-induced mouse 

squamous cell carcinomas (Dodagatta-Marri et al., 2019). AVID200 is a computational-

designed receptor ectodomain-based trap that binds and neutralizes TGF-β1 and TGF-β3 but 

not TGF-β2 (O’Connor-McCourt et al., 2017). It is currently in phase 1 trials for patients 

with advanced solid tumors.

Another interesting approach are therapies based of anti-CTLA4 or anti-PD-L1 antibodies 

engineered as fusions with the extracellular domain of TGFBR2 (Ravi et al., 2018). These 

bi-functional molecules potentiate the efficacy of immunotherapies in mouse models of 

cancer by quenching TGF-β. The anti-CTLA4-TGFBR2 molecule reduced accumulation of 

Treg cells in immune reconstituted NSG mice bearing patient-derived melanoma and 

exhibited enhanced anti-tumor efficacy compared with standard anti-CTLA4 monotherapy 

(Ravi et al., 2018). Likewise, an anti-PDL1-TGFBR2 chimera exerted more pronounced 

anti-tumor responses than PD-L1 antibodies (Ravi et al., 2018). The chimeric anti-PDL1-

TGFBR2 antibody is currently being tested in phase 1 clinical trials for several indications.

Blockade of TGF-β signaling also improves the outcome of immunotherapies based on 

adoptive cells transfer. For instance, infused CD8+ cells reactive against an autochthonous 

tumor model of prostate cancer mount enhanced anti-tumor responses if TGF-β signaling is 

prevented by transgenic expression of a dominant negative TGFBR2 (Bendle et al., 2013; 

Zhang et al., 2005). This strategy was recently tested in patients with chemorefractory 

Epstein Barr Hodgkin lymphoma (Bollard et al., 2018). The authors reported that autologous 

CD8+ cells directed against the Epstein Barr virus–derived tumor antigens that have been 

engineered to express a dominant negative TGFBR2 trigger complete responses in 4 out of 7 

patients (Bollard et al., 2018). Although the patient number is small, the study suggests 

improved efficacy compared to a previous trial using TGF-β sensitive CD8+ T cells (Bollard 

et al., 2018). This strategy might be widely applicable to a wide range of adoptive cell 

transfer therapies.

Finally, the complex mechanism of active TGF-β release from latent complexes also offers 

opportunities for therapeutic intervention. Antibodies against GARP that blocked its binding 

to latent TGF-β prevented the formation of lung metastases generated by breast cancer cell 

lines implanted orthotopically (Metelli et al., 2016). Another study characterized the activity 

of antibodies that inhibit active TGF-β release from Treg cells through binding to a 

conformational epitope in GARP (Cuende et al., 2015). One of them, ABBV151, is being 

tested in phase 1 clinical trials for advanced solid tumors. Antibodies that bind the LAP 
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domain of latent TGF-β elicit immune responses against tumors in models of melanoma, 

colorectal carcinoma, and glioblastoma (Gabriely et al., 2017). Similarly, an antibody 

against αvβ8 integrin that blocks the release of active TGF-β by cancer cells unleashed the 

immune system against tumors in preclinical models and this therapeutic effect was largely 

potentiated by combining anti-PD1 antibodies (Takasaka et al., 2018).

Concluding Remarks

The basic elements in the TGF-β signaling cascade were elucidated more than a decade ago. 

During the past few years, it has become evident that the pleiotropic nature of TGFβ 
responses is the result of context dependent transcriptional programs orchestrated through 

the interaction of SMADs with distinct tissue and cell specific transcription factors. 

Rewiring of transcriptional circuits in cancer cells -as result of genetic and epigenetic 

alterations- changes the output of TGF-β signaling from a tumor suppressing function to 

different tumor promoting programs that facilitate growth, invasion and metastasis. 

Concomitantly, TGF-β signaling operates as a major suppressor of the adaptive and innate 

immune responses during tumor progression. The inhibition of the immune system by TGF-

β signaling leads to opposing effects depending on the context. In tissues subjected to 

continuous antigenic stimuli, such as the gastrointestinal tract, TGF-β limits adaptive 

responses and dampens inflammation. In this setting, loss of TGF-β signaling leads to a pro-

inflammatory environment that facilitates the onset of cancer. In contrast, in the advanced 

stages of the disease, TGF-β signaling acts as an important mechanism of immune evasion 

in several tumor types.

The snapshots of TGF-β effects on tumor immunity covered here illustrate how distinct 

immune cell types present in the TME react to TGF-β in variety of experimental systems. In 

most cases, observations in tumor models echo the function of the TGF-β pathway in 

promoting tolerance and suppressing immune responses during homeostasis and infection. It 

remains unclear, however, how the individual cell responses described here are orchestrated 

in a given tumor. Do they occur in concert or sequentially along tumor progression? Which 

TGF-β activated immune cell types are relevant and which tumor subtypes utilize them? 

Addressing these questions will require cancer models that faithfully reproduce human 

disease. Genomic analyses, including single cell profiling, should also help understand the 

ecology of TGF-β-mediated immune evasion. These are particular important aspects that 

may contribute to rationalize the use of upcoming TGF-beta-based immunotherapies. In this 

regard, the observed synergism between TGF-β inhibition and checkpoint blockade perhaps 

reflects a hierarchy of immune suppressive events whereby TGF-β dampens the initial 

immune response such as the ability of T cells to infiltrate tumors and the acquisition of 

effector program, whereas PD1/PDL1 signaling operates at a later stage by suppressing T 

cell effector functions and causing exhaustion. These investigations together with the 

development of more potent and specific TGF-β pathway inhibitors holds promise for the 

treatment of prevalent tumor types that thrive in a TGF-β-rich environment.
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Figure 1. Key players in TGF-β suppression of tumor adaptive immunity.
Several prevalent cancer types exhibit a TGF-β-rich TME. TGF-β is produced by cancer 

cells and by several other cell types present in the TME including Tregs. Fibroblasts, 

macrophages and platelets are also main TGF-β producers in tumors (not shown). Elevated 

TGF-β-levels block naïve T cell differentiation towards a Th1 effector phenotype, promotes 

their conversion towards the Treg subset and dampens antigen presenting functions of 

dendritic cells.
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Figure 2. The TGF-β signaling pathway.
(A) Synthesis and release of active TGF-β (adapted from (Kelly et al., 2017)). In the 

endoplasmic reticulum, each pro-TGF-β molecule is assembled into a dimer via three 

interchain disulfide bonds. Following cleavage by the endoprotease Furin, the C-terminal 

fragment remains non-covalently associated with the disulfide-linked LAP homodimer. This 

molecule is termed the small latent complex. Three main mechanisms of release of active 

TGF-β are represented: (i) Extracellular protease cleavage of LAP domain. (ii) Tethering of 

small latent complex to extracellular matrix through LTBP1 and release of active TGF-beta 

by integrin-transmitted tension upon cell contraction. (iii) Tethering of small latent complex 

to GARP on the cell surface and release of active TGF-beta by integrins. (B) Signal 

transduction by TGF-β. The fundamental steps of ligand-induced formation of a paired-

kinase receptor complex, and receptor-mediated phosphorylation of R-SMAD proteins for 

the formation of a trimeric receptor complex are shown. The accessory receptor 

proteoglycan Betaglycan (BG) presents TGF-β to the signaling receptors. In the nucleus, the 

activated SMAD heterotrimeric complex binds to target cis-regulatory sites as determined by 

interactions with lineage-determining transcription factors (LDTFs) and other signal-driven 

transcription factors (SDTFs). CDK8 and CDK9 phophorylate SMADs in this complex for 

further activation and eventual degradation. SMAD phosphatases (not shown) reverse these 

phosphorylation, and PARP-mediated parylation causes SMAD dissociation from DNA. The 

inhibitory SMAD7 recruits SMURF ubiquitin ligases to target the receptor for degradation, 

whereas ubiquitin specific peptidases USP11 and USP15 counterbalance this process.
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Figure 3. Tumor suppressor and promoting functions of TGF-β signaling. Left.
In homeostasis, TGF-β signals regulate key processes in multiple tissues including their 

growth, regeneration and identity. In the immune system, TGF-β instructs tolerance and 

suppresses inflammation. This function is particularly relevant in the gastrointestinal tract. 

Center. Genetic alterations can modify the output of TGF-β signals in tumor initiating cells. 

During the initial stages of carcinogenesis, TGF-β operates as main tumor suppressor by 

imposing cytostatic and apoptotic programs in tumor cells. A proinflammatory environment 

fosters the onset of cancer. Loss of TGF-β signals in the microenvironment contributes to 

exacerbate inflammation in this context. Secretion of pro-survival factors and cytokines by 

stromal and immune cells pushes continuous regeneration in a harsh inflammatory 

environment, which eventually leads to the onset of cancer. Right. During tumor 

progression, selective pressure promotes loss of the cytostatic and tumor suppressor function 

of TGF-beta in cancer cells. In general, this process occurs via two distinct mechanisms. 

Acquisition of loss of function mutations in TGF-beta pathway components renders tumor 

cells resistant to TGF-β thus enabling growth in a TGF-β-rich environment present in many 

advanced cancers. Alternatively, TGF-beta signals are reinterpreted in cancer cells to instruct 

tumor-promoting functions such as the ability to migrate and colonize foreign organs. In the 

TME of several prevalent tumor types, TGF-β operates as central mechanism of immune 

evasion.
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Figure 4. Immune evasion mediated by TGF-β signaling in late stage cancers.
The central circle depicts phenotypic transitions instructed by TGF-beta in the distinct 

immune cell types present in the TME as described in the text. The outer part summarizes 

the key processes regulated by TGF-beta signaling in immune cells. We depict direct 

transcriptional responses driven SMADs, in some cases in cooperation with cell specific 

transcription factors.
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