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Abstract 

Background:  Stalk lodging (breaking of agricultural plant stalks prior to harvest) is a multi-billion dollar a year 
problem. Stalk lodging occurs when bending moments induced by a combination of external loading (e.g. wind) 
and self-loading (e.g. the plant’s own weight) exceed the stalk bending strength of plant stems. Previous studies have 
investigated external loading and self-loading of plants as separate and independent phenomena. However, these 
two types of loading are highly interconnected and mutually dependent. The purpose of this paper is twofold: (1) to 
investigate the combined effect of external loads and plant weight on the flexural response of plant stems, and (2) to 
provide a generalized framework for accounting for self-weight during mechanical phenotyping experiments used to 
predict stalk lodging resistance.

Results:  A mathematical methodology for properly accounting for the interconnected relationship between self-
loading and external loading of plants stems is presented. The method was compared to numerous finite element 
models of plants stems and found to be highly accurate. The resulting interconnected set of equations from the 
derivation were used to produce user-friendly applications by presenting (1) simplified self-loading correction factors 
for common loading configurations of plants, and (2) a generalized Microsoft Excel framework that calculates the 
influence of self-loading on crop stems. Results indicate that ignoring the effects of self-loading when calculating stalk 
flexural stiffness is appropriate for large and stiff plants such as maize, bamboo, and sorghum. However, significant 
errors result when ignoring the effects of self-loading in smaller plants with larger relative grain sizes, such as rice (8% 
error) and wheat (16% error).

Conclusions:  Properly accounting for self-weight can be critical to determining the structural response of plant 
stems. Equations and tools provided herein enable researchers to properly account for the plant’s weight during 
mechanical phenotyping experiments used to determine stalk lodging resistance.
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Background
Yield losses due to stalk lodging (breakage of crop stems 
or stalks prior to harvest) are estimated to range from 
5% to 20% annually [1, 2] resulting in billions of dollars 
of lost revenue. Stalk flexural stiffness and stalk bending 
strength (see Table 1 for definitions) are key mechanical 

phenotypes that govern stalk lodging resistance [3–8]. 
These key phenotypes are measured with the aid of 
mechanical phenotyping devices [9]. However, a method 
to properly account for plant weight when measuring 
stalk flexural stiffness and stalk bending strength has not 
been presented. Consequently, the effect of self-weight 
is typically neglected in mechanical tests used to quan-
tify these phenotypes. Neglecting self-weight during 
mechanical phenotyping experiments can introduce sig-
nificant errors in stalk flexural stiffness and stalk bending 
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strength measurements which in turn result in inaccurate 
predictions of stalk lodging resistance.

Properly accounting for self-weight during mechani-
cal phenotyping experiments requires (1) a basic 
understanding of the types of mechanical forces plants 
experience, (2) clear definitions of the mechanical pheno-
types being measured and (3) a conceptual understand-
ing of how mechanical phenotyping devices work and the 
types of forces present during mechanical phenotyping 
experiments. Each of these three requirements is dis-
cussed in the paragraphs that follow. An explanation of 
the basic types of forces plants experience is presented 
first, followed by definitions for stalk flexural stiffness and 
stalk bending strength. Finally, a discussion of the basic 
principles of mechanical phenotyping devices used to 
measure stalk flexural stiffness and stalk bending strength 
is presented.

Types of forces experienced by plants
Plants are subjected to three principle types of forces, 
namely: (1) Contact Forces, (2) Surface Forces and (3) 
Body Forces. Contact Forces occur when solid materi-
als ‘contact’ (i.e., push on) one another. Most mechani-
cal phenotyping devices impart Contact Forces (i.e., they 
physically contact and push on the plant). Contact Forces 
can also occur when an adjacent plant or a researcher 
contacts a plant and pushes on it. Surface Forces are 
forces that are distributed across a plants surface. The 

wind is an example of a Surface Force. Both Contact 
Forces and Surface Forces are commonly referred to as 
External Forces or externally applied loads as they origi-
nate from external objects. The last type of mechanical 
force plants are subjected to is Body Forces. Body Forces 
are forces due to gravity (i.e., the plants weight). It is 
important to note that all plants are constantly subjected 
to Body Forces whereas they are only intermittently sub-
jected to External Forces (e.g., Contact Forces and Surface 
Forces). In other words, Body Forces (i.e., self-weight) are 
always present in any mechanical phenotyping test and as 
such need to be accounted for.

Bending strength and flexural stiffness definitions
Determining the bending strength and flexural stiff-
ness of plant stems requires the calculation of “bending 
moments” (see [10] for a complete discussion of bending 
moments). Bending moments arise from any force (either 
External Forces or Body Forces) that cause a plant to bend 
or flex and can be conceptually thought of as a torque. 
A bending moment is calculated by multiplying a force 
by the perpendicular distance from the force to the axis 
about which the bending moment is being calculated. 
In most plant studies bending moments are typically 
calculated about the base of the plant (i.e., at the stalk–
soil interface) as this is where bending moments are the 
largest. Both External Forces and Body Forces (i.e., self-
weight) create bending moments in plant stems.

Table 1  Glossary of terms

Term Definition

Bending Moment The result of multiplying a force by the perpendicular distance from the 
force to the axis about which the bending moment is being calculated. 
Conceptually can be thought of as a torque

Bending Stress A measure of the force experienced by the plant tissues that is normalized 
to size and geometry

Body Forces Forces acting on the plant due to the gravity

Contact Forces Forces that occur when other solid materials contact the plant

External Forces Forces that are applied to the plant from an external source (e.g. Contact 
Forces or Surface Forces). Body Forces are not an External Force

Stalk Flexural Stiffness Flexural stiffness is a standard structural engineering quantity for measur-
ing the flexural (i.e., bending) deformability of objects. It is equal to the 
elastic modulus of the material multiplied by the moment of inertia (a 
geometric term which quantifies the distribution of mass about the 
object’s centroid). During mechanical phenotyping tests of plant stalks 
flexural stiffness is typically calculated by applying a force, measuring 
deflection and using Castigliano’s energy method to indirectly solve for 
flexural stiffness

Stalk Bending Strength The maximum bending moment the plant can support before structural 
failure occurs (i.e., before breaking)

Surface Forces Forces that are distributed across the plant’s surface
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We now proceed to provide definitions for stalk bend-
ing strength and stalk flexural stiffness. Note these terms 
are sometimes used incorrectly and interchangeably in 
the mechanical plant phenotyping literature. However, 
they are structural engineering terms with precise and 
distinct definitions. The stalk bending strength of a plant 
is defined as the maximum bending moment the plant 
stalk can support before structural failure occurs (i.e., 
before breaking). In contrast stalk flexural stiffness is a 
measurement of the flexural (i.e., bending) deformabil-
ity of the plant. In other words, stalk flexural stiffness is a 
measure of a plant’s resistance to bending deformations, 
whereas stalk bending strength is a measure of a plants 
resistance to breaking. The flexural stiffness of standard 
engineering structures is defined as the elastic modulus 
of the material the structure is composed of multiplied by 
the moment of inertia of the structure. The moment of 
inertia is a geometric term that quantifies the distribution 
of mass about an object’s centroid [10]. However, plant 
stalks are often composed of multiple materials and are 
non-prismatic (i.e., tapered) thus their moment of inertia 
changes as a function of length along the stalk. This com-
plicates the calculation of stalk flexural stiffness. Conse-
quently, most studies utilize engineering beam equations 
to indirectly solve for stalk flexural stiffness (e.g., [4, 10]). 
The process of indirectly solving for stalk flexural stiffness 
is explained in detail in the methods section.

Mechanical phenotyping principles
Several mechanical phenotyping devices have been 
developed to measure stalk flexural stiffness and/or stalk 
bending strength [6, 8, 9, 11]. A review of these devices 
is presented in [9]. In general, all these devices apply an 
external load (e.g., a contact force) to either a single plant 
or to a group of plants and measure the accompanying 
deflection of the plant stem(s). Standard engineering 
beam equations are then used to calculate the flexural 
stiffness and bending strength of the plant sample (e.g. [6, 
9]). However, the standard engineering beam equations 
used in these analyses ignore the effect of Body Forces 
(i.e. self-weight) and are therefore error prone.

It is important to note that the bending moments 
induced from Body Forces are inextricably connected 
to External Forces. In particular, the bending moment 
induced from Body Forces (i.e., self-weight) is a function 
of the distance between the plant’s base and its center of 
gravity. As External Forces from a phenotyping device 
displace the center of gravity of the plant away from the 
base of the stem, the bending moment induced from 
Body Forces increases. Previous studies have examined 
the influence of Body Forces (i.e., self-weight) on stalk 

bending strength in the absence of External Forces while 
others have examined the influence of External Forces 
on stalk bending strength while ignoring Body Forces 
[3, 4, 12–20]. However, a method for simultaneously 
accounting for both External Forces and Body Forces dur-
ing mechanical phenotyping experiments has not been 
presented. Consequently, Body Forces are ignored in 
mechanical phenotyping studies which leads to inaccura-
cies in stalk lodging resistance predictions.

The purpose of this paper is to provide a generalized 
framework to simultaneously account for both Body 
Forces and External Forces when taking measurements 
of stalk flexural stiffness and stalk bending strength. A 
derivation of the governing engineering equations used 
to calculate these mechanical phenotypes is presented. 
The derivation is validated by comparing its results to 
the results of several nonlinear finite element models of 
plant stems. In addition, a user-friendly Microsoft Excel 
spreadsheet is developed and presented to aid research-
ers in determining the effect of self-weight in mechani-
cal phenotyping experiments. The spreadsheet does 
not require an advanced understanding of engineering 
mechanics. It was developed to aid researchers from 
non-engineering disciplines to determine the necessity of 
accounting for plant weight in mechanical phenotyping 
experiments. Finally, several case studies are presented to 
demonstrate the type of error present in mechanical phe-
notyping tests that do not account for Body Forces.

Methods
The sections that follow detail the methods used to 
investigate the effect of self-weight on measurements of 
stalk flexural stiffness and stalk bending strength of plant 
stems. For clarity, the methods are broken into five dis-
tinct subsections. First, the traditional approach (which 
ignores Body Forces) to calculate bending strength and 
flexural stiffness is presented, and its limitations are dis-
cussed. Second, a derivation of a more accurate approach 
to calculating bending strength and flexural stiffness 
that simultaneously accounts for both Body Forces and 
External Forces is presented. The derivation is predi-
cated upon engineering solid mechanics theory. The 
third section describes how this new approach was para-
metrically investigated and validated by comparing its 
results to those of engineering finite element models of 
plant stems. In the fourth section, the development of a 
user-friendly Excel spreadsheet is explained. The spread-
sheet was developed to help researchers without a back-
ground in engineering mechanics successfully apply the 
new approach to calculating stalk bending strength and 
stalk flexural stiffness. The last section explains a series 
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of three case studies. These case studies were conducted 
to illustrate how the equations presented in the current 
work can be applied to investigate the effects of self-
weight. Table  2  displays the variables and abbreviations 
used in the equations presented below.

Traditional solution (ignoring body forces)
Traditionally, the bending strength of a plant stem is 
calculated as the maximum externally applied moment 
(Mext) (applied from a phenotyping device) that the stem 
can withstand prior to structural failure, i.e., bending 
strength = Maximum (Mext). Using traditional methods, 
the flexural stiffness (EI) of a plant is solved for indirectly 
by relating the externally applied moment (Mext) induced 
by a phenotyping device to the resulting deflection of the 
stem (δ) using Castigliano’s energy method [6, 9, 11]. In 
this way, the deflection of the plant is equal to the partial 
derivative of the internal potential energy of the system 
with respect to the applied load (F) from the phenotyping 
device [10]:

Unfortunately, the effect of Body Forces is ignored 
in these traditional approaches. In other words, these 
analyses consider only the external bending moment 
(Mext) applied by the phenotyping device. In real-
ity the total bending moment (MTOTAL) which is the 

(1)EI =
∫Mext

dMext
dF

dx

2δ

combination of both the externally applied bending 
moment (Mext) and the bending moment resulting 
from Body Forces (Mbody) should be considered (i.e., 
MTOTAL = Mext + Mbody). Thus, to more accurately quan-
tify stalk flexural stiffness and stalk bending strength the 
traditional approach must be modified to use MTOTAL, 
and not just Mext.

Derivation of new approach that accounts for both body 
forces and external forces
Properly accounting for Body Forces when calculating 
stalk bending strength and stalk flexural stiffness requires 
derivation of a closed form solution for the total bend-
ing moment of the stem (MTOTAL). The derivation is 
presented in this section for completeness. However, it 
should be noted that the derivation is based upon engi-
neering solid mechanics theory and those from a non-
engineering background may therefore find parts of the 
derivation difficult to follow. For this reason, the authors 
have incorporated the resulting sets of equations from 
the derivation into a user-friendly excel spreadsheet that 
can be used by the plant research community. The deri-
vation is presented below followed by an explanation of 
the excel spreadsheet.

Consider Fig. 1, which depicts the free body diagram 
of a plant stem with an arbitrary loading applied at 
two locations. The figure depicts two weights (w) (e.g. 

Table 2  Abbreviations

Term Definition

δ Horizontal deflection (mm)

EI Flexural stiffness (Nmm2)

F Externally applied force (N)

fM Geometric coefficient for applied moments

fF Geometric coefficient for applied forces

h Height (mm)

L Location where loading is applied (mm)

M Externally applied moment (Nmm)

Mext Total moment induced from externally applied forces and moments 
(Nmm)

Mbody Total moment induced from self-loading (Nmm)

MTOTAL Total applied moment (sum of Mext and Mint) (Nmm)

S Section modulus (mm3)

w Weight (N)

W Weight-induced moment (Nmm)

σbending Bending stress (N/mm2)

Z Vertical position where deflection is being calculated (mm)
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stem weight, grain weight), as well as two externally 
applied Contact Forces (F) and two externally applied 
moments (M). Note that as mentioned before the exter-
nally applied loads and moments can be arise from any 
external object. Commons sources of externally applied 
forces include phenotyping devices, wind, and adjacent 
plants.

Bending moments induced from self-weight (i.e., 
Body Forces) will increase with increased stem deflec-
tion. For the weight (w) at each location, we can cal-
culate the induced bending moment from self-weight 
(W) as the product of the weight and the weight’s off-
set [i.e., the deflection of the stem at the location of the 
weight (δ)]. Thus for the two locations shown in Fig. 1, 
we have:

It should be noted that Eqs. (2) and (3) assume that the 
maximum bending moment induced by self-loading is 
applied to the entire length of the stem. Details regarding 
this assumption are presented in the Limitations section.

The offsets (δ1 and δ2) used in Eqs. (2) and (3) to calcu-
late the bending moments induced from self-weight are 
unknowns and are a function of the externally applied 
moments and forces. Using engineering theory for beam 
deflection and the theory of superposition of loading 
[10], we can calculate the deflection of the stem at height 
h1 (i.e., location 1) as a function of the applied forces, 
applied moments, and weight-induced moments. Equa-
tion  (4) shows this calculation, where the first row of 
Eq. (4) concerns loads, moments and weights at location 
1 (i.e., at height h1) and the second row of Eq.  (4) con-
cerns forces, moments and weights at location 2 (i.e., at 
height h2).

Similarly, we can write the deflection of the stem at h2 
as:

(2)W1 = δ1w1

(3)W2 = δ2w2

(4)

Fig. 1  The loading diagram of a deflected stem, showing two 
loading locations with all three types of loading (an applied force, an 
applied moment, and a weight)
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Thus we have four linearly independent equations 
(Eqs. (2)–(5)) allowing us to solve for four unknown val-
ues (W1, W2, δ1, δ2). It should be emphasized that for all 
equations in this manuscript (including Eqs. (4) and (5)) 
locations are numbered from the top of plant down (i.e., 
location 1 is above location 2 which is above location 
3…).

Equations (2) through (5) can be generalized to account 
for any number of locations (n) along the length of the 
stalk. First, for any loading location L, at a height hL along 
the stalk, deflected by δL, Eqs. (2) and (3) can be general-
ized as:

(5)

(6)WL = δLwL

in Eqs.  (4) and (5)) is multiplied by a geometric coeffi-
cient. The geometric coefficient for each term is a func-
tion of the height where the deflection is measured and 
the height at which the loading is applied. This geomet-
ric coefficient can be denoted as either ƒF (for forces) or 
ƒM (for externally applied moments or internal weight-
induced moments). As such, for any vertical location Z at 
a height of hP, the deflection δP is calculated by summing 
the product of each load, moment or weight (F, M, or W) 
and its corresponding geometric coefficient (ƒF or ƒM) at 
every loading location (from L = 1 to L = n). Note that this 
geometric coefficient assumes a constant flexural stiffness 
(EI), as discussed in the Limitations section. Thus, the 
generalized form of Eqs. (4) and (5) can be written as:

Next, Eqs. (4) and (5) can be generalized by noting that 
each force, moment or weight (F, M, or W, shown in bold 

where “location 1” is the most apical location of inter-
est and “location L” is the most basal location of interest. 
Equation (7) can now be consolidated into a fully general-
ized form of:

(7)

(8)
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where the geometric coefficients for the forces and 
moments are defined as [21]:

Equations  (6)–(9) can also be put into a generalized 
matrix form. From Eqs.  (6) and (8) we see that for any 
number of weights at any number of locations (n), we will 

(9)fF (P, L) =

{

3hLh
2
P −

(hL−hP)
3

6EI , hP ≥ hL
h2L(3hL−hP)

6EI , hP < hL

(10)fM(P, L) =

{

hL(2hP−hL)
2EI , hP ≥ hL

h2P
2EI , hP < hL

where the first matrix in the equation is a square matrix 
of size 2n × 2n, and the second and third matrices in the 
equation are column matrices of size 2n × 1. Within the 
square matrix, the top left and bottom right n × n sub-
matrices (shown in green text) are identity matrices, 
the bottom left n × n submatrix (shown in blue text) is 
a diagonal matrix of the negative weights (− w), and the 
top right n × n submatrix (shown in orange text) is the 
negative geometric coefficients of the weight-induced 
moments, as calculated by Eq.  (10). We can then solve 
this matrix equation by taking the inverse of the multi-
colored matrix and multiplying by the right-most vec-
tor to calculate the deflections and moments induced by 
Body Forces:

We can now look at the total bending moment 
(MTOTAL) of any cross-section along the length of the 
stem. In particular, MTOTAL can be written as a func-
tion of hP and hL, by considering all of the loads that are 

(12)

have 2n unknown values (δ1, δ2, … ,δn, W1, W2,..., Wn), 
and 2n linearly independent equations. By rearranging 
these equations and converting them to matrix notation 
we can write:

(11)

applied to the stem above the cross-section of interest 
(i.e., for hL ≥ hP),
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Now that we have derived a closed form solution for 
MTOTAL (Eq. 13) we can calculate the stalk flexural stiff-
ness and the stalk bending strength of the plant stem. 
Additionally, we can now calculate the value of bending 
stress. Bending stress is a useful measure of the loading of 
the plant tissue that is normalized to size and geometry. 
The larger the bending stress in the tissue, the closer it 
is to tissue fracture and structural failure. We can write 
the bending stress in the stem in this case as a function 
of the total bending moment and the section modulus of 
the cross-section (S(hZ)):

Note that “section modulus” is an engineering term 
used to quantify the cross-sectional distribution of mass 
about its centroid and can be used in making stalk flex-
ural stiffness and stalk bending strength predictions [10]. 
It should be noted that the section modulus is con-
stant for a given plant stem cross-section. Therefore, 
there exists a 1:1 correlation between the total bending 
moment, and the bending stress. As such, all compari-
sons performed between total bending moments can also 
be conceptualized as being comparisons in stalk bending 
strength or bending stress.

Table  3 shows a comparison between the equations 
used to calculate stalk flexural stiffness, stalk bending 
strength and bending stress for the new method, which 
accounts for Body Forces and the traditional method 
which does not account for Body Forces.

Finite element modeling to confirm accuracy of new closed 
form solution method
The new approach to calculating stalk flexural stiffness 
and stalk bending strength outlined in the previous sec-
tion was derived based on governing physical principles 

(13)MTOTAL(hP) =

n[hL≥hP ]
∑

L=1

FL(hL − hP)+

n[hL≥hP ]
∑

L=1

ML +

n[hL≥hP ]
∑

L=1

WL

(14)σbending (hP) =
MTOTAL(hP)

S(hP)

and well-established engineering equations. Special care 
was taken to ensure no algebraic mistakes were made 
during the derivation and that any assumptions were 
properly considered. Nonetheless, as a form of data tri-
angulation [21] to confirm the accuracy of the new 
approach it was compared to a series of nonlinear finite 
element models of plant stems. A basic description of 
the Finite Element Method and the construction of the 
specific finite element models of plant stems used in this 
study are presented below.

The Finite element method is a standard numerical 
technique used by engineers to quantify the detailed 
mechanical response of complex structures and materi-
als [22]. Finite element models are commonly used cal-
culate the flexural stiffness of complex structures which 
violate basic assumptions made in closed form engineer-
ing equations. It should be noted that nonlinear finite ele-
ment models (i.e. “large deflection” simulations) are valid 
for both small and large deflections. Comparing the new 
closed from solution approach which accounts for Body 
Forces to nonlinear finite models of plant stems thus ena-
bles us to check the accuracy of the new approach.

To this end, a series of 768 non-linear finite element 
models of plant stems were developed, analyzed, and 
compared to the new approach derived in the previous 
section. The models were developed in Abaqus/CAE 
2019 [23, 24] and analyzed in Abaqus/Standard 2019 
using a direct, full Newton solver [23, 24]. A mesh con-
vergence study was performed to ensure adequate mesh 
density of all models. Analyses were run non-linearly, 
recalculating the system stiffness matrix at each solution 
increment. In other words, the models were fully capa-
ble of accounting for nonlinear effects due to large defor-
mations. Model development and post-processing were 
automated through a series of custom Python scripts, 
which can be obtained upon reasonable request to the 
authors. A brief description of the models is given below.

Table 3  Comparison of  equations used to  calculate stalk flexural stiffness, stalk bending strength and  bending stress 
for the traditional method and the new approach derived in this study

Traditional method New approach

Stalk flexural stiffness Mext
δ

MTOTAL
δ

Stalk bending strength max(Mext) max(MTOTAL)

Bending stress Mext(hp)
S(hp)

MTOTAL(hp)
S(hp)
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In these simulations the stems were modeled as 
2-noded linear beam elements in a 2-dimensional 
analysis [23, 24]. In each of these models the bottom 
node of the stem was fixed in all degrees of freedom 
(U1 = U2 = UR3 = 0). Stems were modeled with a weight 
at height h1, applied force at height h2, and applied 
moment at height h3. It should be noted that because 
2-noded beam elements were used, the model was parti-
tioned at h3 so that moments could be directly applied to 
nodes. The plant stem was modeled with the radius val-
ues such that that the resulting moments of inertia were 
as presented in Table 4 using the equation I = π

4
r4 [10]. 

As the models allowed free expansion in the radial direc-
tion, Poisson’s ratio was found to be negligible based on 
preliminary parametric analyses and was set to a value of 
0.3 for all analyses.

A factorial design of experiments was used to com-
pare the results of the new approach derived above to 
the results of the finite element models. In particular, the 
stalk flexural stiffness and stalk bending strength of each 
finite element model was compared to the corresponding 
values calculated using the new approach derived in the 
previous section. A full parametric sweep of all relevant 
input parameters (i.e. factors) was conducted to ensure 
the accuracy of new approach for a broad range of plant 
species. In particular, a factorial design of experiments 
was utilized with 8 factors to compare the two meth-
ods. The factors were the elastic moduli of the stem (E), 
the moment of inertia (I) of the stem, the heights of the 
applied moments, forces and weights (h1, h2 and h3), the 
magnitude of the applied moment (M), the magnitude of 
self-weight (W), and the magnitude of the applied force 
(F). The moduli, moment of inertia, heights, weights, 
and moments were evaluated at two different levels. The 
force was evaluated at 6 levels. Thus a total of 768 unique 
models were constructed covering every combination 
of factors and levels (i.e., 2E’s × 2I’s × 2h1’s × 2h2’s × 2h3’
s × 2  M’s × 2  W’s × 6F’s = 768 models). Table  4 presents 
each of these factors and the levels of each factor used in 
the experiment. The level of each factor (i.e., the value of 
input parameters to the model) were based on previous 
studies of plant stem material properties [8, 25].

Development of excel spreadsheet to calculate stalk 
flexural stiffness and stalk bending strength
An Excel spreadsheet (Microsoft Corporation, 2019) 
was developed to help researchers without a back-
ground in engineering mechanics successfully apply the 
new approach to calculating stalk flexural stiffness and 
stalk bending strength. The spreadsheet was developed 
using the equations presented in Table 3 and is included 
as Additional file  1. The spreadsheet allows the user to 
input the flexural stiffness of the plant stem as well as 
the magnitude of externally applied forces and moments, 
and weights. Input values can be given for up to ten loca-
tions of interest along the length of the plant stem. The 
spreadsheet calculates the weight induced moments 
(Mbody) and deflections, as well as the total induced 
moment (Mtotal) at all locations. The spreadsheet makes 
the calculation both with and without self-loading con-
sidered. In addition, the error induced by ignoring self-
loading is calculated for the deflections and total induced 
moments.  More details about the spreadsheet and use 
instructions are provided in Additional file 2.

Case studies
To provide further insights and to demonstrate how to 
effectively use the equations derived above three separate 
case studies were conducted. The primary purpose of 
the first case study was to demonstrate how researchers 
can determine if the influence of self-weight is a signifi-
cant factor in a given experiment. In this case study, two 
loading configurations commonly used to measure stalk 
bending strength and stalk flexural stiffness are presented 
[9]. Figure  2 displays these two test configurations. The 
equations derived above are applied to each test configu-
ration and are used to develop simple correction factors 
to account for the moments induced by Body Forces that 
are typically ignored in mechanical phenotyping experi-
ments. These correction factors can be used to determine 
the magnitude of error introduced if Body Forces are 
ignored.

To provide general insights into the effect of Body 
Forces on several plant species a second more general-
ized case study was conducted. Five plants species were 

Table 4  Each input parameter (i.e., factor) and value of each input parameter (i.e., level) for the finite element analyses

The number of levels for each factor noted as (n) is presented in the bottom row of the table. The force (F) had 6 levels (0, 2, 4, 6, 8, and 10 N). All other factors had 
2 levels (a maximum value and a minimum value). A total of 768 finite element models were evaluated (2E’s × 2I’s × 2h1’s × 2h2’s × 2h3’s × 2 M’s × 2 W’s × 6F’s = 768 
models)

Value E (N/mm2) I (mm4) h1 (mm) h2 (mm) h3 (mm) M (Nmm) W (N) F (N)

Minimum 1.00E+03 1.00E+04 800 400 100 0 0 0

Maximum 1.00E+08 1.00E+05 1200 700 300 100 2 10

n = i 2 2 2 2 2 2 2 6
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included in this case study: maize (Zea mays), wheat 
(Triticum aestivum), sweet sorghum (Sorghum bicolor), 
bamboo (Bambusoideae), and rice (Oryza sativa). Aver-
age mechanical properties and biomass distributions for 
each plant species were attained from the literature and 
were used as inputs to the Excel spreadsheet provided in 
Additional file 1. The spreadsheet was then used to deter-
mine the impact of self-weight on measurements of stalk 
flexural stiffness and stalk bending strength (i.e., to quan-
tify the amount of error introduced when Body Forces are 
ignored).

For the third case study a detailed experimental analy-
sis of a commercially available wheat variety was con-
ducted. In this study, the Excel spreadsheet provided in 
Additional file 1 was used to determine the effects of self-
loading on the flexural response of wheat stems through-
out a growing season. The methods and results of this 
third case study are presented in Additional files 3 and 4.

Results
Comparison of finite element and closed form solutions
As a form of data triangulation finite element models of 
plant stems were compared to the new closed form solu-
tion which accounts for Body Forces that is presented in 

the methods section. In other words, the closed form 
solution was evaluated using the same inputs as each of 
the 768 finite models and the solutions from the closed 
form equations and the finite element models were com-
pared. The finite element models were found to be in 
good agreement with the closed form solutions. In par-
ticular, the median error between the 768 finite element 
models and the closed form equations was found to be 
0.126% for deflection at the top of the specimen, and 
0.0003% for the total bending moment at the base of the 
specimen. Figure  3 displays these comparisons in terms 
of calculations of stalk bending strength and stalk flexural 
stiffness. As shown in the figure the closed form solution 
method can accurately account for both Body Forces and 
External Forces when calculating stalk flexural stiffness 
and stalk bending strength. These data imply that for the 
ranges evaluated, the closed form solution is providing 
accurate results and no mistakes were made during its 
derivation.

However, it be should be noted that as shown in Fig. 3a, 
the error in measured stalk flexural stiffness is relatively 
high in analyses with very small deflections. This was 
expected. The error in stalk flexural stiffness measure-
ments that occurs at near-zero deflections is caused by 

Fig. 2  The loading diagrams for two common mechanical phenotyping test protocols used to determine flexural stiffness; a typical maize 
phenotyping protocol (left), and a typical wheat phenotyping protocol (right)
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simplifying assumptions made in the derivation of the 
closed form solution. Researchers should therefore avoid 
using the closed form solution method to analyze plant 
samples undergoing very small (near-zero) deflections. A 
deflection of approximately 2.5%–20% of the stalk height 
(i.e., a deflection angle of ~ 6°) is generally a good starting 
point to employ in mechanical phenotyping experiments 
used to measure stalk flexural stiffness.

As mentioned previously, the engineering theory 
used to derive the closed form solution presented above 
contains several inherit assumptions. These assump-
tions gradually become less valid as deflections become 
very large. Therefore, to determine the maximum 

range of applicability for the closed form solutions one 
additional finite element model was created and sub-
jected to extremely large deflections. In particular, the 
model was created with the following input parameters: 
E = 5.00E + 07  N/mm2, I = 5.50E + 04  mm4, EI = 2.8E12 
Nmm2, h1 = 1000  mm, h2 = 550  mm, h3 = 200  mm, 
M = 1000 Nmm @ h1, W = 100 N @ h3, F = Ramped up 
to 5.00E + 07 N @ h2. It should be noted that this loading 
scenario exceeds the realistic range of forces and deflec-
tions a plant stem would be subjected to. In other words 
structural failure of the stem would occur far before 
such high forces and deflections could be achieved. This 
extreme model was used to investigate the extent of 

Fig. 3  A comparison between the closed form solution and the solution of finite element models for stalk flexural stiffness (a) and for stalk bending 
strength (b), n = 768, as a function of deflection normalized by plant height. Histograms of the error between the closed form solution and the finite 
element models for stalk flexural stiffness (c) and for stalk bending strength (d), n = 768. a demonstrates that significant errors can occur at very small 
(near-zero) deflections. A deflection of 2.5% to 20% of the stalk height is recommended to minimize error during stalk flexural stiffness phenotyping 
experiments
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validity of the closed form solution for very large deflec-
tions. Agreement between this finite element model and 
the closed form solutions is strong at small deflections 
(as expected). At very large deflections (greater than ~ 45° 
angle at the tip of the stem), geometric nonlinearities that 
are not captured by the closed form engineering beam 
equations become more influential [4]. That is to say that 
the closed form solution is accurate so long as the linear 
closed form engineering beam equations upon which it 
is predicated are accurate. For more discussion on this 
topic, see the Limitations section. Figure  4 depicts the 
comparison between the extremely large deflection finite 
element model and the closed form solution. Figure  4 

displays a maximum horizontal deflection equal to the 
height of the stem.

A computational tool for accounting for weights
To make the closed form solutions derived in the meth-
ods section more amenable to researchers without a 
structural engineering background (i.e., plant scientists, 
agronomists, and other end-users), an Excel (Micro-
soft Corporation, 2019) spreadsheet was developed, and 
is included as Additional file  1. The user simply inputs 
the stalk flexural stiffness of the plant stem, the heights 
to each location of interest, the magnitude of externally 
applied forces and moments, and the weights at each 

Fig. 4  A comparison between the closed form solution and the finite element model solution (FEM) for very large deflections (i.e., for deflections 
and loads beyond what would typically be seen in the field). Plots depict the deflection at the tip of the stalk (a) and the maximum moment at 
the base of the stalk (b); the % error between the finite element model and the closed form calculation of stalk flexural stiffness and stalk bending 
strength are shown as a function of stalk deflection normalized by stalk height (c)
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location. The spreadsheet calculates the weight induced 
moments (Mbody) and deflections as well as the total 
induced moment (Mtotal) at all locations. The spreadsheet 
makes the calculation both with and without self-loading 
considered. In addition, the error induced by ignoring 
self-loading is calculated. Figure  5 shows an example of 
the spreadsheet in which 3 externally applied forces, 2 
externally applied moments, and 3 weights are consid-
ered. This tool can be used by researchers to determine 
the necessity of including self-loading in their studies.

For example, if this spreadsheet were used to deter-
mine the necessity of including self-weight in a mechani-
cal phenotyping study (e.g., a study using the device as 
presented in [6]), the following would be performed: 
(1) A non-destructive, small deflection, flexural test 
as described in [6] would be performed, to determine 
the specimen’s stalk flexural stiffness; (2) a destructive, 
large deflection bending strength test as described in 
[6] would then be performed on the same specimen; (3) 
the specimen would then be weighed and the center-of-
gravity would be determined; (4) the specimen weight, 
center-of-gravity, and stalk flexural stiffness as well as 
the magnitude and location of the load applied to the 
plant by the phenotyping device from the destructive 
bending strength test would be input into the spread-
sheet; (5) the spreadsheet would report out the amount 

of error present in stalk flexural stiffness and stalk bend-
ing strength calculations if the weight of the specimen 
was ignored. This procedure would then be repeated for 
several representative specimens. This data could then 
be used to inform the researchers if self-weight induced 
loadings are significant and need to be accounted for 
in phenotyping experiments or if the amount of error 
introduced by neglecting self-weight is negligible. If 
self-weight was determined to be significant then the 
spreadsheet could be used to properly account for the 
self-weight of measured samples.

Case study results
Results from the first and second case studies are pre-
sented below. Results from the third case study (experi-
mental analysis of wheat throughout a growing season) 
are found in Additional files 3 and 4.

With regards to the first case study, Fig. 2 displays two 
common loading configurations used during mechani-
cal phenotyping experiments. The first test configuration 
represents a typical stalk flexural stiffness test for maize 
[6, 26] and applies a Contact Force at the top of the speci-
men, while the stalk’s center of gravity is below the load-
ing point. The second test configuration shown in Fig. 2 
represents a typical stalk flexural stiffness test for wheat 

Fig. 5  An example of the Excel spreadsheet (see Additional file 1), showing loading at three locations, and calculating deflection and induced 
moments at four locations: the three loading locations and the base of the plant. Note that the error in deflection is not calculated at the base, as 
deflection at the base is zero regardless of loading condition
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[27, 28] and applies a Contact Force below the grain head 
but near the top of the specimen.

During these types of mechanical phenotyping tests 
the Contact Force (F) applied by a phenotyping device 
and the deflection of the stem at the point of loading (δ1) 
are recorded. Ignoring the weight of the stalk, the stalk 
flexural stiffness (EI) is then typically calculated from the 
test data by rearranging the following engineering beam 
equation to solve for EI:

To account for the weight of the stalk when calculating 
stalk flexural stiffness, we must modify Eq. (15) to include 
the stalk weight (w) as discussed in the methods section. 
For example:

Configuration 1: load at top, weight at midspan
First, solving Eq. (11) for loading configuration 1 results 
in:

where the two unknowns are the deflection at the weight 
(δ2) and the weight-induced moment (W). From this 
equation, the weight-induced moment can be calculated 
as:

Finally, we can solve Eq.  (5) at the point of loading (δ1) 
to find a relationship between the test data and the 
deflection:

where Eq. (15) is shown in black, and the correction fac-
tor for the weight-induced moment is shown in blue. This 
newly calculated deflection can then be substituted into 
the corresponding equation in Table  3 to calculate the 
corrected stalk flexural stiffness.

Configuration 2: load at midspan, weight at top
As before, solving Eq. (11) for loading configuration 2 at 
the weight’s location results in:
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Solving for the weight-induced moment and solving for 
Eq. (5) for the point of loading (δ1) to find a relationship 
between the test data and the deflection:

where Eq. (15) is shown in black, and the correction fac-
tor for the weight-induced moment is shown in blue. This 
newly calculated deflection can then be substituted into 
the corresponding equation in Table  3 to calculate the 
corrected stalk flexural stiffness.

It should be noted that Eqs.  (18) and (20) are sim-
ply Eq. (15) with the addition of a correction factor that 
accounts for the influence of the weight-induced bend-
ing moment. Thus by comparing the results of Eq.  (15) 
with either Eqs. (18) or (20), the influence of the weight-
induced bending moment on the deflection of the stem 
can be calculated. Additionally, the results of Eqs.  (18) 
and (20) (i.e., the deflections) can be input into Eq. (6) to 
determine the magnitude of the weight-induced moment. 
The weight induced bending moment (W) can then be 
compared to the bending moment induced from the 
applied force (Mext) to determine the effect of self-weight 
on the stalk bending strength. Using the methods pre-
sented in this case study researchers can easily determine 
if weight-induced bending moments are negligible or if 
they need to be incorporated into their mechanical phe-
notyping studies.

A second case study was conducted to determine the 
general influence of Body Forces on several plant spe-
cies. The values shown in Table  5 represent typical val-
ues reported in the literature for the five plants species 
included in this case study. It should be noted that these 
are average single data points and a significant amount 
of variation in heights, weights, and flexural stiffnesses is 
expected within a given plant species. This information is 
presented here as an accessible reference for researchers 
to develop an understanding of the types of plants that 
are more or less affected by self-loading.

A key factor in determining the influence of Body 
Forces in different plant species is the ratio of the weight 
of a plant to its flexural stiffness. While this ratio does 
not include all of the factors that influence self-loading, 
it can be used as a quick evaluation tool for researchers 
to determine the general amount of influence self-loading 
may have. Figure 6 depicts the influence of this ratio on 
stalk flexural stiffness and stalk bending strength, with the 
plant varieties in Table 5 shown as data points. In general, 
it can be seen from the figure that Body Forces (i.e., self-
weight) has a negligible effect on stiff and strong stems 
(i.e., bamboo and maize) but becomes more influential in 
smaller stems (i.e., rice, wheat).

(20)δ2 =
Fh32
3EI

+
Fwh42(3h1 − h2)

6EI
(

2EI − wh22
)
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Discussion
Mechanical measurements of plants have been used 
to investigate stalk lodging resistance for over a cen-
tury. However, engineers or mechanical measurement 
experts have typically not been involved in past studies. 
Consequently, very few previous studies have attempted 
to account for the complex influence of the plant’s own 
weight (i.e., Body Forces) on mechanical measurements. 
The studies that have attempted to account for self-
weight typically normalized bending strength meas-
urements by specimen weight (e.g., [29, 30]). This was 
an important first step and raised general awareness 
of the need to somehow account for self-weight during 
mechanical phenotyping studies. However, the effect of 
self-weight on stalk bending strength and stalk flexural 
stiffness is complex and is not fully captured by normal-
izing stalk bending strength measurements by specimen 
weight.

This is the first report the authors are aware of that 
presents a method to properly account for plant weight 
when calculating stalk bending strength and stalk flex-
ural stiffness. Results demonstrate the equations derived 
herein to account for the complex effects of self-weight 
during mechanical phenotyping experiments are accu-
rate. The authors therefore recommend that future stud-
ies utilize the equations, corrections factors and Excel 
spreadsheet presented herein to account for the effects 
of self-weight during mechanical phenotyping experi-
ments. More specifically, based on prior experience and 
the results presented in Table  5 and Fig.  6, the authors 
recommend that self-weight be accounted for when 
testing small grain stems. However, the effect of self-
weight on large grain stems that possess a small ratio of 
plant weight to stalk flexural stiffness (e.g., mature maize 
stalks) is minimal and for many intents and purposes is 
most likely negligible.

Table 5  Self-loading related properties and the % error introduced when self-loading is ignored in calculations of stalk 
bending strength and stalk flexural stiffness

The center of gravity of the plant was assumed to be halfway up the stem

Plant Plant height 
(mm)

Grain 
height 
(mm)

Plant weight 
(N)

Grain weight 
(N)

Flexural 
stiffness 
(Nm2)

Error of Stalk 
Bending 
Strength (%)

Error of Stalk 
Flexural 
Stiffness (%)

References

Maize 2250 1125 7.595 2.874 79.17 < 1 < 1 [5, 8, 31–33]

Wheat 638 638 0.016 0.021 0.027 12 16 [34–36, 44]

Sweet Sorghum 2650 2650 9.64 0.346 137.1 1 1 [37–39]

Bamboo 10,774 N/A 138.02 N/A 229 < 1 < 1 [40, 41]

Rice 969 969 0.0635 0.028 0.17 6 8 [42–44]

Fig. 6  The error of stalk flexural stiffness (left) and stalk bending strength (right), as a function of the ratio between the combined weight of the grain 
and plant and stalk flexural stiffness 
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More broadly the authors would advocate for increased 
collaboration between plant scientist and engineers. 
The mechanical response of plant stems is complex and 
requires specific expertise to fully understand. While the 
Excel spreadsheet and equations derived above have been 
made as approachable as is feasible to non-experts, they 
will be most useful to engineers and structural mechanics 
experts who fully comprehend the inherent assumptions 
and limitations of the tools.

Finally, it should be noted that the association between 
stalk flexural stiffness, stalk bending strength, and stalk 
lodging resistance are plant- and time-specific. For 
instance, in late-season lodging of maize stalks, previ-
ous studies have found that plants experience a predomi-
nantly linear-elastic response prior to failure, and that 
stalk flexural stiffness tends to strongly correlate with 
lodging resistance [5]. In such a case, Eq.  (14) demon-
strates that the total bending moment and bending stress 
are directly linear, e.g. a 10% increase in the total bend-
ing moment will result in a 10% increase in stress. There-
fore, the authors hypothesize that increasing the stalk 
bending strength will decrease the lodging resistance at a 
ratio of − 1:1, e.g. a 10% increase in the induced bending 
moment from self-loading will result in a 10% decrease 
in the lodging resistance of the stalk. However, for less 
linear material responses (e.g. during green-snap), these 
relationships will be less direct. For stems with nonlinear 
material responses, researchers will need to incorporate 
these self-loading equations into their biomechanical 
models which contain non-linear material responses.

Limitations
The primary limitation of the current study is that the 
stalk was assumed to be in-line with the assumptions 
made for pure bending, including maintaining a con-
stant cross-section with homogeneous, isotropic, linear 
elastic material subjected to pure bending [4]. It should 
be noted that the finite element models were also only 
valid for linear elastic materials. Inclusion of changes in 
cross-sectional geometry along the length of the stalks 
[8], material heterogeneity and anisotropy, and non-lin-
ear material properties would likely change the behavior 
of the analytical system. A discussion of the influence 
of these factors has been presented in a previous study 
by the authors [4]. The simplifying assumptions made 
in the derivation of the closed form solutions combined 
with the assumption of a single cross-section along the 
entire length of the stalk, results in a single flexural stiff-
ness parameter for the entire stalk. However, the flexural 
stiffness of plants changes constantly along the length of 
the stalk (i.e., the diameter of most plant stems are large 
near the base of the plant and smaller near the top of the 
plant). The simplifying assumption of a single flexural 

stiffness parameter was deliberately made to allow for an 
easily-used generalized equation. This assumption is rou-
tinely made in phenotyping studies as well. If researchers 
need to incorporate changes in flexural stiffness along the 
length of the stalk, the approach presented in this study 
can be incorporated into a full Castigliano’s method 
beam approximation [10]. Additionally, the equations 
used in this study assume small strains and small deflec-
tions. As such, these equations carry the same limitations 
as standard engineering beam bending equations, and are 
not suitable to predict post-failure loading conditions or 
deflections. When post-buckling analyses are required, 
non-linear finite element modeling approaches are rec-
ommended. In summary, the analyses in this study are 
only valid for conditions in which traditional phenotyp-
ing methods are considered valid.

Finally, Eqs.  (1), (2), and (6) assume that the maxi-
mum moment induced by self-loading is applied to the 
entire length of the stem below the weight, which is 
not accurate, and is used as a simple estimation of the 
moment induced by self-loading. In reality, self-loading 
is not a constant moment along the length of the stalk, 
but instead is an axial compressive load that induces a 
moment that varies along the length of the stalk. How-
ever, modeling loading as an axial compressive load 
greatly increases the complexity of the equation, to the 
point that the matrix equations presented in this study 
would not be practical. Therefore, Eq.  (6) presents an 
upper-bound of the influence of self-loading by simply 
applying the maximum moment along the entire length 
of the stem. As shown in Figs. 3 and 4, this assumption is 
reasonable for the parameter space explored.

Conclusions
Equations were derived to account for the influence of 
self-loading on measurements of stalk flexural stiffness 
and stalk bending strength of plant stems. The derived 
equations were parametrically validated against hun-
dreds of nonlinear finite element models of plant stems. 
The closed form equations are accurate and showed 
good agreement with the finite element models (median 
error < 0.2%). The equations were incorporated into 
a user-friendly spreadsheet that can be used by the 
research community to account for self-loading of plants 
during mechanical phenotyping studies. Results indicate 
that ignoring self-weight can lead to significant errors 
in phenotyping measurements of small grains (e.g. 16% 
error in stalk flexural stiffness for wheat). It is the rec-
ommendation of the authors that self-loading be taken 
into account for plants such as wheat and rice that have 
a large ratio of weight to flexural stiffness. In addition, to 
minimize error, a deflection of 2.5% to 20% of the stalk 
height (a deflection angle of around 6º) is recommended 
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for mechanical phenotyping tests used to characterize 
stalk flexural stiffness.
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