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Abstract 

Background:  Named Entity Linking systems are a powerful aid to the manual curation of digital libraries, which is 
getting increasingly costly and inefficient due to the information overload. Models based on the Personalized Pag-
eRank (PPR) algorithm are one of the state-of-the-art approaches, but these have low performance when the disam-
biguation graphs are sparse.

Findings:  This work proposes a Named Entity Linking framework designated by Relation Extraction for Entity Linking 
(REEL) that uses automatically extracted relations to overcome this limitation. Our method builds a disambiguation 
graph, where the nodes are the ontology candidates for the entities and the edges are added according to the rela-
tions established in the text, which the method extracts automatically. The PPR algorithm and the information con-
tent of each ontology are then applied to choose the candidate for each entity that maximises the coherence of the 
disambiguation graph. We evaluated the method on three gold standards: the subset of the CRAFT corpus with ChEBI 
annotations (CRAFT-ChEBI), the subset of the BC5CDR corpus with disease annotations from the MEDIC vocabulary 
(BC5CDR-Diseases) and the subset with chemical annotations from the CTD-Chemical vocabulary (BC5CDR-Chemi-
cals). The F1-Score achieved by REEL was 85.8%, 80.9% and 90.3% in these gold standards, respectively, outperforming 
baseline approaches.

Conclusions:  We demonstrated that RE tools can improve Named Entity Linking by capturing semantic informa-
tion expressed in text missing in Knowledge Bases and use it to improve the disambiguation graph of Named Entity 
Linking models. REEL can be adapted to any text mining pipeline and potentially to any domain, as long as there is an 
ontology or other knowledge Base available.
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Introduction
Background
There has been an intense growth in the amount of sci-
entific literature available, mainly in the form of scientific 
articles, whose content is mostly expressed in natural 
language. For instance, there are more than 30 million 
articles in the PubMed repository [1], which is one of 

the most used libraries in the Life Sciences and the Bio-
medical domains. This information overload creates 
problems for researchers who want to retrieve informa-
tion, because they need to spend more time and effort to 
find the relevant articles for their work. Simultaneously, 
the number of online resources of biological informa-
tion has also been rising, as it is the case of the domain 
ontologies. Domain ontologies provide a coherent rep-
resentation of the knowledge in a specific scientific field, 
allowing a standardised nomenclature to people from dif-
ferent backgrounds [2]. In order to keep these resources 
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relevant, it is necessary to extract the information locked 
in scientific literature and transfer it to the ontologies, 
a highly complex task that is usually done by dedicated 
curators. With the increase of literature available, manual 
curation of these repositories gets more costly and inef-
ficient. Text mining tools are thus essential to aid both 
researchers and curators in the extraction of relevant 
information from large amounts of text.

Named Entity Linking (NEL) is a typical text mining 
task (also designated by Named Entity Disambiguation or 
Normalisation), and its goal is to link each named entity 
in a given text to an appropriate identifier in a Knowledge 
Base (KB), i.e., to associate an entity mention with the KB 
concept that best represents it. NEL systems are a funda-
mental component of most text mining pipelines, usually 
used after the Named Entity Recognition (NER) systems 
and before the relation extraction (RE) systems. Some 
obstacles associated with NEL are the presence of entity 
name variations in the text, like abbreviations, acronyms, 
alternate spellings or synonyms, and the presence of 
entity ambiguity, since polysemous entity mentions can 
be linked to more than one KB concept according to their 
context [3]. For example, the entity mention “toxicity” 
can refer to “toxicity test”, a laboratory technique, or to 
“cardiac toxicity”, an adverse reaction. Additionally, NEL 
systems developed for scientific text have to deal with 
the high ambiguity arising from a lack of nomenclature 
standardisation and the high specificity of the language, 
which means that, in many cases, only an expert can 
understand the text content [4].

Many NEL approaches rely on the semantic informa-
tion provided by the KBs, but in many cases the KBs lack 
important information. NEL is usually a preceding step 
of RE because it is useful to know the entities present in a 
given text before finding relations between them but the 
relations described in the text can also disclose seman-
tic information that may not be expressed in the KBs. So, 
our hypothesis is that RE approaches can overcome the 
missing domain knowledge in the KBs and improve the 
performance of the NEL models that are highly depend-
ant of the information provided by KBs.

We have previously developed the PPR-SSM model 
[5], a graph-based approach that applies the Personal-
ized PageRank (PPR) algorithm and semantic similarity 
measures to perform the disambiguation of biomedical 
entity mentions to several ontologies. The model builds 
a disambiguation graph for each text, where the nodes 
are ontology candidates and the edges are based on the 
ontology structure. One of the main limitations we have 
detected is that, sometimes, the model creates incom-
plete or sparse disambiguation graphs, i.e., with too few 
edges between the nodes, which hampers the application 
of the PPR algorithm and impacts the overall precision of 

the model. As the edges in the disambiguation graph are 
added if the candidates are linked in the ontology, we can 
infer that the information provided by the ontology is not 
enough to build a dense graph.

The main contribution of the present work is a frame-
work to improve the precision of graph-based NEL 
models, which we designate by Relationship Extraction 
for Entity Linking (REEL). This framework leverages 
the output of RE systems to build dense disambiguation 
graphs and to perform the disambiguation of disease and 
chemical entities. REEL was evaluated in several gold 
standards: the subset of the CRAFT corpus with Chemi-
cal Entities of Biological Interest (ChEBI) annotations 
(CRAFT-ChEBI) and the BC5CDR corpus with disease 
(MEDIC vocabulary) and chemical (CTD-Chemical 
vocabulary) annotations. The F1-Score obtained for the 
disambiguation of ChEBI, disease and chemical mentions 
was, respectively, 0.8577, 0.8086 and 0.9025. The com-
parison with two baseline approaches (a string match-
ing technique and a modified version of PPR-SSM based 
solely on information provided by ontologies) shows that 
REEL can substantially improve the precision of graph-
based NEL models.

Related work
Local NEL models
The first NEL models relied on local approaches, i.e., 
assumed that each entity in a text should be disambigu-
ated individually according to its lexical or semantic 
features. This approach is limited because many times 
the meaning of an entity varies according to the context 
where it appears. One example of this type of approach is 
Bunescu et al. [6], in which the authors explored the dis-
ambiguation of Wikipedia entities using Support Vector 
Machines (SVM).

Integrating global evidence in NEL models
More recent models assume that the entities in the same 
document must be somehow related, which means that 
the disambiguation of an entity influences the disam-
biguation of the others entities. PageRank is a Random 
Walks algorithm that was initially developed to measure 
the relative importance of web pages [7]. PageRank acts 
as a centrality measure in graphs or networks [8] and has 
been successfully adapted to the NEL task [9–11]. For 
example, Pershina et al. [11] proposed an approach based 
on the PPR algorithm that combines local and global 
features to assist in the disambiguation. For each docu-
ment, this approach builds a disambiguation graph in 
which the nodes consist of Wikipedia candidates for the 
named entities and the edges are added according to the 
Wikipedia link structure. PPR is applied on the disam-
biguation graph and then ranks each node according to 
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its contribution to the coherence of the graph. The model 
was evaluated on the dataset AIDA and achieved a dis-
ambiguation accuracy of 91.7%. Guo et al. [10] described 
a NEL method for Wikipedia entities that determines the 
local similarity between textual mentions and entities 
(using lexical and statistical features) and a disambigua-
tion graph that maximises global coherence between the 
candidates for the entities in a document. The algorithm 
then performs Random Walks in the graph to derive the 
semantic similarity between every pair of entities. These 
two approaches share some similarities with our method, 
in the sense that both are graph-based models and both 
apply the Random Walks algorithm over a disambigua-
tion graph to maximise the global coherence between 
entities in a given document. Besides, the models also 
include features to determine local similarity between 
each textual mentions and entities. Nevertheless, our 
method has noticeable differences to those approaches, 
namely, the edge generation in the disambiguation 
graph and the definition of the scoring function for the 
candidates.

Other NEL approaches consist in the application of dif-
ferent Deep Learning techniques, like Ganea et  al. [12], 
which proposed a deep learning model that integrates 
local and global evidence to disambiguate entities at doc-
ument level. The model includes entity embeddings to 
capture semantic information, a neural attention mecha-
nism that selects words around the entity to help the dis-
ambiguation and a collective disambiguation module that 
uses a conditional random field for global inference in the 
document. Pre-trained language models, like BERT [13], 
create contextualised representations for entity mentions 
and have been fine-tuned for the NEL task [14, 15].

NEL models for biomedical text
There are fewer NEL models developed for biomedical 
text. Usually the community challenges are a good way 
to assess the state-of-the-art in the field. For instance, 
the BioCreativE (Critical Assessment of Informa-
tion Extraction in Biology) challenge contains tasks 
related to biomedical digital curation, between them 
some related with NEL of biomedical entities, such as 
genes, chemicals and diseases. The description of the 
participating models in the latest edition can be con-
sulted in Arighi et  al. [16]. There are models that per-
form both named entity recognition and named entity 
linking of disease and chemical entities, such as Tag-
gerOne [17] and DNorm [18]. D’Souza et  al. [19] pro-
posed an approach that performs the disambiguation 
of disease mentions and obtained an accuracy of 90.75 
and 84.65 and in the ShARe/CLEF eHealth Challenge 
corpus and the NCBI Disease corpus. More recently, 
Ji et al. [20] fine-tuned the BERT model and two of its 

variants, ClinicalBert and BioBert, to the NEL task, 
evaluated them in the ShARe/CLEF, NCBI Disease and 
TAC2017ADR (drug labels) datasets and obtained an 
accuracy of 91.10%, 89.06% and 93.22%, respectively.

J-REED [21] is a model able to perform both NEL 
and RE. However, this approach performs both tasks 
sequentially and does not improve NEL with RE, which 
is the main goal of the present work. To the best of our 
knowledge, our method is the first attempt to use the 
RE output to improve the performance of graph-based 
NEL methods.

Methods
Definition of the NEL problem
The starting requirement for NEL is a corpus contain-
ing documents with entity mentions already identified 
by a human annotator or by a NER system. The set of 
entity mentions in a given document is represented 
by E. The objective of NEL is to link each entity men-
tion e, with e ∈ E , to the concept in a Knowledge Base 
(KB) that best represents it. The output of a NEL model 
consists of each entity mention associated with a KB 
identifier. A KB is a tuple < C ,R > , where C is the set of 
concepts and R the set of relations between concepts. 
Each relation consists in a pair of concepts (c1, c2) , with 
c1, c2 ∈ C . An ontology is a type of KB that contains, 
among other types, subsumption or “is-a” relations 
between concepts (see Fig. 1).

The NEL task comprises two distinct steps:

Fig. 1  Subsumption relations. Example of a set of disease concepts 
and subsumption relations between them. The arrows denote the 
direction of the is-a relations



Page 4 of 11Ruas et al. J Cheminform           (2020) 12:57 

•	 Candidate generation: Generation of the candidates 
list CL(e) = {c1e , ..., c

i
e|∀ce ∈ C} for each entity men-

tion e in set of document entity mentions E.
•	 Candidate ranking and disambiguation: Selection of 

the candidate ce in the candidate list CL that best rep-
resents each entity mention e, i.e., the highest ranked 
candidate.

Candidate generation
Candidate list
The first step of NEL is accomplished through a search in 
the KB for each entity mentions (string matching tech-
nique). The candidates are ranked according to their lexi-
cal similarity which is determined by the edit distance, 
i.e, the minimum number of operations needed to con-
vert one string into another. If there is an exact match 
between the entity mentions and any KB concept, the 
mentions is disambiguated with that concept and no can-
didates list is built. Otherwise, the first ten candidates 
are added to the candidates list. Additionally, if there 
are synonyms in the KB for the candidates, they are also 
added to the list. The baseline model in this work selects 
for each entity mentions the candidate with more lexical 
similarity. This approach is very limited, as it ignores the 
document context where the mentions appear: the candi-
date with the most similar string is not always the correct 
disambiguation and, consequently, a global approach will 
be more accurate. For that it is necessary to build a dis-
ambiguation graph.

KB‑based disambiguation graph
The disambiguation graph G for a document is repre-
sented by G = {(e, ce)|e ∈ E, ce ∈ CL(e)} . Each node (e, ce) 
in the graph is an entity mention/candidate pair and the 
edges between nodes are built according to the following 
link mode:

•	 KB-link: Two nodes (e1, ce1) and (e2, ce2) are con-
nected in the graph if the candidates ce1 and ce2 are 
directly connected by the KB structure (the shortest 
path length between them is 1) and if e1  = e2 . This 
latter constraint is to prevent the generation of noisy 
edges between nodes, as only one node/candidate 
per entity mention constitutes the correct disam-
biguation. For example, “Viral pneumonia” and “Viral 
infection” in the example of the Fig.  1 are directly 
connected.

This method to build the disambiguation graph is the 
same used by our previous framework PPR-SSM [5] 
and other graph-based approaches [10, 11], in which 
the authors consider that an edge between two nodes or 

candidates occurs if the corresponding Wikipedia articles 
have at least one link between them.

The way the nodes are linked in the disambigua-
tion graph directly affects the application of the PPR 
algorithm.

Improvement of the disambiguation graph with extracted 
relations
The lack of domain knowledge in the building of the dis-
ambiguation graphs is responsible for some limitations, 
such as the scarcity of edges between nodes. The PPR 
algorithm is a measure of centrality in the graph, so the 
calculation of the score for each node is directly related 
with the number of edges that traverse the nodes. Con-
sequently, if the disambiguation graph has few edges 
between its nodes, the PPR algorithm will assign scores 
according to other criteria than the number of edges, 
like the number of descendants associated of the concept 
associated with the node or degree of the node, which 
does not properly assess the node contribution for the 
graph coherence. In many cases, the simple inclusion of 
KB relations between concepts is not enough to gener-
ate an adequate number of edges between nodes in the 
disambiguation graph. To overcome this problem, we 
propose to include information about entity relations 
described in a given corpus to generate the edges in 
the disambiguation graph. For that, two additional link 
modes between nodes in the disambiguation graph are 
defined:

•	 Corpus-link: Two nodes (e1, ce1) and (e2, ce2) are 
connected if the candidates ce1 and ce2 appear in a 
relation described in the text of the documents in the 
corpus and if e1  = e2 . In Fig.  2, the entity mentions 
“alcohols” and “methylsalicylate” are not linked in 
the structure of the ChEBI ontology, but there is an 
corpus document describing a relation between these 
two entities.

•	 KB-Corpus-link: Two nodes (e1, ce1) and (e2, ce2) 
are connected if either appear in a relation described 
in text or if they are connected in the KB.

Besides the relations explicitly described in text that 
can be extracted by an RE tool, we also include in our 
approach human annotations of chemical-disease inter-
actions whenever these are available in the corpus. In this 
case, we assume that there is a relation between any two 
given disease entities if the same chemical entity plays a 
role in both. Conversely, two chemical entities are related 
if they are involved with the same disease entity.

With the disambiguation graph already built, it is thus 
necessary to compute the weights for each node/candi-
date according to their relevance to the entities.
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Candidate ranking and disambiguation
The second step of NEL is the disambiguation of each 
entity mention e to a candidate ce , which is determined by 
the function:

The score function above determines the likelihood of the 
candidate ce being the correct disambiguation for entity 
mention e. The PageRank algorithm performs random 
walks in a graph and returns a probability distribution of 
reaching each node after a given number of iterations. In 
each iteration, there is a teleport probability ǫ of jump-
ing to a random node in the graph, and a probability of 1 
− ǫ (also called damping factor) of following an outgoing 
edge of the current node. In this way, the algorithm ranks 
each node, which can be considered a measure of central-
ity in the graph. When the teleports are not random but 
adjusted to the same source node, the PageRank algo-
rithm is designated by Personalized PageRank (PPR). In 
the context of the NEL task, considering a given source 
node s and a given node n in the graph G, the PageRank 
score of the relation PPR(s → n) measures the relevance 
of node n for node s. The contribution of node n to the 
global coherence of the disambiguation graph G due 
to the presence of node s is expressed by the following 
equation:

(1)Disambiguate(e) = argcemax{score(e, ce)}

(2)Coherences(n) = PPR(s → n)

Thus, to determine the overall contribution of the node 
n to the global coherence it is necessary to sum all the 
contributions of the node related with the presence of the 
other source nodes (except the nodes representing candi-
dates competing for the same entity mention as n):

The coherence expression in Eq.  3 constitutes the score 
function in Eq. 1. Intuitively, for each entity mention, the 
node/candidate that contributes the most for the global 
coherence of the disambiguation graph will be chosen to 
disambiguate the entity.

In order to add a layer of differentiation for the nodes 
in the disambiguation graph, the PageRank of each 
node n in relation to a source node s is multiplied by 
the information content (IC) of the node n:

The IC of a concept is a measure of its “rareness”: rare 
concepts will have higher information content. In the 
present work, we use the extrinsic IC definition, as 
described by Couto et Lamurias [22], in which the IC of 
a concept is associated with the frequency of its instances 
in an external dataset (for example a corpus). Pershina 
et al. [11] and Guo et al. [10] do not include the IC in their 
approach. Instead, Pershina et  al. [11] use the Freebase 

(3)Coherence(n) =
∑

s∈G

coherences(n)

(4)Coherences(n) = PPR(s → n) · IC(n)

Fig. 2  Relation between terms in the text. Example of a relation between the entity mentions “alcohols” and “methylsalicylate” that is described in 
an article, but it is not expressed in the ChEBI ontology structure. The closest ancestors of the respective ChEBI entities for these mentions, “Alcohol” 
and “Methyl salycilate”, and the respective ChEBI identifiers are also shown
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popularity, which is a score based on the in-edges and the 
out-edges of pages in Wikipedia and Freebase.

Models
To determine the impact of the relation extraction in the 
NEL performance, we evaluated the following models 
described below in several datasets:

•	 “String matching”: first baseline approach. For each 
entity to disambiguate, this model selects the candi-
date with highest lexical similarity (lowest edit dis-
tance) through string matching.

•	 “PPR-IC”: second baseline, corresponds roughly to 
PPR-SSM [5] without using semantic similarity meas-
ures. Consists in the application of the PPR algorithm 
with the inclusion of the IC for each node. The edges 
in the disambiguation graph are exclusively based 
on KB relations between concepts (link mode KB-
link). The scoring function is Eq. 4.

•	 “REEL(Corpus)”: the application of the PPR-IC 
model, but using only relations described by the 
text to build the edge structure of the disambigua-
tion graph (link mode Corpus-link). The scoring 
function is Eq. 4.

•	 “REEL(KB+Corpus)”: the application of the PPR-IC 
using both relations described by the text (link mode 
Corpus-link) or KB relations (link mode KB-
link) to build the edge structure of the disambigua-
tion graph. The scoring function is Eq. 4.

Data description
The data used in this work consist of datasets/corpora 
and ontology files. The datasets contain the surface form 
of disease and chemical entities, and the respective ontol-
ogy identifiers. The ontology files include information 
about the ontology concepts, as well the semantic rela-
tions between them.

Datasets
The “Colorado Richly Annotated Full-Text” (CRAFT) 
corpus is a set of 67 full-text biomedical articles from 
PubMed Central Open Access subset [23]. This gold 
standard contains, among others, 4548 manual annota-
tions of ChEBI entities. The set of the corpus with ChEBI 
annotations will be further designed as “CRAFT-ChEBI”. 
In this work, we used the version 3.0 of this corpus [24].

To demonstrate that REEL can easily be adapted to 
include relations extracted by different tools, we evalu-
ated the performance of the model on the BC5CDR corpus 
[25] openly available [26]. This gold standard was devel-
oped for the disease named entity recognition (DNER) 
task and the chemical-induced disease (CID) RE task in the 

for BioCreative V. This corpus consists in 1500 PubMed 
abstracts annotated with 4409 chemicals, 5818 diseases and 
3116 chemical-disease interactions. The chemical anno-
tations contain the respective MeSH unique ID from the 
“Chemicals and Drugs” category in the MeSH vocabulary, 
whereas the disease annotations contain the MeSH unique 
ID from “Diseases” category. The set of the corpus with dis-
ease annotations is further designated by “BC5CDR-Dis-
eases” and the set of the corpus with chemical annotations 
by “BC5CDR-Chemicals”. We evaluated the models in the 
train, development and test sets and in a set containing all 
the corpus documents which we designate by “All”.

Ontologies
The first ontology we used was the ChEBI ontology, acro-
nym for “Chemical Entities of Biological Interest”, which 
represents low-molecular weight chemical entities with 
biological relevance for living organisms [27]. As of 1 Sep-
tember, 2019 this repository contained 56090 annotated 
entries [28]. In the experiments described in this work we 
used the data from the release 179 [29].

The second ontology was the MEDIC Disease vocabulary 
from the Comparative Toxicogenomics Database (CTD), 
which is an hierarchical vocabulary that represents descrip-
tors from the “Diseases” category of MeSH controlled 
vocabulary and genetic disorders from Online Mendelian 
Inheritance in Man (OMIM) repository [30]. As of May, 
2020, this vocabulary contained 7246 entries represent-
ing distinct diseases entities [31] and in the experiments of 
this work we used the data from the referred month release 
[32].

The third ontology was the Chemicals vocabulary 
also from CTD, an hierarchical vocabulary representing 
descriptors from the “Chemicals and drugs” category of 
MESH. As of May, 2020, this vocabulary contained 16313 
entries representing distinct chemical entities and in the 
experiments of this work we used the data from referred 
month release [33].

Evaluation metrics
In each document of the corpus, repeated instances of 
an entity mention with the same surface form count as a 
unique entity. True positives (tp) refer to the number of 
entities correctly disambiguated, false positives (fp) to the 
number of entities wrongly disambiguated and false nega-
tives (fn) to the number of entities that the model does not 
disambiguate. The performance of each model was evalu-
ated in each dataset through the determination of the pre-
cision, recall and micro-averaged F1-score:

(5)Precision =
tp

tp+ fp
· 100
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Implementation
Pre‑processing
The module dedicated to the pre-processing of corpus 
documents was implemented in Python 3.6.8. This mod-
ule generates the candidates lists through the Fuzzy-
Wuzzy Python library, i.e., for each entity mention the 
module obtains the first ten ontology concepts with more 
lexical similarity with the mention (and the synonyms 
for the candidates) and discards the candidates without 
a valid ontology identifier. The module also converts the 
ontologies into graph objects with the Networkx Python 
Library, which further allows the determination of the 
ontology relations between concepts. Alternatively, this 
module can also include information about relations 
between entities described in text, either from corpus 
annotations or from the output of any RE tool. In the end, 
the module creates a candidates file for each original doc-
ument in the corpus, files that contain all the information 
necessary to build the disambiguation graph (nodes and 
edges).

BO‑LSTM
To investigate the hypothesis that relations described in 
text can improve the edge generation in the disambigua-
tion graph, we integrated the information obtained by 
BO-LSTM [34] in our NEL method. This RE tool applies 
a model based on a recurrent neural network with long 
short-term memory (LSTM) units to detect and classify 
relations between entities in text. In BO-LSTM multi-
channel architecture the information used in the detec-
tion and classification of relations differs with the specific 
“channel” considered: shortest dependency path (SDP), 
WordNet classes or ChEBI ancestors. In the ChEBI 
ancestors channel, this model first links each entity men-
tion to a ChEBI identifier through string matching and 
then builds a vector with the respective ChEBI ances-
tors. BO-LSTM was trained on the “SemEval 2013: Task 
9 DDI extraction corpus” [35], that contains annotations 
of pharmacological substances and drug-drug inter-
actions at the sentence level. It was later applied to the 
documents of CRAFT corpus using all the described 
channels in order to detect relations between every pair 
of ChEBI entities in a sentence. The output was a file 
with classification of each entity pair: “effect”, if there is 
an interaction or relation between the entities or “noef-
fect”, otherwise. For the link modes Corpus-link and 

(6)Recall =
tp

tp+ fn
· 100

(7)F1− score = 2 ·
precision · recall

precision+ recall

KB-Corpus-link this information is in the candi-
dates files and, consequently, in the edge structure of the 
respective disambiguation graph. For a more detailed 
description of BO-LSTM implementation, please refer to 
the original publication [34].

PPR
The input to this part of the model is the candidates 
files from pre-processing stage. The model uses the PPR 
implementation proposed by Pershina et  al. [11]. The 
PPR algorithm was computed according to the Monte 
Carlo algorithm proposed by Fogaras et  al. [36]. We 
decided to maintain the same values for the PPR param-
eters described by Pershina et al. [11]: initialisation with 
2000 random walks for each source node, 5 steps of PPR 
and probability of jump to the source node (or teleport 
probability) of 0.2.

Results and discussion
The evaluation results for the models in the different 
datasets are available in the Table 1.

In the CRAFT-ChEBI dataset, the two REEL models 
achieved the same performance, a F1-Score of 85.8%, 
which is an improvement of 2.5% and 7.9% compar-
ing with the “PPR-IC” and “String matching” base-
line approaches. The precision achieved was 91.3%, an 
increase of 4.2% and 13.5% comparing with the “PPR-IC” 
and “String matching” models.

In the BC5CDR-Diseases dataset, the model 
“REEL(Corpus)” achieved the highest F1-Score, 80.9%, 
which represents an improvement of 2.0 % and 2.4% 
comparing with the “PPR-IC” and “String matching” 
models. The precision achieved was 86.9%, an increase of 
3.5% and 4.2% comparing with the “PPR-IC” and “String 
matching” models. In the BC5CDR-Chemicals dataset, 
the models “REEL(Corpus)” and “REEL (KB+Corpus)” 
obtained the highest F1-Score, 90.3%, but the increase 
from the baseline approaches was lower: 0.2% and 1.1% 
comparing with the “PPR-IC” and “String matching” 
models. The precision increased by 0.3% and 2.1% from 
the precision of the “PPR-IC” and “String matching” 
models.

The two REEL models [“REEL(Corpus)” and 
“REEL(KB+Corpus)”] consistently achieved the best 
F1-Score in all datasets and respective sets. The higher 
F1-Score comparing with the baseline approaches is 
directly related with increases in the precision, as the 
recall did not substantially differ across models. These 
results demonstrate that the initial hypothesis of improv-
ing the precision of graph-based NEL models through RE 
is true.

The use of a RE tool (BO-LSTM) and the inclusion of 
chemical-disease interactions of the BC5CDR corpus 
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overcame the lack of domain knowledge in the KB and 
originated denser disambiguation graphs, which by its 
turn, improved the performance of the PPR algorithm. 
The results obtained by REEL are explained by the fact 
that there is semantic information encoded in text and 
not expressed in the ontologies structure. For example, 
in the following sentence of document 14737183 of the 
CRAFT-ChEBI dataset “(...) skin from at/at mice reveal an 
abrupt dorsoventral transition of DOPA staining, which 
probably reflects the additive effects of reduced mela-
nin content” there are two entities mentions: “DOPA”, 
annotated with the identifier “CHEBI:49168”, and “mela-
nin”, annotated with the identifier “CHEBI:25179”. In the 
ChEBI structure these entities are not linked, but BO-
LSTM can infer that the content of “melanin”’ affects the 
“DOPA staining” through contextual features.

Another example, more complete, is shown in Fig.  3. 
In the document 15630473 of the CRAFT-ChEBI data-
set there were, among others, the entity mentions “Cl”, 
“sodium vanate” and “sodium deoxycholate”. Only 
“sodium deoxycholate” had an exact match in ChEBI 
ontology, the homonymous concept with the identifier 
“CHEBI:9177”, the other two entity mentions had each 
one a candidate list with several ChEBI candidates (in 
the figure these candidate lists are abbreviated). Without 

the RE output and relying only in KB links, the disam-
biguation graph formed with the candidates for these 
entity mentions had no edges between the nodes. But 
BO-LSTM was able to extract relations between some of 
the candidates expressed elsewhere in the corpus and the 
addition of these relations to the disambiguation graph 
originated two new edges. The PPR algorithm assigns 
more weight to the nodes with higher degree (i.e. more 
interconnected) and in this case the nodes with higher 
degree (CHEBI:17996 and CHEBI:35607) corresponded 
to the correct disambiguation for the entity mentions.

The NEL performance of REEL is indirectly related 
with the performance of the RE tool that is used. The 
RE performance of BO-LSTM is lower than the inclu-
sion of the gold standard annotations present in the 
BC5CDR corpus: BO-LSTM is not able to extract all the 
relations between entities present in the CRAFT-ChEBI 
dataset, contrarily to what happens in the BC5CDR 
corpus, where all the relations are known. The use of a 
RE tool is a more realistic scenario than the inclusion 
of gold standard annotations, because not always these 
are available, so we measured the NEL performance by 
REEL in these two different scenarios. According to 
Table  1, We can conclude that the NEL performance 
increases comparing with baseline approaches in these 

Table 1  Evaluation results in the CRAFT-ChEBI dataset (top), BC5CDR-Diseases (middle) and BC5CDR-Chemicals (bottom)

For the datasets BC5CDR-Diseases and BC5CDR-Chemicals the results for each subset are shown. “All” refer to the entire corpus and “Train”, “Dev” and “Test” refer to the 
train, development and test sets, respectively

Model CRAFT-ChEBI

P R F1

String matching 77.8 78.0 77.9

PPR-IC 87.1 79.9 83.3

REEL(Corpus) 91.3 80.9 85.8

REEL(KB+Corpus) 91.3 80.9 85.8

BC5CDR-Diseases

Model All Train Dev Test

P R F1 P R F1 P R F1 P R F1

String matching 82.7 74.7 78.5 81.7 74.1 77.7 82.7 72.3 77.2 83.6 77.5 80.4

PPR-IC 83.4 74.9 78.9 84.1 74.6 79.1 86.2 73.0 79.1 87.2 78.2 82.5

REEL(Corpus) 86.9 75.6 80.9 87.8 75.4 81.1 87.9 73.5 80.1 89.0 78.6 83.5

REEL(KB+Corpus) 86.6 75.5 80.7 88.2 75.5 81.4 88.0 73.5 80.1 88.8 78.5 83.3

BC5CDR-Chemicals

Model All Train Dev Test

P R F1 P R F1 P R F1 P R F1

String matching 94.9 84.1 89.2 93.7 84.4 88.8 95.3 85.2 90.0 95.3 82.6 88.5

PPR-IC 96.7 84.4 90.1 97.6 84.9 90.8 97.6 85.5 91.2 98.0 83.0 89.9

REEL(Corpus) 97.0 84.4 90.3 98.0 85.0 91.0 98.3 85.6 91.5 98.4 83.0 90.0

REEL(KB+Corpus) 97.0 84.4 90.3 98.0 85.0 91.0 98.2 85.6 91.5 98.4 83.0 90.0
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two different scenarios, so we can conclude that this 
increase in independent of the source of the extracted 
relations.

In the ChEBI ancestors channel of BO-LSTM, the 
model links each entity mention with a ChEBI identifier 
through string matching, which limits the performance 
of the tool when extracting the relations in text. So, the 
performance of REEL benefits with the BO-LSTM out-
put, but could by its turn be used to improve BO-LSTM 
performance, more concretely by replacing the string 
matching method and improving its disambiguation 
component.

The REEL framework can be potentially adapted to any 
domain, as long as there is an ontology or other struc-
tured KB available. This feature is specially relevant for 
the biomedical and life sciences domains, where there 
is a lack of text mining tools, but there are many digital 
libraries with scientific information available. REEL could 
be used in any gold standard dataset as long it contains 
annotations of biomedical ontology concepts and in 
any biomedical text where the entities are already rec-
ognized by a Named Entity Recognition tool. The rela-
tions extracted in the CRAFT-ChEBI corpus (or in the 
BC5CDR corpus) could be included in REEL to improve 
its performance in that different gold standard/text. The 
framework only needs labelled data if it is necessary to 
train the RE tool, but if the tool is already trained or the 
relations are available, that need disappears.

Error analysis
Despite the positive results achieved by REEL, there 
were some errors that prevented an even higher 
performance.

One type of error is associated with the presence of 
composite mentions in the BC5CDR-Diseases dataset. 
For example, the disease mention “detrimental effect on 
memory and cognition” is annotated with two different 
gold labels: “detrimental effect on memory” (D008569) 
and “detrimental effect on cognition” (D003072). REEL 
is not adapted to recognise and deal with this type of 
entity mentions because only one candidate is selected 
per entity.

The second type of error is related with the candidate 
generation step, as many entity mentions did not have 
the correct disambiguation in the respective candidates 
list, which impacted mainly the recall of the model. 
The string matching technique to generate candidates 
is useful to restrict the field of possible ontology candi-
dates but sometimes leaves out correct candidates with 
little lexical overlap with the entity mention.

Another type of error is due to the presence of few 
entity mentions in a document. The PPR algorithm has 
higher performance in bigger and denser disambigua-
tion graphs, but in certain cases, there is not enough 
entity mentions in a document to build a disambigua-
tion graph with these characteristics.

Fig. 3  Disambiguation graph improved by extracted relations. Example showcasing the building of the disambiguation graph for three different 
entity mentions in a document of the CRAFT-ChEBI dataset and the further densification of the graph with extracted relations from the dataset
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Conclusion
We developed REEL, which leverages extracted rela-
tions described in the text to build dense disambiguation 
graphs and then applies the PPR algorithm for candi-
date ranking and disambiguation. The framework was 
evaluated on three different gold standards, the CRAFT-
ChEBI, the BC5CDR-Diseases and the BC5CDR-Chemi-
cals datasets and achieved a F1-Score of 85.8%, 80.9% and 
90.3%, respectively, which represents an improvement 
comparing with two baseline approaches. This improve-
ment is due to increases in the precision.

The results show that REEL can be used to mitigate the 
problems associated with the application of PPR for NEL 
using sparse disambiguation graphs. Our framework 
improved the performance of NEL when the output of a 
deep-learning RE tool (BO-LSTM) is included and also 
when relations annotated in a gold standard (BC5CDR 
corpus) are included, which demonstrates that the frame-
work have the flexibility to easily integrate relations pro-
vided by any source.

For future work, we intend to explore pre-trained lan-
guage models, like BioBERT [37], to further improve 
the determination of local similarity between mentions 
and ontology concepts. Besides, it would be interesting 
to adapt this method to other types of KBs other than 
the ontologies, like Wikipedia, which are less formally 
defined.
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