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Abstract

Background: Expanded carrier screening (ECS) has emerged as an effective ap-
proach to identify at-risk couples (ARCs)—before they initiate attempts at reproduc-
tion—who possess a high probability of having a child affected by severe recessive
diseases. The objective of this study was to evaluate the clinical utility of ECS in
Chinese patients seeking the help of assisted reproductive technology (ART).
Methods: An ECS test, which covers 201 genes implicated in 135 recessive (auto-
somal or X-linked) diseases, was routinely offered to all ART patients in a single
genetics and in vitro fertilization clinic. Additional options for preimplantation or
prenatal genetic diagnosis were discussed and offered to all ARCs. All ECS results
were aggregated and the clinical decisions of the ARCs were surveyed.

Results: A total of 2,923 ART patients, representing 1,462 couples, were screened.
Overall, 46.73% of the individuals were found to be the carriers for at least 1 of the
135 diseases. Of the tested couples, 2.26% (n = 33) were identified as ARCs. As of
the completion of this study, 21 (63.6%) ARCs have decided to avert an affected
pregnancy with the help of preimplantation genetic testing for monogenetic condi-
tions. The cumulative carrier rate of the 187 autosomal recessive genes in the ECS
panel for the 2,836 Han Chinese individuals without a family history was estimated
to be 45.91%. The estimated at-risk couple rate indicates that the screening for only
the top 31 genes with gene carrier rates >0.5% would identify more than 94% of the
ARGC:s identified by screening all 187 genes.

Conclusion: Our study demonstrates that ESC yields a significant clinical value for
ART patients in China. In addition, by estimating the yields of the ECS panel, we

identify genes that are appropriate for screening the Han population.
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1 | INTRODUCTION

Currently, assisted reproductive technology (ART), especially
in vitro fertilization (IVF), is the most effective method for
infertile couples to achieve pregnancy (Qiao & Feng, 2014;
Treff & Zimmerman, 2017). Infertility affects 1 in 6 couples
of reproductive age (Treff & Zimmerman, 2017). Within the
framework of IVF, oocytes and/or embryos can be tested by
preimplantation genetic testing (PGT) to prevent embryos
with genetic disorders from being implanted (Kuliev &
Rechitsky, 2017). This not only allows for the establishment
of pregnancies, but for the birth of genetically healthy ba-
bies (Kuliev & Rechitsky, 2017; Martin et al., 2015; Qiao &
Feng, 2014; Treff & Zimmerman, 2017). Since the first baby
screened by PGT for X-linked diseases was delivered in 1990
(Handyside, Kontogianni, Hardy, & Winston, 1990), PGT has
evolved into an established clinical procedure in reproductive
and genetic medicine (Kuliev & Rechitsky, 2017; Lee, Chow,
Yeung, & Ho, 2017). Previous data illustrate that the tech-
nology is safe and reliable with no significant adverse effects
(Kuliev, 2012; Kuliev & Rechitsky, 2017; Liebaers et al., 2010;
Rechitsky et al., 2015, 2016; Treff & Zimmerman, 2017).

As a component of PGT, preimplantation genetic test-
ing for monogenic conditions (PGT-M) is designed mainly
to test for single-gene disorders (Imudia & Plosker, 2016)
and has been performed for over 400 different genetic dis-
orders (Kuliev & Rechitsky, 2017). Simultaneous testing
for chromosomal aneuploidy and translocations is also pos-
sible from a single biopsy obtained for PGT-M (Kuliev &
Rechitsky, 2017; Treff & Zimmerman, 2017). With the de-
velopment of PGT-M, the demand for the identification of
couples at the risk of conceiving children with recessive dis-
orders is dramatically increasing. At-risk couples (ARCs) are
those in which both partners carry pathogenic (P) or likely
pathogenic (LP) variants in the same gene, or female car-
ries an X-linked P or LP variant. These couples are at high
risk of giving birth to offspring with severe genetic diseases.
Previously, ARCs were often identified by genetic diagnosis
following the birth of an affected child. In recent decades,
however, carrier screening has emerged as an alternative ap-
proach that identifies ARCs before they initiate attempts at
reproduction (Edwards et al., 2015; Franasiak et al., 2016;
Johansen Tab er et al., 2019; Kuliev & Rechitsky, 2017,
Martin et al., 2015; Treff & Zimmerman, 2017).

Carrier screening aims to identify healthy individuals with
a heterozygous deleterious variant of a recessive (autosomal
or X-linked) disorder. It was first introduced in the 1970s
as a means to detect the likelihood of inherited conditions
(Stamatoyannopoulos, Motulsky, & Ebling, 1974). Initially,
carrier screening programs were established within specific
ethnic groups who had a very high prevalence of certain
conditions, such as ancestry-based screening for Tay—Sachs
disease in Ashkenazi Jewish communities (Kaback, 2000).
Later, the cystic fibrosis (CF) screening became available after

CF-associated genes were identified (Riordan et al., 1989).
After 2001, CF became the first disease recommended for
pan-ethnic routine carrier screening in the United States
by several professional guidance associations, such as the
American College of Obstetricians and Gynecologists
(ACOG) and the American College of Medical Genetics
(ACMG) (Obstetricians & Gynecologists, 2001, 2011). This
promoted carrier screening as a more general practice for pre-
conception and prenatal populations, tailored to specific con-
ditions within ethnic groups. For instance, in some parts of the
world, pan-ethnic screening is used for hemoglobinopathies
and thalassemia (Bajaj & Gross, 2014). More recently, carrier
screening for spinal muscular atrophy (SMA) was suggested
by the ACOG for all women considering pregnancy (or already
pregnant), as well as additional screening based on the fam-
ily history and ethnicity (Committee on, 2017; "Committee
Opinion No. 691 Summary: Carrier Screening for Genetic
Conditions," 2017; Prior, Professional, & Guidelines, 2008).

In recent decades, technological advances and decreases
in the cost of sequencing have made expanded carrier screen-
ing (ECS) available and affordable. Next-generation se-
quencing (NGS) has allowed ECS to evaluate hundreds of
conditions in one test (Hallam et al., 2014; Nazareth, Lazarin,
& Goldberg, 2015). Although many conditions are, them-
selves, rare, one study found that approximately 35% of indi-
viduals in their sample were carriers of at least one condition
(Srinivasan et al., 2010). The author demonstrated that the
screening for the most common genetic disease alone fails to
identify most carriers in the general populations (Srinivasan
et al., 2010). In addition, both cost efficiency and the con-
ditions included in ECS tests have been widely discussed
or studied (Beauchamp, Johansen Tab er, & Muzzey, 2019;
Wilfond et al., 2018). Beauchamp et al studied the cost-ef-
ficacy of a 176-condition ECS and concluded that ECS can
reduce the population burden of Mendelian disease in a
cost-effective manner when compared to many other com-
mon medical interventions (Beauchamp et al., 2019). Guo
and Gregg suggested to guide the design of ECS panels with
estimated carrier rates across genes (Guo & Gregg, 2019).

Although there have been quite a few studies on ECS, rang-
ing from panel design (Bell et al., 2011; Martin et al., 2015)
to clinical implementation (Franasiak et al., 2016), most of
them are biased toward the people of European descent. The
ECS data for China are quite limited. Sumin et al. recently per-
formed ECS on 10,476 prenatal/preconception couples from 34
Chinese ethnic groups (Zhao et al., 2019). However, their study
was limited in that it only tested for 12 genes associating with
11 Mendelian disorders. Moreover, it did not address the impact
of ECS on the clinical decisions made by tested couples.

In the present paper, we applied an ECS panel of 202
genes implicated in 135 recessive diseases (121 autosomal
recessive [AR] and 14 X-linked) for ART patients in a local
fertility center in China. Through this investigation, we aim to
evaluate the clinical utility of ECS in Chinese ART patients.
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2 | METHODS
2.1 | Ethical compliance

This study was approved by the ethics committee (institu-
tional review board) of the Shanghai Ji Ai Genetics & IVF
Institute (code JIATIE2019-11).

2.2 | Study design

ECS was routinely offered as an option to all patients seeking
ART in a single genetics and IVF clinic between 1 May 2017

FIGURE 1 The ECS practice in the
IVF clinic. The green ellipses represent the
starting point of the process and the red
ellipses represent an endpoint of the process.
ECS, expanded carrier screening; IVF, in and disgrose
vitro fertilization
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and 31 July 2019. Patients who elected to complete ECS were
included in this analysis. Data management and tabulation
were accomplished via self-written Python and R scripts.
Informed consent was obtained from each participant and the
genomic data of individuals were de-identified and analyzed
in a cumulative manner.

2.3 | Clinical principles and practice

The clinical workflow of ECS in this study is illustrated in
Figure 1. Pre-test counseling for ECS was provided, which
informed patients of the ECS program and discussed the
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risks, benefits, and limitations of screening. Patients who
volunteered for ECS were divided into two groups according
to whether they were pregnant or not. Women whose preg-
nancies were over 20 weeks of gestation were not recom-
mended for ESC because it would be difficult to complete
ESC as well as prenatal diagnosis before the pregnancy ter-
mination deadline of China (before 28 weeks of gestation).
Spouses of pregnant women with gestational age less than
20 weeks were advised to undertake ECS concurrently in
order to identify the couple's reproductive risk as early as
possible. Individuals in non-pregnant couples could choose
to undertake ECS one at a time. If one partner of a couple was
found to be a carrier for a specific condition, the other partner
would be advised to undertake ESC as well. Post-test coun-
seling was provided to all ECS subjects to inform the couple
of potential reproductive outcomes, as well as to inform cou-
ples of the residual risk of being a carrier even after receiving
negative test results for each screened gene.

ESC results helped identify ARCs. In addition to the
above-mentioned post-test genetic counseling, ARCs in
which the female was already pregnant also received recom-
mendations for prenatal genetic diagnosis (amniocentesis or
chorionic villus sampling); otherwise, IVF with PGT-M was
recommended. For the patients who underwent PGT-M, we
applied the Illumina HumanKaryomap-12 DNA Analysis
Kit (Illumina, www.illumina.com) to identify unaffected em-
bryos through linkage analysis. All pregnant women in the
ARCs were advised to undertake prenatal genetic diagnosis
whether through spontaneous pregnancy or IVF with PGT-
M. Those who failed to get pregnant were offered additional
counseling, suggesting adjustments to pregnancy manage-
ment for their next reproductive attempt.

Prenatal genetic diagnosis was performed for ARCs who
volunteered following the ACOG guideline (Committee on
& the Society for Maternal-Fetal, 2016). At-risk couples
(ARCs) were allowed to voluntarily terminate or continue
their pregnancy if the fetus was diagnosed as affected in pre-
natal genetic diagnosis. The former received advice on preg-
nancy management for their next reproductive attempt and
the latter were recommended intrauterine or neonatal treat-
ment if feasible. The pregnancy outcomes as well as birth
defects of all children borne by ARCs were surveyed.

2.4 | Disease selection and panel design

The ECS panel covers 201 genes implicated in 135 single-
gene recessive (AR or X-linked) diseases (Table S1). These
pathologic conditions were carefully chosen after consider-
ing ACMG recommendations (Edwards et al., 2015) and the
perspective of many PGT couples in our clinic, who have a
strong desire to reduce the medical burden of genetic diseases
and improve the quality of life of future generations through

screening and PGT. Broadly, we included severe childhood-
onset disorders with highly penetrant phenotypes, high-prev-
alence monogenic diseases with moderate phenotypes, and
disabilities that impact the quality of life for the entirety of
the patient's life, such as severe hearing loss and blindness.

Single-nucleotide variants (SNVs) and small indel vari-
ants located in exons and introns within 10bp-regions of the
selected genes were detected. The panel also detected an exon
7 deletion in SMNI(OMIM: 600354, reference sequence:
NM_000344.3) for SMA and —a3.7, —a4.2, —SEA, —FIL,
and —THAI variants for alpha-thalassemia. Determining
the relative distribution of two or more copies ofHBAI(O-
MIM: 141800, reference sequence: NM_000558.4)and
HBA2(OMIM: 141850, reference sequence: NM_000517.4)
located in homologous chromosome 16 was beyond the ca-
pabilities of this analysis. PO21 SMA and P140 HBA MLPA
kits (MRC-Holland) and capillary electrophoresis were used
to verify the suspected positive variants. Quality control and
data analysis were conducted using the Coffalyser.net soft-
ware (MRC-Holland, www.mlpa.com).

2.5 | Genomic sequencing and data analysis
Exons of the 201 genes, along with their 10-bp flanking in-
tronic regions, in the subject's DNA were captured using an
Agilent Custom Target Enrichment Probe Kit (Agilent). The
DNA was then sequenced by high-throughput sequencing on
the Illumina HiSeq platform (Illumina, www.illumina.com).
The resulting reads were mapped to the reference genome
hg19 to identify the bases in all sequencing fragments. The
sequencing coverage of each base was obtained from all
genomic sequencing data. The Genome Analysis Toolkit
(GATK) (McKenna et al., 2010) was used to detect SNVs,
small indels, and the specific copy number variants men-
tioned above for SMNI, HBA, and HBA?2 genes.

2.6 | Variant interpretation

The population-based large-scale sequencing databases gno-
mAD (Karczewski et al., 2020) was used to exclude mutations
that occurred with high frequency in the normal population.
The remaining variants were annotated with the Ensembl
Variant Effect Predictor (VEP) (McLaren et al., 2010). The
variants were classified according to the standards and guide-
lines issued by the American College of Medical Genetics
and Genomics (ACMG) and published in the literature (Li
et al., 2017; MacArthur et al., 2014; Richards et al., 2008).
P or LP variants were routinely reported to couples and vari-
ants of uncertain significance (VUS) were provided only if
the partner of the VUS carrier also had a P or LP variant in
the same gene.
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3 | RESULTS TABLE 1 The positive rates of 121 recessive diseases and 14
X-linked diseases in the 2,923 tested individuals
3.1 | Populatlon demographlcs Positive conditions Number Percentage (%)
. . . . 0 1557 53.27
During the study period, we performed 2,923 ECS in patients ) 993 2397
seeking ART. The main reasons for their ART requests in- 2
cluded chromosome abnormalities, family history of genetic 2 292 9.99
diseases, recurrent spontaneous abortion or infertility, and pre- 3 72 246
vious adverse pregnancy outcomes. In total, 2,840 (97.16%) 4 8 0.27
partners from 1,420 couples and 83 (2.84%) individuals under- 5 1 0.03
went testing. Twelve (0.81%) of the 1,485 female patients tested
were pregnant at the time of screening. Among these ongoing TABLE 2 Carrier frequencies of the top 15 diseases in the 2,836

pregnancies, one had been achieved via PGT-M and the others
had been established through natural conception. It should be
noted that although we prepared a complete genetic counseling
and prenatal genetic diagnosis plan for pregnant ARCs (as
described in the section “Clinical principles and practice”) no
pregnant ARC was identified in our study. The mean age of the
patients tested was 33.1 years (range: 20—-63). Approximately
97.95% (n = 2,863) of the patients tested reported their ethnic-
ity as Chinese Han, 0.31% (n = 9) as one of the five Chinese
ethnic groups (Korean, Zhuang, Zang, Yao and She) and the
other 1.74% (n = 51) did not report their ethnicity. The aver-
age sequencing depth for the samples was >100-fold, covering
more than 96% of the target capture regions with 20 more reads.

3.2 | Disease carrier frequencies
Among the 2,923 individuals screened, 46.73% (n = 1,366)
were found to be the carriers of at least one of the 135 condi-
tions. Nearly 10% (n = 292) of the tested individuals were the
carriers for two of the selected conditions, while 2.8% (n = 81)
of the tested individuals carried variants associated with more
than 3 of the selected conditions (Table 1). The average carrier
burden was 0.63 per sample. A previous ECS study in a Chinese
population indicated that 27.49% of individuals were positive
carriers for at least one disease [29]. The increased positive rate
obtained from the current study may be explained by the in-
creased number of diseases included in our screening panel.
Since the majority of tested individuals were Han
Chinese, the carrier frequency of selected conditions was
only estimated for the 2,836 Han individuals without a fam-
ily history. The most common disease carried by individu-
als was the SLC25A13(OMIM: 603859, reference sequence:
NM_014251.2) related Citrin deficiency, with a carrier rate of
3.91% (n = 111). Here, the carrier frequencies of many disor-
ders and genes are reported for the first time in the Han Chinese
population, including: GJB2(OMIM: 121011, reference se-
quence: NM_004004.5) (n = 107, 3.74%), SLC22A5(OMIM:
603377, reference sequence: NM_003060.3) (n = 44, 1.54%),
PMM2(OMIM: 601785, reference sequence: NM_000303.2)
(n=34,1.19%) (Table 2, Tables S2 and S3).

Han Chinese individuals without a family history

Carrier 1
Disease Number frequency (%) in_
Citrin deficiency 111 391 26
GJB2-related 106 3.74 27
nonsyndromic hearing
loss
Krabbe disease 80 2.82 36
Usher syndrome type 76 2.68 38
2A
Alpha-thalassemia 66 2.33 43
Wilson disease 66 2.33 43
Pendred syndrome 63 222 46
Phenylalanine 55 1.94 52
hydroxylase (PAH)
deficiency (including
PKU)
Oculocutaneous 54 1.90 53
albinism, types 1A,
1B, 2, and 4
Congenital disorder of 52 1.83 55
glycosylation
Systemic primary 44 1.55 65
carnitine deficiency
CYP1B1-related 40 1.41 71
glaucoma
Spinal muscular atrophy 34 1.20 84
(SMA)
Polycystic kidney 32 1.13 89
disease, autosomal
recessive type
Usher syndrome type 1 32 1.13 89

3.3 | Action taken by ARCs after ECS

Overall, 1,462 couples were tested. Among these, 42 cou-
ples followed the female first protocol, in which the male
was only tested if the female was positive. In the remaining
1,420 couples, 71.5% (n = 1,016) were carrier couples, that
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is, one or both partners were carriers for at least one condi-
tion. Surprisingly, 2.26% (n = 33) of the tested couples were
identified as ARCs and these couples carried genetic markers
associated with 19 different diseases. Among the ARCs, 29
couples carried P or LP variants in the same gene in both
partners and 4 couples carried an X-linked P or LP variant in
the female partner. Information about the ARCs, including
high-risk diseases and genes, age at the time of ECS, reason
for seeking ART, the action taken after ECS, and the length
of time since receiving ECS results until the time of the sur-
vey (March 2020) are given in Table 3. Among the 33 ARCs,
19 couples reported no family history of the genetic disorders
screened by the ECS test and the other 14 had an affected
birth with the recessive disorder identical to that identified
in the ECS test. All ARCs received genetic counseling and
recommendations for PGT-M. At the time of the survey, 21
(63.6%) ARCs underwent PGT-M to avoid an affected preg-
nancy, of which 10 reported no family history of disorders.
Four (12.1%) ARCs underwent PGT for aneuploidies (PGT-
A) or for structural chromosome rearrangements (PGT-SR).
It should be noted that ARC 8 reluctantly gave up PGT-M be-
cause they could not find a reference, which is necessary for
PGT-M linkage analysis. However, they planned to obtain
prenatal diagnosis for the at-risk gene after PGT-SR. One
ARC decided to obtain prenatal diagnosis after becoming
pregnant naturally. The other seven ARCs (21.2%) had not
yet decided which PGT procedure to undergo. Of these, ARC
14 and 23 had not yet made a decision because the cause of
their previous adverse pregnancy outcomes remains unclear;
the other ARCs did not pursue additional treatment at this
center after receiving ECS results.

3.4 | Yield estimation of the ECS panel
According to Guo and Gregg's study in 2019 (Guo &
Gregg, 2019), we estimated the yields of screening 187 AR
genes in our ECS panel of 2,836 Han Chinese individuals
with no family history. The 14 X-linked recessive genes
were excluded from the analysis because of limitations in-
herent to Guo's model (Guo & Gregg, 2019). The variant car-
rier rate (VCR) is the proportion of individuals who carry
a certain P or LP variant. The top three recurrent variants
were c¢.235del(p.Leu79Cysfs*3) in GJB2 at a frequency of
1/42, ¢.2T>C (p.Metl?) in SLC25A13at a frequency of 1/43,
and c.1901T>C (p.Leu634Ser) in GALC(OMIM: 606890,
reference sequence: NM_000153.3) at a frequency of 1/45
(Table 4). The VCRs across all 187 AR genes are listed in
Table S4.

Next, the VCRs were used to estimate gene carrier rates
(GCRs) for each gene. The GCR value of a gene is the esti-
mated proportion of individuals carrying one or more P or LP
variants in that gene. The GCR for each of the 187 AR genes

are also listed in Table S5. For illustrative purposes, Table 5
shows the top 15 GCR genes. Unsurprisingly, the SLC25A13
gene has the highest GCR at 3.87%. In general, the GCRs de-
cline rapidly, with only 17 genes with a GCR >1% (Table 6).

Using these GCRs, cumulative carrier rates (CCRs) for
various sets of genes were also calculated. The CCR is an es-
timation of the detection rate of a hypothetical carrier-screen-
ing panel. The CCR of our 187 AR genes was 45.91% for the
study population, which is relatively high compared to the
CCRs for the 416 genes selected by Guo and Gregg (2019)
(36.5% in East Asian to 65% in Ashkenazi Jewish popula-
tions). This implies that our selection of genes is relatively
well fit for the Han Chinese population. Furthermore, as
shown in Figure 2, as more genes are added to the panel there
is an initial rapid increase in the CCR attributed to a small
number of genes with high GCRs. This is then followed by
a long tail corresponding to genes that contribute asymptot-
ically to the maximum CCR. Roughly, 90% of the CCR can
be attributed to the top 68 GCR genes. ACOG recently rec-
ommend that genes with a GCR >1% are the preferred genes
for use in ECS ("Committee Opinion No. 690 Summary:
Carrier Screening in the Age of Genomic Medicine," 2017);
however, the results in Table 6 show that this stringent GCR
threshold would reduce the CCR by ~41% and therefore may
eliminate the diagnoses of many carriers.

Last, at-risk couple rate (ACR), which is the probability
that both members of a couple are carriers for P or LP vari-
ants in the same gene, was estimated for gene sets with GCR
>1.0%, GCR >0.5%, or GCR >0.1%(Table 6). Similar to
previous reports (Guo & Gregg, 2019), the ACR values indi-
cate that the screening for only 31 genes with GCRs >0.5%
(81.0 of 10,000 couples) will identify 94.4% of the ARCs
that would be identified by screening all 187 genes (85.8 of
10,000 couples).

4 | DISCUSSION

From our practice, we found that patients who were seek-
ing PGT were more likely to participate in ECS compared
with ordinary reproductive couples as well as other members
of the infertile population. This may be because most PGT
couples have fertility difficulties, which makes them more
anxious for a genetically healthy child. Thus, they are more
interested in information about their reproductive risks. ECS
helps these couples feel autonomous and well prepared for the
birth of a child (Kraft, Duenas, Wilfond, & Goddard, 2019).
Second, for ARCs identified by ECS, PGT-M provides an
effective way to avoid the identified genetic conditions along
with other genetic abnormalities at no additional harm to em-
bryos. Third, the cost of ECS (about $435 per individual) is
relatively modest compared with that of IVF and PGT (less
than 10%) while the potential benefit is considerable.
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TABLE 4 Top 15 variants by variant carrier rates (VCR) of the selected genes in the 2,836 Han Chinese individuals without a family history

Allele count VCR— 1in
Gene Variant location Variant N % _
GJB2 NM_004004.5 ¢.235del(p.Leu79Cysfs*3) 69 2.40 42
SLC25A13 NM_014251.2 ¢.2T>C(p.Metl?) 66 2.33 43
GALC NM_000153.3 ¢.1901T>C(p.Leu634Ser) 66 2.26 45
SMN1 NM_000344.3 Exon7 heterozygous deletion 39 1.38 73
HBAI1/HBA2 NM_000558.4/NM_000517.4 Heterozygous a3.7 Deletion 36 1.27 79
CYPIBI NM_000104.3 ¢.319C>G(p.Leul07Val) 34 1.20 84
MLC1 NM_015166.3 c.65G>A(p.Arg22Gln) 29 1.02 98
SLC26A4 NM_000441.1 c.919-2A>G 28 0.99 102
SLC22A5 NM_003060.3 ¢.1400C>G(p.Ser467Cys) 26 0.92 110
USH2A NM_206933.2 ¢.2802T>G(p.Cys934Trp) 24 0.85 119
SLC25A13 NM_014251.2 c.852_855del(p.Met285Profs*2) 22 0.78 129
COL4A3 NM_000091.4 ¢.4793T>G(p.Leul598Arg) 17 0.60 167
GJB2 NM_004004.5 ¢.299_300del(p. 17 0.60 167

His100Argfs*14)

CAPN3 NM_000070.2 ¢.2120A>G(p.Asp707Gly) 16 0.56 178
HBAI/HBA2 NM_000558.4/NM_000517.4 Heterozygous SEA Deletion 15 0.53 190

Note: GJB2(OMIM: 121011), SLC25A13(OMIM: 603859), GALC(OMIM: 606890), SMNI(OMIM: 600354), HBA1(OMIM: 141800), HBA2(OMIM: 141850),
CYPIBI(OMIM: 601771), MLCI(OMIM: 605908), SLC26A4(OMIM: 605646), SLC22A5(OMIM: 603377), USH2A(OMIM: 608400), COLAA3(OMIM: 120070),

CAPN3(OMIM: 114240).

The selected panel screens many disorders, increasing the
importance of established recommendations already famil-
iar to healthcare providers. Our results showed that genetic
counseling, both pre-and post-test, informed patients of the
available screening options along with their benefits and
downsides. Couples were informed that in most cases the ECS
test only reports carrier status for mutations that are known
to have a well-defined phenotype, that is, P/LP variants and
VUS are not reported unless the partner of the VUS carrier
also possesses a P/LP variant in the same gene. Our experi-
ences of integrating ECS into ART indicated that the genetic
counseling throughout this process should address the fol-
lowing issues: (a) given the limitation of the linkage-analysis
based technology used in PGT-M (Gould & Griffin, 2017),
it cannot be guaranteed that a couple who tests positive for
a condition will be eligible for PGT-M, for example, if the
P/LP variants they carry are de novo or if they are not able
to provide a reference. However, the ineligible ARCs can
still benefit from ECS through other means such as prenatal
diagnosis; (b) patients should be informed of the potential
limitations before screening. For instance, there is residual
risk associated with NGS of certain genes or their surround-
ing area and many genes contain pathogenic variants in the
intronic region, that is, SLC26A4(OMIM: 605646, reference
sequence: NM_000441.1) and ATP7B(OMIM: 606882, ref-
erence sequence: NM_000053.2) (Pera et al., 2008; Todorov,
Balakrishnan, Savov, Socha, & Schmidt, 2016); (c) a family
history for the identified disorders of the ARCs should be

clarified during genetic counseling. This helps couples take
action when pathogenic variants with incomplete penetrance
are found. Moreover, family history can influence the deci-
sion making of ARCs in which one member carries a dis-
ease-causing variant and the other has a VUS found in the
same gene; (d) the incidence of chromosomal abnormalities
in infertile patients is higher than that in the general popu-
lation. Due to the technological limitations of NGS, certain
chromosomal abnormalities, such as 47, XXX, and mosaics
of 45, X, may lead to false negatives when screening for genes
on the abnormal chromosomes. Therefore, it is necessary to
establish the chromosome status of participants during ge-
netic counseling and an appropriate disclaimer should be
added to the ECS report.

Genetic counseling is essential for the proper implemen-
tation of ECS (Archibald et al., 2018; Zhao et al., 2019). In
this study, genetic counseling was provided by genetic clini-
cians in the IVF clinic. The interpretation of VUS is a sub-
stantial challenge during counseling (Yuan et al., 2009; Zhao
et al., 2019). On one hand, informing patients that they carry
a VUS may generate unnecessary anxiety, as the majority
of VUS are eventually determined to be non-disease-caus-
ing (Martin et al., 2015; Mastantuoni et al., 2018). On the
other hand, VUS cannot be altogether ignored since some of
them are pathogenic (Yuan et al., 2009; Zhao et al., 2019).
Currently, various IVF centers treat VUS results obtained
from ECS differently. A reproductive medicine center in
Europe that performs ECS by targeted-NGS is reporting VUS
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TABLE 5 Top 15 genes by gene carrier rate (GCR) in 2,836 Han ol 0
Chinese individuals without a family history 8 ©
1in o) g —
Genes GCR (%) _ g
. ™
SLC25A13 3.87 26 K9] o
GJB2 3.66 28 o
o o _
GALC 2.74 37 o) o
>
USH2A 2.65 38 B —
ATP7B 2.30 44 g o |
HBAI/HBA2 2.20 46 E o
SLC26A4 2.14 47 © o 4 I T I T
PAH 1.92 33 0 50 100 150 200
SMN1 1.54 65
SLC22A5 141 71 Number of Genes Screened
CYPIBI 1.20 84
FIGURE 2 Cumulative carrier rates (CCR) for the selected
TYR 1.19 84 . . .
187 autosomal recessive genes. Genes are ranked in descending
PMM? 1.16 87 order based on gene carrier rate (GCR) for the 2,836 Han Chinese
PKHDI 1.12 90 individuals without a family history
GAA 1.09 92

Note: SLC25A13(OMIM: 603859, reference sequence: NM_014251.2),
GJB2(OMIM: 121011, reference sequence: NM_004004.5), GALC(OMIM:
606890, reference sequence: NM_000153.3), USH2A(OMIM: 608400, reference
sequence: NM_206933.2), ATP7B(OMIM: 606882, reference sequence:
NM_000053.3), HBAI(OMIM: 141800, reference sequence: NM_000558.4),
HBA2(OMIM: 141850, reference sequence: NM_000517.4), SLC26A4(OMIM:
605646, reference sequence: NM_000441.1), PAH(OMIM: 612349, reference
sequence: NM_000277.1), SMN1(OMIM: 600354, reference sequence:
NM_000344.3), SLC22A5(OMIM: 603377, reference sequence: NM_003060.3),
CYPIBI(OMIM: 601771, reference sequence: NM_000104.3), TYR(OMIM:
606933, reference sequence: NM_000372.4), PMM2(OMIM: 601785, reference
sequence: NM_000303.2), PKHD1(OMIM: 606702, reference sequence:
NM_138694.3), GAA(OMIM: 606800, reference sequence: NM_000152.3).

to patients by default (Abuli et al., 2016). Another center,
where VUS is reported if a pathogenic variant in the same
gene is found in the partner, details that the option to ask
for PGT-M was sometimes introduced in this context (Martin
et al., 2015). Although the ACMG and European Society of
Human Genetics (ESHG) both recommend against report-
ing of VUS in most cases (Green et al., 2013; Henneman
et al., 2016), whether these recommendations hold equally
true in the context of PGT can be debated. The identifica-
tion of a pathogenic variant in one member of the couple in
combination with a VUS in the other member may become
common with ECS. Although traditionally the presence of
VUS is not an adequate indication for PGT-M, the circum-
stances outlined above warrant further assessment of VUS
and subsequent PGT, especially for couples with a family his-
tory of genetic disorders. It is our opinion that this is the only
case in which VUS should be reported to couples and acted
upon, which highlights the importance of ECS as a test for
reproductive couples, rather than for individuals. Following
the guideline proposed by Martin et al. (2015), we reported

TABLE 6 Number of genes with GCR > 1%, GCR > 0.5%,
and GCR > 0.1% in 2,836 Han Chinese individuals without a family
history. The cumulative carrier rates (CCR) and at-risk couple rates
(ACR) were also calculated and listed below

Gene sets N CCR (%) ACR (%)

>1% 17 27.12 0.7346789
>0.5% 31 34.12 0.8102914
>0.1% 111 44.55 0.8565335
All 187 genes 187 4591 0.8580375

Abbreviation: GCR, gene carrier rate.

VUS to the couples only if the partner of the VUS carrier also
had a P or LP variant in the same gene. The genetic counsel-
ors then worked to independently evaluate various lines of
evidence to reclassify the VUS and explained their findings
to the patients. PGT-M was introduced as an option during
counseling if the VUS was reclassified as disease-causing.
The selection of genes to be included in an ECS panel is
usually an issue of hot debate. Until now, no specific decision
could be made for a specific region or population (Beauchamp
et al., 2019; Bristow et al., 2019; Mastantuoni et al., 2018).
Adding genes to an ECS panel allows for more ARCs to be
identified; however, it also increases costs substantially due
to the detection techniques and downstream interpretation
and counseling, as well as increases anxiety in the patient
(Guo & Gregg, 2019). Although the technical cost of NGS
is becoming increasingly negligible, genes that cannot be de-
tected by NGS with adequate sensitivity require additional
means of detection and add extra costs. For instance, DMD
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(OMIM: 300377), SMNI, and HBA require fragment length
confirmation. The greatest expense of ECS may be derived
from the cost of variant interpretation and genetic counseling,
which deserves earnest consideration. Our results indicate
that increases to ACR are minimal when genes of low GCR
(<0.5%) are added to the screen. Therefore, an ancestry-spe-
cific ECS panel, which screens for genes that make a large
contribution to ACR may adequately balance costs and ben-
efits, especially for clinics whose patients are relatively eth-
nically homogeneous. Furthermore, as recommended by the
previous research (Antonarakis, 2019; Plantinga et al., 2019;
Schuurmans et al., 2019), offering couple-based ECS which
reports positive “couple-results” only may be another prom-
ising approach to reduce the costs incurred by variant inter-
pretation and counseling.

5 | CONCLUSION

In this study, we launched a pilot population-based ECS for
135 severe recessive Mendelian conditions, the aim of which
was to inform the clinical utility of ECS in Chinese ART pa-
tients. Our results suggest a need to implement ECS in the
ART population, since more than 46% of tested individuals
were carriers for at least one selected disease. Furthermore,
the ACR for the 187 AR genes in the ECS panel was esti-
mated to be 85.8 out of 10,000 couples. This rate is com-
parable to the frequency of neonates affected by Down
syndrome, screening for which is offered in routine govern-
ment-subsidized antenatal tests in China (Hook, Cross, &
Schreinemachers, 1983). From a clinical perspective, carrier
identification by ECS prompted 10 ARCs to turn to PGT-M
to prevent affected pregnancies, accounting for 47.6% of the
ARCs who underwent PGT-M (21 couples). ARCs who un-
derwent PGT-A or PGT-SR instead of PGT-M could also
benefit from post-test genetic counseling that introduces the
option of prenatal diagnosis. Moreover, positive ECS results
may increase the opportunities for antenatal intervention
as well as optimize newborn and infant outcomes by help-
ing to rapidly diagnose and immediately intervene or begin
treatment after birth (Edwards et al., 2015; Mastantuoni
et al., 2018). Taken together, our study suggests that ECS
holds significant clinical utility for Chinese ART patients. In
addition, by estimating the yields of the ECS panel for ART
patients of Han ethnicity, we inform the selection of genes
that should be included in ESC and provide important impli-
cations for the design of ECS panels.
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