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1  | INTRODUC TION

Cancer is one of the life-threatening diseases and remains a critical pub-
lic health issue worldwide.1-3 Despite the tremendous improvements in 

cancer therapy in recent decades, there are still many patients who suf-
fer from unsatisfactory outcomes.4 Currently, the underlying molecular 
mechanisms in tumour occurrence and progression have not yet been 
fully elucidated.5,6 Meanwhile, efficient biomarkers for early diagnosis, 
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Abstract
LncRNAs play a pivotal role in the regulation of epigenetic modification, cell cycle, 
differentiation, proliferation, migration and other physiological activities. In particu-
lar, considerable studies have shown that the aberrant expression and dysregulation 
of lncRNAs are widely implicated in cancer initiation and progression by acting as tu-
mour promoters or suppressors. Hippo signalling pathway has attracted researchers’ 
attention as one of the critical cancer-related pathways in recent years. Increasing 
evidences have demonstrated that lncRNAs could interact with Hippo cascade and 
thereby contribute to acquisition of multiple malignant hallmarks, including prolifera-
tion, metastasis, relapse and resistance to anti-cancer treatment. Specifically, Hippo 
signalling pathway is reported to modulate or be regulated by widespread lncRNAs. 
Intriguingly, certain lncRNAs could form a reciprocal feedback loop with Hippo sig-
nalling. More speculatively, lncRNAs related to Hippo pathway have been poised to 
become important putative biomarkers and therapeutic targets in human cancers. 
Herein, this review focuses on the crosstalk between lncRNAs and Hippo pathway 
in carcinogenesis, summarizes the comprehensive role of Hippo-related lncRNAs in 
tumour progression and depicts their clinical diagnostic, prognostic or therapeutic 
potentials in tumours.
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prognosis prediction and therapeutic targets are still lacking, which may 
hinder the effective monitoring as well as treatment of cancer.5,7,8

Long non-coding RNAs (lncRNAs) are a large and heterogeneous 
class of endogenous lncRNA family that are generally greater than 
200 nucleotides (nts) in length.9 Previously, lncRNAs were char-
acterized as transcriptional noise since they exhibit no or limited 
protein-coding capacity.10,11 Recently, owing to the advancement 
of next-generation sequencing-based transcriptome profiling, tre-
mendous lncRNAs were identified and functionally annotated.7,12,13 
LncRNAs are found to execute a wide spectrum of biological pro-
cesses,14 such as alternative splicing, chromatin modification, 
sponging microRNAs (miRNAs) as competing endogenous RNA 
(ceRNAs), nuclear-cytoplasmic trafficking or interaction with genes, 
and thereby involve in crucial regulation of various human diseases 
including cancer.15 Compelling experimental evidences indicate an 
engagement of lncRNAs in pleiotropic pathophysiological functions 
related to tumorigenesis, like the cell growth, invasion, metastasis, 
apoptosis and chemo-resistance,16 by interaction with other macro-
molecules.17 Accumulating studies have shown that lncRNAs could 
be considered as a promising candidate in cancer prognosis and di-
agnosis.1,4,7,18 Accordingly, lncRNAs have attracted great attention 
due to their multifaceted modulatory functions and the capacity as 
predictive biomarkers in cancers.1,4,7

Hippo signalling pathway consists of a broad range of proteins 
and controls lots of molecular and cellular processes.12 It is re-
ported that Hippo pathway could be activated or suppressed by 
genetic or epigenetic regulation, leading to a plethora of patholog-
ical disorders including cancers.11 Notably, advanced studies have 
demonstrated that the crosstalk between lncRNAs and Hippo 
pathway may contribute to cancer occurrence and progression in 
recent years. For instance, YAP (or YAP1), a major transducer in 
downstream of Hippo pathway, is amplified and nuclear accumu-
lated in a variety of cancers.19 LncRNA TNRC6C antisense RNA 1 
(TNRC6C-AS1) was reported to be abundantly expressed in thy-
roid carcinoma and could regulate the subcellular localization and 
activation of YAP, leading to the promotion of cell proliferation 
and tumorigenicity.20

In this review, we systematically summarize the up-to-date 
insights provided by studies regarding the crosstalk between ln-
cRNAs and Hippo signalling pathways in cancers. In addition, 
we provide a brief overview of the Hippo-related lncRNAs as 
clinicopathological biomarkers and highlight its potential role as 
therapeutic targets in cancers. The interplay between Hippo and 
lncRNA may shed light on the role of underlying mechanisms in 
carcinogenesis.

2  | C ANONIC AL HIPPO SIGNALLING 
PATHWAY IN TUMORIGENESIS

The Hippo signalling pathway is initially characterized as a critical 
signalling cascade that regulates organ size in fruit fly (drosophila 
melanogaster) in 1995.21 It is an evolutionarily ancient and conserved 

network among different species,22 and its homology molecules in 
mammals have been subsequently identified. A growing number 
of studies have highlighted a critical role of Hippo pathway in the 
regulation of organ size, tissue homeostasis, cell proliferation, ap-
optosis, metastasis, autophagy, angiogenesis and stem cell self-re-
newal.23,24 The misregulation of Hippo signalling pathway can cause 
many disease conditions.25 In tumorigenesis, Hippo pathway is well-
established as a tumour-suppressive cascade due to its proliferation 
restriction and apoptosis induction.26,27

In mammals, the central axis of the Hippo signalling pathway 
comprises two serine/threonine kinases: mammalian sterile 20-like 
kinase 1/2 (MST1/2) and its homolog large tumour suppressor 1 
and 2 (LAST1/2); two adaptor/scaffold protein: WW45 for MST1/2 
and Mps one binder kinase activator-like 1 (MOB1) for LAST1/2; 
downstream transcriptional co-regulators: yes-associated protein 
(YAP) and its paralog transcriptional co-activator with PDZ-binding 
motif (TAZ, also known as WWTR1); and various nuclear tran-
scriptional factors: transcriptional enhancer-associated domain 
(TEAD1/2/3/4).26,28 Of them, YAP and TAZ are key intracellular mes-
sengers, whose localizations are critical in Hippo pathway.11 YAP/
TAZ could be positively or negatively modulated by phosphorylation 
at different sites by upstream kinases, elicit target gene expression 
signature through forming complexes with TEAD family, the major 
nuclear partner, and thereby play a prominent role in cellular plas-
ticity, lineage differentiation during development, tumour initiation, 
progression and metastasis.29,30

In canonical Hippo signalling, the cascade is on (‘Hippo On’) when 
the upstream Hippo pathway is activated by stimuli or regulators, 
such as mechanical stress, cell polarity determinants and increased 
cell-cell contact.28,31 Then, MST1/2 kinase is phosphorylated and 
subsequently phosphorylates salvador homolog 1 (SAV1) to form a 
heterotetramer to further promote the LATS1/2 phosphorylation. 
Activated LATS1/2 could result in inactivation of YAP/TAZ through 
sequestering its cytoplasmic localization by binding to 14-3-3 protein 
or degradation via ubiquitination, and thereby dampen the transcrip-
tion of downstream genes.11,31 Conversely, when the Hippo pathway 
is inactivated (‘Hippo off’), YAP/TAZ translocates to the nucleus and 
binds primarily to enhancer elements by using TEAD as DNA-binding 
sites,11,32 thereby driving target gene (AREG, CTGF, Cyr61, ANKRD1, 
AXL, etc) transcription and promoting cell tissue growth, survival, pro-
liferation and self-renewal,28,33,34 as presented in Figure 1.

3  | REGUL ATORY NET WORK OF LNCRNA S 
AND HIPPO SIGNALLING PATHWAY IN 
C ANCER

Overall, considerable crosstalk between lncRNAs and Hippo signal-
ling pathway has been revealed in several tumours as demonstrated 
in Tables 1-3. A vast majority of lncRNAs were discovered in the reg-
ulation of Hippo signalling pathways. Conversely, Hippo pathways 
were also reported to modulate expression of lncRNAs.31 These 
bilateral regulations ultimately impact target gene expressions in 
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cancer progression, indicating a close relationship and complexity 
between lncRNAs and Hippo signalling cascades.

3.1 | LncRNAs regulate members of Hippo pathway

Recently, lncRNAs are emerging as a critical mediator in a wealth 
of carcinogenic processes by targeting various downstream execu-
tors in Hippo signalling pathways (Figure 2). A number of lncRNAs, 
including B4GALT1 antisense RNA 1 (B4GALT1-AS1),35 gastric can-
cer high expressed transcript 1 (GHET1)36 and X-inactive specific 
transcript (XIST),37 were tightly associated with YAP to exert their 
functions in cancers. Zhang et al35 found that lncRNA B4GALT1-AS1 
was highly expressed in colon cancer cells by RNA-seq. Depletion of 
B4GALT1-AS1 repressed cancer cell colony formation and stemness. 
Further mechanism assay revealed that B4GalT1-AS1 could directly 
bind to YAP. B4GALT1-AS1 silencing could sequester YAP in cyto-
plasm and decrease YAP transcriptional activity, while overexpres-
sion of YAP attenuated the inhibition effect caused by B4GAlT1-AS1 
knockdown.35 In similar, another study showed that B4GALT1-AS1 
was expressed in osteosarcoma tissues as well as cell spheres at an 
enhanced level.38 Functionally, B4GALT1-AS1 acted as an oncogene 
to enhance YAP mRNA stability and transcriptional activity by re-
cruiting HuR, and in turn maintain osteosarcoma cells stemness, 
and promote migration and chemo-resistance.38 Conclusively, these 
studies clarified an obvious association of B4GALT1-AS1 and Hippo 
pathway, which may contribute to the malignant properties of tu-
mour.35,38 GHET1, located in chromosome 7q36.1, was firstly identi-
fied as an overexpressed lncRNA in gastric cancer.39 Guan ZB et al36 
demonstrated an elevated expression of GHET1 in NSCLC and its 
knockdown could impede YAP expression, and thereby impair tumour 
cell proliferation, invasion ability and the epithelial-to-mesenchymal 

transition (EMT). XIST is a markedly elevated lncRNA in osteosar-
coma tissues and cells.37 A panel of in vitro and in vivo studies con-
firmed that XIST knockdown restricted tumour cell growth, invasion 
and EMT. Interestingly, XIST acted as a decoy for miR-195-5p and 
thereby to alter YAP expression, implicating a regulatory role of 
XIST/miR-195-5p/YAP network in osteosarcoma progression.37

In addition to YAP, other components of Hippo cascade includ-
ing TAZ, LATS1/2 and MST1/2 were also found involved in cross-
talk with a variety of lncRNAs in carcinogenesis. For example, both 
LINC00174 and TAZ showed an upregulated expression pattern 
in human primary colorectal cancer (CRC) tissues as compared to 
corresponding normal tissues.32 Overexpression of LINC00174 or 
TAZ could enhance CRC cell proliferation motility. Bioinformatics 
and luciferase reporter assays revealed that LINC00174 may com-
petitively bind to miR-1910-3p to increase TAZ expression in CRC 
carcinogenesis.32 MiR-125a-5p, an important endogenous tumour 
suppressor,40 was reported to target TAZ and inhibit EGFR pathway 
to repress retinoblastoma progression.41 A recent study performed 
by Yu et al40 suggested lncRNA BCYRN1 functioned as an onco-
gene by sponging miR-125a-5p to activate TAZ, and then results in 
cell proliferation, invasion and migration in glioma. In addition, Su 
et al42 demonstrated that mir-100-let-7a-2-mir-125b-1 cluster host 
gene (MIR100HG), a well-documented tumour facilitator in breast 
cancer43 and acute megakaryoblastic leukaemia,44 was also highly 
expressed in osteosarcoma. Functional assay and rescue experi-
ments further confirmed that MIR100HG regulated cell prolifera-
tion, apoptosis and cell cycle mediated by epigenetically silencing 
LATS1/2 and inactivating Hippo pathway.42 Ras-associated domain 
family member 1 (RASSF1) is a scaffold protein and functions as a 
tumour suppressor through regulation of cell cycle and apoptosis.45 
LncRNA murine retrovirus integration site 1 homolog antisense 
RNA 1 (MRVI1-AS1) was reported to be markedly downregulated in 

F I G U R E  1   Molecular schematic of 
canonical Hippo signalling cascade in 
cancers
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TA B L E  1  Overview of lncRNAs that regulate Hippo signalling pathway in cancer development

LncRNA Tumour type Expression Interaction with Hippo cascade Biological function in cancers Ref.

B4GALT1-AS1 Osteosarcoma, 
colon cancer

↑ B4GALT1-AS1 directly or indirectly binds 
to YAP to promote its transcription

Proliferation, migration, 
spheroid formation, stemness, 
chemo-resistance

35,38

BCYRN1 Glioma ↑ BCYRN1 increases TAZ expression Proliferation, invasion, 
migration

40

BDNF-AS Glioblastoma ↓ BDNF-AS increases LATS1 and YAP 
phosphorylation mediated by RAX2/ 
DLG5

Proliferation, apoptosis, 
migration, invasion

126

FRMD6-AS2 Endometrial cancer ↓ FRMD6-AS2 increases phosphorylation of 
LATS1 and YAP

Tumour growth, migration and 
invasion

127

GHET1 NSCLC ↑ GHET1 enhances YAP expression Proliferation, invasion, EMT 36

MAYA Breast cancer bone 
metastasis

↑ MAYA induces inhibitory methylation of 
MST1

Bone metastasis of cancer cells 128

LEF1-AS1 OSCC ↑ LEF1-AS1 inhibits the binding of LATS1 
to MOB, and thus suppresses Hippo 
pathway

Cell survival, proliferation, 
migration, apoptosis, cell cycle

129

LINC00174 CRC ↑ LINC00174 sponges to miR-1910-3p to 
activate TAZ

Cell growth 32

LINC00662 GC ↑ LINC00662 sponges to miR-497-5p to 
promote YAP expression

Proliferation, chemo-sensitivity 130

LINC00673 BC ↑ LINC00673 increases MAPK4 and YAP/
TAZ expression and reduces YAP 
phosphorylation

Proliferation, apoptosis, cell 
cycle

131

LINC01048 CSCC ↑ LINC01048 interacts with TAF15 to 
upregulate YAP

Proliferation, apoptosis 132

LINC01314 HB ↓ LINC01314 inhibits nuclear translocation 
of YAP

Proliferation, migration, cell 
cycle

133

LINC01559 Pancreatic cancer ↑ LINC01559 hinders YAP phosphorylation 
and enhances its transcription

Proliferation, migration, cell 
growth

134

Linc-OIP5 BC, glioma ↑ Linc-OIP5 increases YAP expression Proliferation, migration, 
invasion, apoptosis, tube 
formation capacity

135-137

LncRNA-ATB HCC ↑ LncRNA-ATB activates YAP expression Cell proliferation, clonogenicity, 
autophagy

95

MIR100HG Osteosarcoma ↑ MIR100HG silences LATS1/2 and 
inactivates Hippo

Proliferation, apoptosis, cell 
cycle

42

MRVI1-AS1 NPC ↓ MRVI1-AS1 promotes RASSF1 expression 
to suppress TAZ expression

Paclitaxel-resistant 46

Nkx2-2as MB ↓ Nkx2-2as upregulates LATS1/2 Cell division, migration 138

NSCLCAT1 NSCLC ↑ NSCLCAT1 represses MST1 and LATS1 
and increases YAP/TAZ expression

Cell viability, migration, 
apoptosis, invasion

139

PCGEM1 Ovarian carcinoma ↑ PCGEM1 upregulates YAP expression Proliferation, apoptosis, 
migration, invasion

122

PLK4 HCC ↓ PLK4 inactivates YAP and induces cell 
senescence

Cell viability, growth, cellular 
senescence

118

SNHG15 PTC ↑ SNHG15 upregulates YAP expression Proliferation, apoptosis, 
migration, EMT

103

THOR NPC ↑ THOR enhances YAP transcriptional 
activity

Proliferation, migration, 
invasion, spheres formation, 
stemness, cisplatin sensitivity

140

TNRC6C-AS1 Thyroid carcinoma ↑ TNRC6C-AS1 regulates MST1 and 
LATS1/2, and phosphorylation of YAP

Proliferation, apoptosis, 
autophagy

20

(Continues)
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paclitaxel-resistant cells and could promote RASSF1 expression to 
modulate MST1/2 and suppress downstream TAZ expression, and 
therefore increase nasopharyngeal cancer (NPC) chemo-sensivitiy.46 
In summary, these findings help to illuminate the role of lncRNA in 
the regulation of Hippo signalling to subsequently control cell prolif-
eration and tumorigenesis.

3.2 | LncRNAs induced by Hippo pathway

Several studies demonstrated that the core components in Hippo 
pathways could also exert functions in the regulation of the expres-
sion as well as functions of lncRNAs, such as lncRNA breast cancer 
antiestrogen resistance 4 (BCAR4)26 and metallothionein 1D, pseu-
dogene (MT1DP)47 (Figure  3). LncRNA BCAR4 is an upregulated 
lncRNA in multiple cancers with clinicopathological significance in 
prognosis.4 A study showed that BCAR4 and YAP expressions were 
positively correlated in breast cancer and closely associated with 
unfavourable recurrence-free survival. Moreover, YAP could up-
regulate BCAR4 expression and coordinate the Hedgehog signalling 
pathway to promote the transcription of glycolysis activators HK2 
and PFKFB3, and in turn to reprogramme glucose metabolism in 
breast cancer.26 LncRNA MT1DP, a tumour suppressor, could reduce 
cell proliferation and colony formation, while inducing the apoptosis 
in liver cancer.47 Alpha-fetoprotein (AFP) is a well-known biomarker 
in liver cancer progression and recurrence.48,49 Functional assay sug-
gested that MT1DP negatively regulated AFP by suppressing syn-
thesis of Forkhead box A1 (FoxA1). Mechanistically, YAP and Runx2 
together displayed an oncogenic activity by hindering lncRNA MT1DP 
in a FoxA1-dependent manner in liver cancer.47 Other lncRNAs that 

are regulated by Hippo signalling pathway include cytoskeleton 
regulator RNA (CYTOR),50,51 non-coding RNA activated by DNA 
damage (NORAD)52 and H19.53 LncRNA CYTOR, also known as long 
intergenic ncRNA 00 152 (LINC00152), is located on chromosome 
2p11.2 with a length of 828 nucleotides.54 CYTOR was found highly 
expressed in CRC compared with counterpart controls and proved to 
sustain proliferation and promote invasion and metastasis of cancer 
cells.51 CYTOR could be targeted and transcriptionally regulated by 
YAP and other Hippo pathway molecules in CRC cells, subsequently 
regulated fascin actin-binding protein 1 (FSCN1) expression through 
sponging to miR-632 and miR-185-3p, and thereby promoted the oc-
currence and metastasis of CRC.51 Besides, another study showed 
that NORAD, a unique kind of lncRNA that responds to DNA dam-
age and maintains genome integrity and stability in cancers,55-57 was 
synergistically transcriptionally inhibited by the YAP/TAZ-TEAD and 
the NuRD complex, which in turn affected the development and 
metastasis of lung and breast cancer via sequestration of S100P.52 
Moreover, lncRNA H19, a well-characterized oncogenic lncRNA in 
tumour progression, metastasis and chemo-resistance,58-60 was also 
found abnormally expressed in osteosarcoma and could be upregu-
lated by overexpression of YAP.53 To summarize, it is clear that Hippo 
pathway could intimately modulate certain lncRNA to engage in mul-
tiple processes of cancer development.

3.3 | Reciprocal interaction between lncRNAs and 
Hippo pathway

Of note, there are a number of lncRNAs show recipro-
cal feedback loop with Hippo signalling pathway, such as 

LncRNA Tumour type Expression Interaction with Hippo cascade Biological function in cancers Ref.

TUG1 RCC ↑ TUG1 enhances YAP expression Proliferation, migration 141

uc.134 HCC ↓ uc.134 inhibits CUL4A-mediated 
ubiquitination of LATS1 and increases 
YAP phosphorylation

Proliferation, invasion, 
metastasis

96

XIST Osteosarcoma ↑ XIST increases YAP expression Proliferation, invasion 37

ZFAS1 Prostate cancer ↑ ZFAS1 upregulates YAP and TEAD1 
expression

Proliferation, invasion, EMT 91

ZFHX4-AS1 BC ↑ ZFHX4-AS1 increases YAP/TAZ 
expression

Proliferation, migration, 
apoptosis, invasion, cell cycle

142

Abbreviations: ↑ upregulated; ↓ downregulated; ATF3, activating transcription factor 3; B4GALT1-AS1, B4GALT1 antisense RNA 1; BC, breast 
cancer; BCYRN1, brain cytoplasmic RNA 1; BDNF-AS, BDNF antisense RNA; CRC, colorectal cancer; CSCC, cutaneous squamous cell carcinoma; 
DLG5, discs large homolog 5; EMT, epithelial-to-mesenchymal transition; FRMD6-AS2, FRMD6 antisense RNA 2; GC, gastric cancer; GHET1, gastric 
cancer high expressed transcript 1; HB, hepatoblastoma; HCC, hepatocellular carcinoma; LATS1/2, large tumour suppressor homolog 1/2; LEF1-AS1, 
LEF1 antisense RNA 1; Linc-OIP5, linc-Opa interacting protein 5; LncRNA-ATB, lncRNA activated by transforming growth factor-β; LSCC, laryngeal 
squamous cell carcinoma; MB, medulloblastoma; MIR100HG, mir-100-let-7a-2-mir-125b-1 cluster host gene; MOB1, Mps one binder kinase activator-
like 1; MRVI1-AS1, murine retrovirus integration site 1 homolog antisense RNA 1; MST1/2, mammalian sterile twenty-like 1/2; NPC, nasopharyngeal 
carcinoma; NSCLC, non-small-cell lung cancer; NSCLCAT1, non-small-cell lung cancer-associated transcript-1; OSCC, oral squamous cell carcinoma; 
PCGEM1, prostate cancer gene expression marker 1; PDAC, pancreatic ductal adenocarcinoma; PLK4, polo-like kinase 4; PTC, papillary thyroid 
carcinoma; RASSF1, ras-associated domain family member 1; RCC, renal cell carcinoma; SNHG 15, small nucleolar RNA host gene 15; TAZ, 
transcriptional co-activator with PDZ-binding motif; TEAD, transcriptional enhancer-associated domain; THOR, testis-associated highly conserved 
oncogenic long non-coding RNA; TNRC6C-AS1, TNRC6C antisense RNA 1; TUG1, taurine upregulated gene 1; XIST, X-inactive specific transcript; 
YAP, yes-associated protein.

TA B L E  1   (Continued)
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urothelial cancer-associated 1 (UCA1),61-64 growth arrest-specific 
5 (GAS5)11,65 and metastasis-associated lung adenocarcinoma 
transcript 1 (MALAT1)66-68 (Figure 4). UCA1 has displayed a trend 
of significantly increased expression in pancreatic cancer,64 thy-
roid cancer61 and ovarian cancer,62 when compared to adjacent 
normal tissue. Loss-of-function assay showed that UCA1 knock-
down restrained cell proliferation and induced apoptosis, as evi-
denced by CCK-8 and flow cytometry.61 Importantly, UCA1 could 
interplay with MOB1, LATS1 and YAP to form shielding compos-
ites, and thus suppress YAP phosphorylation to upregulate YAP 
expression. Moreover, UCA1 enhanced YAP nuclear localization 
and stabilization as well as increase TEAD luciferase activity. 
Besides, by using reverse-phase protein array analysis and in vivo 
RNA antisense purification, Lin X and colleagues62 further iden-
tified that UCA1 could bind to a well-known YAP regulator, an-
giomotin (AMOT) in ovarian cancer. Specifically, UCA1 enhanced 
AMOT-YAP interaction to enhance YAP dephosphorylation and 
nuclear translocation.62 Interestingly, YAP could also promote ex-
pression of UCA1,64 indicating a reciprocal interaction between 
UCA1 and YAP that maintain the cancerous phenotype.

In addition, GAS5, a well-acknowledged tumour suppressor, 
has been shown to exert essential inhibitory roles in cancer devel-
opment and progression.69,70 Gao et al65 reported that GAS5 was 
conspicuously downregulated and inversely correlated with miR-
181c-5p expression in pancreatic cancer cells. Gain-of-function 
analysis showed that GAS5 dramatically dampened cell viability 
and antagonized the chemo-resistance through regulation of miR-
181c-5p to indirectly activate Hippo signalling.65 In addition, GAS5 
was found to directly interplay with WW domain of YAP to facili-
tate YAP cytoplasmic localization in CRC.11 Moreover, GAS5 could 
trigger YAPSer127 phosphorylation and promote ubiquitin-mediated 
YAP degradation as an RNA scaffold.11 N6-Methyladenosine (m6A) 

is the most abundant mRNA modification and plays a critical role 
in cancer progression.71 Currently, m6A-modified lncRNAs in the 
regulation of YAP activation remain poorly defined.11,72,73 By using 
MeRIP-seq and lncRNA-seq, Ni et al11 further identified YAP could 
also target m6A reader YTHDF3, which reversibly bound m6A-meth-
ylated GAS5 to facilitate its decay, suggesting a negative functional 
loop of GAS5-YAP-YTHDF3 axis in CRC progression.

Interestingly, lncRNA MALAT1, locating on human chromo-
some 11q13.1 with a transcript sequence of approximately 8 kb, is 
a context-specific lncRNA among mammals that involved in the de-
velopment of diverse malignancies by crosstalk with Hippo path-
way.74-80 Early studies consistently showed that MALAT1 is highly 
expressed in cancerous tissue and facilitates tumour progression 
and metastasis in various cancers. For instance, a series of in vivo 
and in vitro experiments showed that MALAT1 knockdown can 
activate the Hippo cascade by upregulating miR-181a-5p, thereby 
hamper the proliferation and adhesion capacity of tumour cells in 
myeloma.66 In pancreatic cancer, MALAT1 showed extremely high 
expression pattern, leading to increased expression of YAP and 
decreased LATS1 expression, thus accelerating the tumour growth 
both in vitro and in vivo.68 In liver cancer, both YAP and MALAT1 
were highly expressed, and YAP could increase MALAT1 expres-
sion at both transcriptional and post-transcriptional levels.67 
Serine-/arginine-rich splicing factor 1 (SRSF1) is a negative regu-
lator of MALAT1. Importantly, YAP was reported to attenuate the 
nuclear retention of SRSF1 via interacting with AMOT and thereby 
abrogate the inhibitory effect of SRSF1 on MALAT1.67 Moreover, 
the combination of YAP overexpression and SRSF1 knockdown 
led to significantly enhanced tumour growth and migration.67 In 
contrast, a recent study by Kim et al demonstrated an opposite 
phenotype of MALAT1 in breast cancer.81 MALAT1 was obviously 
downregulated in breast cancer than parental tissue, and its level 

TA B L E  2  Overview of Hippo signalling pathway induced lncRNAs in cancer development

LncRNA Tumour type Expression Interaction with Hippo cascade
Biological function in 
cancers Ref.

BCAR4 BC ↑ YAP promotes BCAR4 
expression

Glycolysis 26

CYTOR (LINC00152) CRC ↑ YAP increases CYTOR 
expression, which in turn 
sponges to miR-632 and miR-
185-3p to target FSCN1

Proliferation, invasion, 
metastasis

51

H19 Osteosarcoma, bladder 
cancer

↑ YAP increases H19 expression Proliferation, migration 53,90

MT1DP Liver cancer ↓ YAP and Runx2 inhibit MT1DP 
expression dependent on 
FoxA1

Proliferation, apoptosis, 
colony formation

47

NORAD Lung and breast cancer 
metastasis

↓ YAP/TAZ-TEAD and NuRD 
complex repress NORAD 
expression

Migration and invasion 52

Abbreviations: ↑ upregulated; ↓ downregulated; BC, breast cancer; BCAR4, breast cancer antiestrogen resistance 4; CRC, colorectal cancer; CYTOR, 
cytoskeleton regulator RNA; FSCN1, fascin actin-binding protein 1; MT1DP, metallothionein 1D, pseudogene; NORAD, non-coding RNA activated 
by DNA damage; TAZ, transcriptional co-activator with PDZ-binding motif; TEAD, transcriptional enhancer-associated domain; YAP, yes-associated 
protein.
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was negatively correlated with cancer progression and metas-
tasis potential. MALAT1 acted as a tumour suppressor to impair 
cancer cell migration, invasion and metastasis by binding to and 

sequestering TEAD, and thereby blocking its association with 
co-activator YAP.81,82 In vivo assay using transgenic, xenograft 
and syngeneic models consistently showed a metastasis-inhibitory 

F I G U R E  2  Links between lncRNAs 
and Hippo signalling cascade. Numerous 
lncRNAs have been demonstrated to 
be involved in cancer progression via 
regulating core components of the Hippo 
signalling pathway

F I G U R E  3  Links between lncRNAs and 
Hippo signalling cascade. Hippo signalling 
axis could modulate the transcriptional 
activity of certain lncRNAs and in turn 
play a critical role in cancers
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role of MALAT1 in breast cancer.81 Hence, collectively, MALAT1 
may form a positive bidirectional circuit with oncoprotein YAP 
in the regulation of cancer development and tumorigenesis in a 
cancer tissue-specific manner. More comprehensive studies are 
therefore required to verify the oncogenic or tumour-suppressive 
role in MALAT1 in cancers.83

Besides, other lncRNAs are also capable of forming feedback loops 
with Hippo pathway, such as LINC01433,12 small nucleolar RNA host 
gene 1 (SNHG1)84 and THAP9 antisense RNA 1 (THAP9-AS1).85 As an 
oncogenic lncRNA, LINC01433 has been demonstrated to enhance 
tumour cell aggressiveness, including proliferation, migration, inva-
sion and chemo-resistance.12 Intriguingly, Zhang et al12 reported that 
LINC01433 stabilized YAP by upregulating the interaction between deu-
biquitinase USP9X and YAP and reduced YAP phosphorylation through 
inhibition of YAP-LATS1 binding. Conversely, YAP could directly bind 
to LINC01433 promoter region to further activate its transcription.12 
SNHG1 was reported to be remarkably upregulated in several types 
of human malignancies such as osteosarcoma and laryngeal squamous 

cell carcinoma (LSCC).84,86,87 SNHG1 knockdown obviously impeded 
tumour cell proliferation, migration and invasion, while induced apop-
tosis via participating in pleiotropic cancer-related signalling pathways, 
such as Notch,88 Wnt/β-catenin87 and Hippo pathway.84 Specifically, 
SNHG1 could serve as ceRNA to sponge to miR-375 and thus promote 
YAP expression to regulate Hippo pathway in LSCC. Meanwhile, YAP 
could reversibly occupy promoter of SNHG1 to enhance its transcrip-
tion, indicating a positive feedback regulation between SNHG1 and 
YAP.84 THAP9-AS1 was found upregulated in pancreatic ductal adeno-
carcinoma (PDAC) tissues, and its expression was positively associated 
with YAP levels and remarkably correlated with worse clinical out-
comes.85 THAP9-AS1 exerted its pro-carcinogenic role in PDAC both 
in vitro and in vivo by activating YAP. Notably, ectopic YAP expression 
could abolish the effects of THAP9-AS1 knockdown, and vice versa.85 
Mechanistically, THAP9-AS1 could sponge miR-484 to indirectly target 
YAP, or directly bind to YAP to result in upregulation of the expression 
and activity of YAP. Reciprocally, YAP/TEAD1 complex could enhance 
THAP9-AS1 transcription to complete a feed-forward loop.85

F I G U R E  4  Reciprocal interaction between lncRNAs and Hippo cascade. A number of lncRNAs reciprocally interact with components of 
the Hippo signalling pathway to complete feedback loop in cancer progression



10 of 15  |     TU et al.

4  | THE CLINIC AL SIGNIFIC ANCE OF 
LNCRNA S INVOLVED IN HIPPO PATHWAY 
IN C ANCERS

Detection of clinical biomarkers could enable early diagnosis of tu-
mour, which is critical in clinical practice. Several core components 
of Hippo pathway have been implicated as potential biomarkers for 
prognosis and chemo-resistance. For instance, YAP is found con-
sistently elevated expressed in multiple cancers, such as osteosar-
coma,53 breast cancer,26 liver cancer,89 bladder cancer,90 prostate 
cancer,91 pancreatic cancer68 and CRC.51,92 YAP overexpression or 
increased activity may predict advanced tumour stages and poor 
clinical outcome in cancer patients.25,85,92 A more recent discovery 
indicated that expression of nuclear YAP (nYAP) was noticeably 
upregulated in docetaxel-resistant prostate cancer cell lines than 
parental cells.93 Consistently, clinical data also revealed a higher 
nYAP level in the chemohormonal therapy (CHT) group than other 
groups, and patients with overexpressed nYAP in residual cancer 
after CHT predicted higher biochemical recurrence, indicating that 
nYAP level may be a promising prognostic factor in castration-re-
sistant prostate cancer patient treated with CHT.93 Furthermore, 
in conventional osteosarcoma, YAP/TAZ immune-reactive score 
was significantly correlated with the overall survival (OS), and its 
nuclear expression was associated with progression-free survival,94 
suggesting a prominent link between YAP/TAZ expression and os-
teosarcoma prognosis.

Since the lncRNAs interacted with Hippo signalling pathway 
have a considerable impact on regulation of tumour cell functions, 
their clinical diagnostic and prognostic significances were also ex-
tensively delineated in studies. Some aberrantly expressed lncRNAs 
involved in Hippo pathway were found overtly correlated with prog-
nosis outcomes and clinicopathological characteristics in cancers. 
For example, lncRNA-ATB, a lncRNA activated by TFG-β, was highly 
expressed in hepatocellular carcinoma (HCC) tissues compared to 
corresponding healthy liver samples.95 In HCC patients, expression 
of lncRNA-ATB was positively associated with tumour size, TNM 
stage and unfavourable survival.95 A similar conclusion was drawn by 
Li et al that elevated H19 was associated with poor clinicopathologi-
cal parameters.90 Inversely, lncRNA uc.134 was strikingly downregu-
lated in HCC samples than adjacent tissues96 and its expression was 
positively associated with LATS1 and pYAPS127 levels in HCC and re-
lated to lymphatic metastasis and higher TNM stage. Moreover, HCC 
patients with lower expression level of uc.134 were apt to worsen 
OS.96 Similarly, downregulated expression of NORAD was also as-
sociated with lymph node metastasis (LNM) and poor prognosis.52 
By contrast, lncRNA XIST was found markedly increased in osteo-
sarcoma tissues and cell lines as demonstrated by qRT-PCR,97,98 and 
its expression was negatively associated with OS, and positively 
correlated with clinicopathological features, including larger tu-
mour size, advanced Enneking stage, LNM and distant metastasis 
in osteosarcoma,99 suggesting XIST may be used as an independent 
clinical biomarker in osteosarcoma.100-102 Taken together, Hippo-
related lncRNAs appear to be innovative diagnostic and prognostic 

biomarkers for multiple cancers. However, there are still numerous 
challenges for their validation in clinical settings.80

5  | THE THER APEUTIC POTENTIAL OF 
LNCRNA S INVOLVED IN HIPPO PATHWAY

As mentioned above, the Hippo pathway comprises multiple down-
stream signalling proteins, such as YAP/TAZ, whose activation can 
endow cells with several hallmarks of cancer,103,104 leading to un-
controlled cell growth, malignant transformation, acquisition of 
EMT and confer tumour cell resistance to chemo-, radio- and even 
immunotherapy.19,30,50 Among them, chemo-resistance remains a 
major obstacle to effective cancer treatment, contributing to meta-
static progression and tumour relapse.105 As is shown, Mao et al106 
demonstrated that SIRT1 enhances the interaction between YAP 
and TEAD4 to maintain cisplatin resistance In HCC. Another recent 
study confirmed that Hippo cascade also participated in osteosar-
coma chemo-resistance.107 Upon methotrexate/doxorubicin treat-
ment, MST1 degradation increased, while LATS1/2 expression and 
YAP phosphorylation decreased in osteosarcoma cells. Further 
study revealed that activated nYAP subsequently resulted in tran-
scription of downstream target genes, leading to cell proliferation 
and chemo-resistance.107 Autophagy is an essential process impli-
cated in tumour survival and chemo-resistance.95,108,109 Wilkinson 
et al110 found that MST1/2 can phosphorylate LC3 and promoted 
cell autophagy, while decreased MST1 could constrain autophagy 
and thereby enhance cancer cell chemo-sensitivity. Besides, EMT 
is a complicated process which may contribute to cytoskeletal re-
modelling and tumour cell migration and metastasis.103,111 Shen 
et al conducted a study to show that TAZ and miR-135b could form 
a positive feedback loop to modulate EMT process and metastasis 
in osteosarcoma.112 Hereto, researches on Hippo signalling cascade 
may improve our understanding with regard to a variety of tumour 
properties including, but not limited to, metastasis, chemo-resist-
ance and EMT. Therefore, targeting Hippo may be an attractive op-
tion for cancer therapy.30

Given the fact that lncRNAs are involved in cancer-related sig-
nalling pathway to mediate tumorigenic process, it is therefore not 
surprising that these deregulated lncRNAs in Hippo cascade can also 
offer with the possibility as the attractive therapeutic candidates.113 
Meanwhile, recent advances in biological drugs, such as antisense 
oligonucleotides (ASOs),114,115 CRISPR/Cas9 to target lncRNAs, 
small interfering RNAs (siRNAs)116 and exosomal vectors, also im-
plicate that lncRNAs could be used as prospective targets in can-
cer treatments.111 For instance, Liu et al50 found that CYTOR was 
among the most dramatically upregulated lncRNA in tamoxifen-re-
sistant breast cancer cells and in patient tissues with no response to 
tamoxifen treatment. CYTOR could activate Hippo and MAPK path-
ways via regulation of miR-125a-5p to enhance breast cancer cell 
survival upon tamoxifen treatment, indicating that targeting CYTOR 
may be a possible approach in reversing tamoxifen resistance in 
breast cancer.50
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Furthermore, glucose metabolism plays a crucial role in promot-
ing and maintaining tumour cell characteristics.26,117 During glucose 
deprivation, AMPK could phosphorylate and inhibit YAP, and then 
the activated YAP enhances glucose consumption and lactate pro-
duction to generate energy to support the tumour cellular activity,26 
suggesting a role of Hippo pathway in promoting Warburg effect 
during carcinogenesis. A study by Zheng et al26 showed that BCAR4 
acted as a downstream target of YAP-dependent glycolysis. Of note, 
BCAR4 antisense-locked nucleic acid could significantly abolish the 
YAP-dependent glycolysis and tumorigenesis. Taken together, target-
ing YAP-BCAR4-glycolysis network may be a putative strategy for 
breast cancer treatment by reprogramming glucose metabolism.26 
In addition, polo-like kinase 4-associated lncRNA (PLK4) is a down-
regulated lncRNA in HCC tissues and cell lines, and may serve as a 
tumour suppressor featured with YAP inactivation and subsequent 
cellular senescence induction.118 Talazoparib is a potent poly-ADP-ri-
bosyl polymerase (PARP) inhibitor that can induce synthetic lethality 
in cancers with deleterious germline mutations in BRCA.119,120 A very 
recent study reported that talazoparib could dramatically upregulate 
expression of PLK4 to show the tumour inhibitory effect in HepG2 
tumour cells, which provides us with a novel pathway to target PLK4/
YAP axis for the treatment of HCC.118 Certainly, the modulation of 
lncRNA/Hippo network may be an interesting and promising avenue 
for improvement of cancer treatment. However, lncRNA/Hippo-
based targeted therapy is still in its infancy and more experimental 
strategies as well as clinical trials are required in the near future.80

6  | CONCLUSIONS AND PERSPEC TIVES

Hippo pathway is one of the most complicated signalling pathways 
with multiple downstream effectors that respond to extracellular 
and intracellular stimuli to coordinately govern cell differentiation, 
migration and proliferation.25 Genetic or epigenetically provoked 
disruption of Hippo pathway leads to imbalanced regulation of these 
mechanisms, resulting in tumorigenesis.25,121 Targeting Hippo signal-
ling may provide novel approaches in treatment of cancer. However, 
given the fact that Hippo pathway has striking tumour regulatory ac-
tivity in various contexts, the factors and concise regulation mecha-
nisms for activation or inactivation of Hippo signalling are still poorly 
understood.11

LncRNAs are a subclass of ncRNAs with growing recognition for 
their role in diverse cellular activities. Altered expression and mu-
tation of lncRNAs are reported to drive multifaceted cancer phe-
notypes by regulating gene expression and signalling pathways at 
various levels.96 Nowadays, a group of lncRNAs have been delin-
eated to directly or indirectly target the core components of Hippo 
cascade, such as YAP, TAZ, LATS1/2 and MST1.36,58,84,122 By con-
trast, Hippo can also modulate certain lncRNAs by affecting their 
transcriptional activity.31 The expression of lncRNAs is closely cor-
related with tumorigenesis and tumour aggressiveness. Importantly, 
lncRNAs related to Hippo signalling may be useful as predictive in-
dicators for diagnosis and prognosis in cancers. Researches on the 

interaction between lncRNAs and Hippo signalling pathway may 
potentially offer us a more comprehensive understanding in cancer 
occurrence and progression.

However, it should be noticed that the link between lncRNAs 
and Hippo pathways may be cell type-, context- and even tumour 
stage-specific.31,52 Thus, more studies are still warranted to fur-
ther elucidate their detailed structures and functions for develop-
ing biomarker and individualized therapy.80 Besides the canonical 
Hippo pathway, there are studies reporting the non-canonical Hippo 
signalling axis in the regulation of tumorigenesis.123,124 Currently, 
the crosstalk between lncRNAs and non-canonical Hippo pathway 
has not been elucidated yet, which may merit further exploration. 
Moreover, despite our understanding of lncRNA has been expanding 
in past decades, the discovery and functional annotation of lncRNAs 
still remain just the tip of an iceberg.125 Furthermore, in order to 
promote efficient therapeutic interventions in cancers by targeting 
lncRNAs and Hippo pathway, further in-depth pre-clinical and clini-
cal studies are urgently needed.
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