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Abstract
Introduction: The gray mouse lemur (Microcebus murinus) is an important nonhuman 
primate model in biomedical research. Numerous studies investigated mouse lemur 
behavior and possible factors underlying interindividual variation in both, animal 
personality and cognitive performance. Some effects, such as an age-related decline 
in executive functioning, have robustly been found across laboratory colonies; 
however, little is known about the brain structural substrates in mouse lemurs.
Methods: Here, we provide first exploratory data linking in vivo magnetic resonance 
imaging of 34 mouse lemurs to performance in a standardized, touchscreen-based 
task on object discrimination and reversal learning as well as to animal personality 
under different scenarios in an open field.
Results: High interindividual variability in both brain morphometric and behavioral 
measurements was found, but only few significant correlations between brain 
structure and behavior were revealed: Object discrimination learning was linked 
to the volume of the hippocampus and to temporal lobe thickness, while reversal 
learning was linked to thalamic volume and the thickness of the anterior cingulate 
lobe. Emergence latency into the open field correlated with volume of the amygdala. 
General exploration–avoidance in the empty open-field arena correlated with 
thicknesses of the anterior cingulate lobe and fronto-parietal substructures. 
Neophilia, assessed as exploration of a novel object placed in the arena, among 
others, related to the volume of the caudate nucleus.
Conclusion: In summary, our data suggest a prominent role of temporal structures 
(including the hippocampus) for learning capability, as well as thalamic and anterior 
cingulate structures for cognitive flexibility and response inhibition. The amygdala, 
the anterior cingulate lobe, and the caudate nucleus are particularly linked to 
animal personality in the open-field setting. These findings are congruent with the 
comparative psychological literature and provide a valuable basis for future studies 
elucidating aspects of behavioral variation in this nonhuman primate model.
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1  | INTRODUC TION

In biomedical research, meaningful animal models are of high impor-
tance in order to allow a good translation of results to human medi-
cine. Being genetically and physiologically closely related to humans, 
nonhuman primate models, compared to other classical biological 
models, such as rodents (Lavery, 2000), have gained increasing atten-
tion. As a member of the Strepsirrhini primates, the gray mouse lemur 
(Microcebus murinus) is one of the world's smallest primates and, over 
the past years, has become a valuable animal model, especially in the 
fields of (brain)aging research and dietetics (Fischer & Austad, 2011; 
Picq, Villain, Gary, Pifferi, & Dhenain,  2015; Pifferi, Epelbaum, & 
Aujard,  2019). For example, several aging effects that are known 
from humans have also been demonstrated in mouse lemurs, includ-
ing a decrease in motor functions (Némoz-Bertholet & Aujard, 2003), 
changes in the endocrine systems (Perret & Aujard,  2005), and 
in immune functions (Cayetanot, Nygard, Perret, Kristensson, & 
Aujard,  2009). With regard to cerebral aging, biochemical lesions 
such as the accumulation of iron (Dhenain et al., 1998), deposits of 
ß-amyloid peptide (Bons, Mestre, & Petter,  1992; Mestre-Frances 
et al., 2000), and aggregation of Tau protein (Delacourte et al., 1995) 
have been described to naturally develop in aging mouse lemurs. 
Furthermore, different patterns of brain atrophy, such as ventricu-
lar expansion, region-specific volumetric decline, and cortical white 
matter shrinkage, were found (Dhenain, Chenu, Hisley, Aujard, & 
Volk, 2003; Fritz et al., 2020; Kraska et al., 2011; Picq, Aujard, Volk, 
& Dhenain, 2012; Sawiak, Picq, & Dhenain, 2014). Regarding dietet-
ics, the effects of long-term caloric restriction and food supplemen-
tation, for example with resveratrol (Dal-Pan, Pifferi, Marchal, Picq, 
& Aujard, 2011) and omega-3 polyunsaturated fatty acids (Languille, 
Aujard, & Pifferi, 2012; Royo et  al., 2018; Vinot et  al., 2011) have 
been investigated in mouse lemurs.

In many of the abovementioned studies, a central research 
question was whether age or dietary aspects are linked to behav-
ioral variation, including variations in cognitive performance and/or 
animal personality. For example, one approach used a test battery 
originally designed for mouse lemurs and described age-dependent 
decline in executive functions, such as set shifting and pairwise spa-
tial as well as visual discrimination reversal learning (Picq, 2007; Picq 
et al., 2012). Another approach, in which more standardized testing 
procedures for the comparative quantification of cognition were 
used (e.g., Joly, Ammersdörfer, Schmidtke, & Zimmermann,  2014; 
Schmidtke, Ammersdörfer, Joly, & Zimmermann,  2018), confirmed 
an age-dependent loss in cognitive flexibility during reversal learn-
ing and additionally found object discrimination acquisition to be 
affected in aged mouse lemurs (Joly et  al.,  2014). Recent dietary 
studies found a beneficial effect of long-term caloric restriction 
and resveratrol (Dal-Pan et al., 2011) or omega-3 polyunsaturated 
fatty acids supplementation (Vinot et al., 2011) on spatial memory 

performance in mouse lemurs, suggesting nutritional history to con-
tribute to natural, phenotypic variation in cognition.

The classical testing environment for the quantification of ani-
mal personality-related behavior in small animals is the open-field 
maze (Walsh & Cummins, 1976), which was originally developed for 
the assessment of motivation in rats (Hall & Ballachey, 1932). In this 
setting, measurements of locomotor activity are used to quantify 
animal personality traits, ranging from shyness–boldness and ex-
ploratory behavior to risk-taking behavior and anxiety, including fear 
of novelty or open spaces (Marks, 1987; Walsh & Cummins, 1976). 
Open-field maze-based studies in mouse lemurs have investi-
gated various locomotor behaviors (Dal-Pan et  al.,  2011; Némoz-
Bertholet & Aujard,  2003) as well as different personality traits 
(Dammhahn, 2012; Vinot et al., 2011) and, as mentioned above, de-
tected age-related, diet-related, and sex-specific variations in activ-
ity, exploration, and anxiety.

Despite the fact that mouse lemur phenotypic variation in brain 
structure and behavior are well documented and have robustly been 
demonstrated across setups and laboratory populations (see above), 
little is known about how they are linked. Especially in studies on 
mouse lemur cognition, authors often speculate upon neuroanatom-
ical substrates for different cognitive functions (Joly et  al.,  2014; 
Picq, 2007; Trouche, Maurice, Rouland, Verdier, & Mestre-Francés, 
2010). Speculations are usually based on what is known from hu-
mans and/or lesioning studies in rodent models, but data from 
mouse lemurs supporting these speculations are largely missing due 
to ethical principles concerning invasive research in primates. The 
only study directly linking specific brain structures to cognition is an 
in vivo structural brain MRI study, describing executive functioning 
to be related to volume of the septal region, the caudate nucleus 
and the splenium, as well as to cingulate cortices (Picq et al., 2012). 
Therefore, the aim of this study was to further explore possible re-
lationships between brain structure and cognitive and animal per-
sonality-related behavioral measurements. We correlated available 
in vivo MRI-derived morphometric data from our breeding colony 
with behavioral data of the same subjects from standardized cogni-
tive tests on pairwise visual discrimination learning and its reversal 
and with data from open-field-based behavioral testing procedures.

2  | MATERIAL AND METHODS

2.1 | Ethical statement

From a breeding colony of the Institute of Zoology of the University 
of Veterinary Medicine in Hannover (LAVES; reference number: 
AZ 42500/1H (breeding and maintenance)), Germany, 34 adult 
mouse lemurs (Microcebus murinus) were involved in this study. All 
here-reported experiments were performed in compliance with 
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the German Animal Welfare Act, the NRC Guide for the Care and 
Use of Laboratory Animals, and the Directive 2010/63/EU of the 
European Parliament on the protection of animals used for scientific 
purposes. They were approved by the Animal Welfare Committee 
of the University of Veterinary Medicine and licensed by the Lower 
Saxony State Office for Consumer Protection and Food Safety 
(LAVES; reference numbers: AZ 33.19-42502-05-11A116 (MRI), AZ 
33.9-42502-05-10A080 & AZ 33.12-42502-04-14/1454 (cognitive/ 
behavioral experiments).

2.2 | Subjects

In vivo MRI scanning was conducted on all 34 individuals (18♀♀/16♂♂, 
age range: 3.1 to 11.9  years). 21 animals (12♀♀/9♂♂) of this total 
sample were additionally involved in cognitive testing (see Section 
2.4) and 30 animals (14♀♀/16♂♂) of the total sample took part in 
open field-based experiments (see Section 2.5). Due to the logistic 
effort of in vivo MRI in primates, MRI scans could not be performed 
directly after the behavioral experiments, resulting in different 
delays between cognitive/behavioral testing and MRI (cognitive 
testing: min  =  1.85  years, max =  2.89  years, mean =  2.42  years; 
open field-based testing: min  =  0.82  years, max  =  3.86  years, 
mean  =  2.40 years). Mathematical procedures used to correct for 
this delay are described in the “statistical analyses” section below.

Subjects commonly lived in small same-sex groups of two to four 
members. Temperature (23–25°C) and relative humidity (50%–60%) 
were kept constant. Cages were equipped with climbing opportu-
nities as environmental enrichment and one or two wooden boxes 
per individual to provide shelter. The diet of the mouse lemurs 
changed on a daily basis between seasonal fresh fruit mixed with 
vegetables and banana mash (Milupa Nutricia GmbH; Bad Homburg 
v. d. H., Germany) enriched with vitamins and minerals. Mealworms 
and locusts were offered weekly as additional protein source (for 
details on the diet see Hülskötter et al., 2017). To compensate the 
additional caloric intake from the food reward, each subject's regu-
lar diet was slightly reduced during cognitive testing. Animals lived 
under a seasonally fluctuating, reversed light cycle, with a long-day 
period (LD 14:10) of 8 months and a short-day period (LD 10:14) of 
4 months. All cognitive/behavioral experiments started during the 
long-day periods. Prior to the experiments, subjects were checked 
for good health and for eye diseases (Dubicanac et al., 2016, 2017) 
by a veterinarian, as some of the experimental procedures depended 
on visual information processing. All tested subjects were naïve to 
the touchscreen-based cognitive tests and to the open-field maze.

2.3 | Structural brain analyses

For brain morphometry, three-dimensional T2-weighted MRI was 
performed in vivo, under general anesthesia (for further details 
see Kästner, Tünsmeyer, & Schütter, 2016). Body temperature was 
monitored and regulated with a heating pad (Bruker T10964) at a 

constant level (±1°C). Heart rate and respiratory rate were constantly 
monitored on a magnetic resonance-compatible physiological 
monitoring system (SA Instruments, Stony Brook, NY, Model 1,030) 
to ensure the animal's stability. Scans were conducted at the Imaging 
Center of the Institute of Laboratory Animal Science of Hannover 
Medical School, with a Bruker 7T Pharmascan (70/16 Bruker BioSpin 
MRI GmbH, Ettlingen, Germany) equipped with a high performance 
gradient system with 300 mT/m maximum gradient amplitude and 
0.35 ms rise time. A combination of RF RES 300 1H 089/072 QUAD 
TO AD and RF ARR 300 1H M. HRT. RO AD AUTOPAC (Bruker BioSpin 
MRI GmbH) coils was used for all scans. Images were acquired using 
rapid acquisition with relaxation enhancement (RARE) sequences 
at the following parameters: repetition time = 2,500 ms, effective 
echo time  =  11.6  ms, field of view =  3 × 3 × 3  cm, acquisition 
matrix = 128 × 128 × 128, reconstruction matrix = 256 × 256 × 256, 
resolution = 234 μm, bandwidth = 25 kHz, and flip angle = 113.8°.

MRI images of all 34 subjects were preprocessed according to 
previously published protocols (Picq et al., 2012; Sawiak et al., 2014) 
to ensure spatial homogeneity and to secure interindividual com-
parability. Morphometric measurements were taken manually and 
in two steps: Based on regions of interest (ROIs), six different brain 
areas (thalamus, splenium of the corpus callosum, septal region, cau-
date nucleus, hippocampus, and amygdala) were volumetrically mea-
sured and normalized by each subject's intracranial volume. For a 
detailed description of the ROI measurements, see Picq et al., 2012. 
In addition, thickness of the cerebral cortex was measured at 25 ref-
erence positions in different brain areas and summarized according 
to the respective brain lobe (compare Sawiak et al., 2014). Cortical 
thickness measurements are also presented as normalized values 
corrected against the intracranial volume.

2.4 | Cognitive phenotyping

Cognitive phenotypes were determined for 21 animals that were 
part of a previous and larger study on age-related cognitive decline 
in mouse lemurs (Joly et al., 2014). Phenotypes were assessed using 
a customized version of the Bussey-Saksida Touchscreen Chamber 
(Model 80,604, Campden Instruments LTD; for a schematic 
drawing see Figure  1a). In short, individual object discrimination 
and associative learning performance as well as cognitive flexibility 
were quantified through a touchscreen-based, standardized visual 
pairwise-discrimination (PD) and pairwise-discrimination reversal 
(PDR) learning paradigm. Subjects were tested in one session per 
day (with 30 trials per session) to learn to discriminate between two 
simultaneously presented visual stimuli and to respond to one of 
them (chosen to be the rewarded stimulus) by touching the screen 
with their hand or nose to receive a reward (25  µl of apple juice 
for each correct choice). During the PD acquisition, subjects were 
trained to reach a criterion of 80% (later on referred to as PD 80) 
or more correct choices in two consecutive sessions to quantify 
individual object discrimination learning performance (e.g., Winters, 
Bartko, Saksida, & Bussey, 2010). Once this criterion was reached, 
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the stimulus-reward contingency was reversed in subsequent 
sessions (PDR). For the PDR, two criteria were defined. Firstly, the 
number of trials each individual needed to reach a performance 
of 50% or more correct choices in two consecutive sessions (later 
on referred to as PDR 50) was measured. This criterion was used 
to quantify the subject's cognitive flexibility (Graybeal et al., 2011). 
Afterward and secondly, the number of trials each individual needed 
to rereach a criterion of 80% (later on referred to as PDR 50–80) 
or more correct choices in two consecutive sessions was used to 
assess the formation of stimulus-reward habits without object 
discrimination learning (Graybeal et  al.,  2011). Transport of the 
respective experimental animal from its home cage to the testing 
chamber and back took place in the subject's individual sleeping box, 
from which it could directly be released into the chamber without 
visual contact to the experimenter. A more detailed description of 
pairwise-discrimination learning and its reversal in mouse lemurs 
including the pretraining protocol and details on the test chamber is 
available in (Joly et al., 2014).

2.5 | Behavioral phenotyping

To evaluate each individual's “personality,” 30 subjects were tested in 
a standard open-field (OF) test and in open-field-based novel object 
(NO) and sleeping box emergence (SBE) tests. The open field arena 
consisted of a square floor plate (76x76 cm), surrounded by 40 cm 
high walls. It was located in an echo-reduced room and four red light 
bulbs installed in the corners behind the walls of the arena provided 
dim (~1 lux) homogeneous illumination during the experiments. To 
start an experiment, the subject's sleeping box, in which it was also 
transported to the setup, was positioned next to the arena. Similar 
to the cognitive testing, the animal could directly enter the arena 

through a hole in one of the walls without direct contact to the 
experimenter. Experiments were videotaped from above (camera: 
SuperSteadyShot DCR-SR210, SONY Corporation; operated in 
NightShot mode). Offline frame-by-frame video analysis was later 
performed using The Observer XT 10 (The Observer 10.5.572, 
Noldus Information Technology, 1990–2011). For analyses, the 
arena floor was virtually segmented into 16 equally sized zones (A-P; 
19x19 cm each), a periphery (reaching 9.5 cm from the walls into the 
floor area), and a square central zone (19x19 cm around the center; 
Figure 1b).

In the first open-field-based experiment, the SBE, the latency 
from the beginning of the test session to the subject's emergence 
from its sleeping box into the open field arena (both hands and feet 
are within the arena) was measured as the sole variable to quantify 
“shyness” (e.g., Brown, Jones, & Braithwaite, 2005). If a subject did 
not enter the arena during a 15 min time limit, the latency was set 
to 900 s. After a given subject had emerged or the time limit was 
reached, the session was ended and the animal was transported 
back to its home cage.

For the second open-field-based experiment, the OF, each sub-
ject could freely explore the arena for 15 min after it had left the 
sleeping box. During that time, the door to the sleeping box remained 
closed. Measurements taken during subsequent analyses included 
the total number of visited zones (A-P) as well as the number of zone 
changes, the number of times the subject straightened up, the du-
ration a subject spent with freezing, walking/running, or climbing, 
respectively, the number of times the subject jumped, the total du-
ration the subject spent in the central zone, the periphery, and the 
emergence zone, the number of times the central zone was entered, 
and the latency from the beginning of the test session until the indi-
vidual entered the central zone for the first time (with both hands). 
Latency was set to 900 s if the subject did not enter the central zone.

F I G U R E  1  Experimental setups. (a) Schematic drawing of the trapezoid automated touchscreen setup used for cognitive testing. The 
touchscreen was located at the long base of the chamber. The animals could access the touchscreen through two response windows (1 + 2), 
in which the visual stimuli were presented. Through a reward tray (RT), correct responses were rewarded with 25 μl of apple juice. (b) 
Schematic drawing of the open-field arena consisting of a square floor plate (76 × 76 cm), surrounded by walls of 40 cm height. The floor 
was virtually segmented into 16 equally sized zones (A-P; 19 × 19 cm each), a “central zone” (inner gray square; 19 × 19 cm) and a “periphery” 
(outer gray area; width: 9.5 cm). For the novel object test, an ellipsoid stone was placed in the center of the arena. Subjects could enter the 
arena directly from their sleeping box through a circular hole in one of the wall panels (here top panel between “b” and “c”)

(a) (b)
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For the third open-field-based experiment, the NO, an ellipsoid 
stone (volume: 30 cm2) was placed in the center of the arena and the 
subject was allowed to explore the arena under the same conditions as 
for the OF (i.e., 15 min of free exploration, locked sleeping box). Here, 
the following parameters were measured: The latency from the begin-
ning of the session to the subject's first approach toward the object 
(i.e., entering the center zone) and to the subject's first physical contact 
(nose or hand) with the object, the frequency of approaches, as well as 
the frequency of physical contacts, the total duration of contacts and 
the number of times the object was being displaced. If the subject did 
not approach the object or interact with it during the 15 min duration 
of the session, the respective latency was set to 900 s.

2.6 | Statistical analyses

Data analysis was performed using R (R Core Team,  2019). Since 
many of the analyzed variables were not normally distributed 
(Shapiro–Wilk test; shapiro.test-function in R), two-tailed Spearman 
correlation analyses (cor.test-function in R; method = “spearman”) 
were used to explore potential links between brain morphometry 
and behavior. To reduce the number of variables from the open 
field-based experiments used for correlation analyses with MRI 
measurements, that is, to obtain one representative variable per test 
(OF and NO), principal component analyses (PCA) were conducted 
(psych-package in R). Overall measures of sample adequacy were 
0.57 for the OF variables and 0.56 for the NO variables. Item MSA 
varied between 0.31 and 0.74.

To account for the different delays between the cognitive/ be-
havioral experiments and MRI, (compare supporting materials Table 
S1), correlation analyses were conducted twice: (a) with the mor-
phological raw data (actually measured values) and (b) with morpho-
logical data corrected for the variable delay using predictions for 
age-related changes of the different measurements from sex-spe-
cific regression models obtained from a larger MRI data set from our 
colony (Fritz et al., 2020; for regression estimates see Table S2). The 
main text reports result from the delay-corrected analyses. Results 
from the uncorrected analyses are only reported, if both analyses are 
in disagreement. In most cases, however, results from both of these 
analyses matched, suggesting that interindividual variance in brain 
morphology for most variables was higher than potential structural 
changes expected to occur during the delay. For direct comparison, 
results from the raw data analyses are presented in the supporting 
materials (Tables S5 and S6).

3  | RESULTS

In general, all assessed variables, both morphometric and behavioral, 
showed high interindividual variability and correlations between 
morphometric measurements and behavioral measurements were 
quite rare given the number of possible relations explored (see 
below and Figures 2 and 3).

3.1 | Structural MRI and cognitive phenotyping

3.1.1 | PD 80

For the pairwise discrimination acquisition (PD 80), a significant 
negative correlation was found between the volume of the left 
hippocampus and the number of trials to criterion (N  =  21, rSP = 
−0.44, p = .045; Figures 2a and 4a) as well as the cortical thickness 
of the temporal lobe and the number of trials to criterion (N = 21, 
rSP  =  0.45, p  =  .04; Figure  2b), but only in the delay-corrected 
analysis.

3.1.2 | PDR 50

For the early phase of the reversal learning (PDR 50), negative 
correlations of brain str ucture volume with trials to criterion were 
found for the volume of the thalamus (N = 21, rSP = −0.64, p = .002; 
Figures 2a & 4b).

3.1.3 | PDR 50–80

For the late phase of the reversal learning (PDR 50–80), cortical 
thickness of CX 24 (cingulate lobe) positively correlated with trials 
to criterion (N = 21, rSP = 0.49, p = .023; Figures 2b and 4c). For an 
overview of all correlation analyses performed (brain morphometry 
versus cognition), see supporting material Tables S3 and S5.

3.2 | Structural MRI and behavioral phenotyping

By submitting open-field maze-based behavioral data to principal 
component analyses, components with eigenvalues greater than one 
(Kaiser–Guttman Rule, (Kaiser, 1991)) were revealed for both tests, 
the OF and the NO. OF 1 showed high factor loadings (>0.75) on 
all activity and exploration related variables. For readability, OF 1 
will subsequently be called “exploration.” This component explains 
45% of the variability within the OF data (Table 1). For the NO, 
high factor loadings (>0.77) on all object-related variables, that is, 
measurements of exploration and neophilia, were found for NO 1. 
Thus, NO 1 will subsequently be called “neophilia.” This component 
accounts for 66% of the variation within the NO data (Table 1). For 
the SBE, only one variable was measured (latency to emergence), 
which was directly used for correlation analyses.

3.2.1 | SBE

Correlation analyses for the SBE revealed a significant decrease in 
volume of the left amygdala and the averaged amygdala volume with 
increased latency to emergence (= “shyness”; N  =  30, rSP ≤ −0.48, 
p ≤ .008; Figures 3a and 4d). The individual with the highest latency to 
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emergence (878 s) and three subjects, which did not leave the sleeping 
box at all (latency to emergence = 900 s), all presented with amygdala 
volumes that were below the sample mean (1.13 mm3; Figure 4d).

OF—Principal component 1 (“exploration”)
The “exploration” component (OF1) correlated negatively with 
thickness of CX 6 of the frontal lobe (N = 30, rSP = −0.47, p =  .01; 
Figures  3b and 4e) and thickness of CX  24 of the cingulate lobe 
(N = 30, rSP = −0.47, p = .01; Figure 3b). The same was true for the 
thickness of the frontal lobe average and parietal subregion CX 7 
(N = 30, rSP ≤ −0.37, p ≤ .043; Figure 3b; compare Table S5), but only 
in the delay-corrected analysis.

NO—Principal component 1 (“neophilia”)
The “neophilia” component (NO1) negatively correlated with the 
volume of the left caudate nucleus (N = 30, rSP = −0.40, p =  .029; 

Figures  3a and 4f). The septal volume correlated positively with 
“neophilia” (N = 30, rSP = 0.37, p =  .045; Figure 3a; compare Table 
S6), but only in the delay-corrected analyses. For an overview of all 
correlation analyses, see supporting material Tables S4 and S5.

4  | DISCUSSION

Numerous studies have investigated possible determinants of 
interindividual behavioral variation in mouse lemurs. Often, age-
related and/or dietary aspects have been explored and could be 
linked to variations in both, individual cognitive performance (e.g., 
Joly et  al.,  2014; Picq et  al.,  2012) and/or individual behavioral 
characteristics in tests of animal personality, such as the open-field 
test (e.g., Dammhahn, 2012; Vinot et al., 2011). In addition, behavioral 
phenotypes in mouse lemurs have been linked to genetics (e.g., 

F I G U R E  2   Graphical summary of the 
correlations between brain morphometry 
and cognition (N = 21). (a) ROI volume-
related analyses; (b) cortical thickness-
related analyses. (a, b) From left to right: 
PD 80 (object discrimination learning), 
PDR 50 (early reversal learning), and PDR 
50–80 (late reversal learning); individual 
squares represent the results of a single 
correlation analysis (Spearman's). Strength 
and direction of the correlation are color-
coded according to the legend next to b. 
Significant correlations are marked with 
asterisks (significance code: *p ≤ .05; 
**p ≤ .01)*
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Zablocki-Thomas, Herrel, Karanewsky, Aujard, & Pouydebat, 2019). 
Given that animal behavior is ultimately controlled by the brain, 
it is reasonable to assume that all of the aforementioned factors 
are linked to cognition and personality via brain morphology and/
or region-specific cytoarchitecture and physiology. However, to 
date, little is still known about the neurobiological substrates of 
different psychological constructs in mouse lemurs and whether 
they accord to neurobiological substrates in humans or other well-
established animal models, such as rodents. This is partially due to 
the fact that invasive research in primates, for ethical reasons, is 
only justifiable as the ultima ratio. The here-presented exploratory 
analyses of noninvasive MRI with standardized behavioral data, 
even though coming with the downside of decreased anatomical 
precision and lack of causality compared to invasive (e.g., lesioning of 
pharmacological) studies, provide first insights to which brain areas 
may be important for the different constructs that were assessed. In 

summary, our data suggest a role of temporal structures for learning 
capability, cingulate and thalamic structures for cognitive flexibility 
and response inhibition, as well as linkage of the amygdala, the 
caudate nucleus, and the cingulate lobe to animal personality. These 
results are in line with the only comparable study in mouse lemurs 
and largely match data from humans, as will be discussed in more 
detail in the following paragraphs.

4.1 | Cognition

In humans, early hypotheses about the functional parcellation of the 
brain were usually based on patient data, such as the clinical cases 
of aphasia described by Broca of the famous case of Phineas Gage 
(see Van Horn et al., 2012; for a recent discussion of that case). With 
the advent of in vivo imaging techniques, additional proof could be 

F I G U R E  3   Graphical summary of the 
correlations between brain morphometry 
and personality (N = 30). (a) ROI volume-
related analyses; (b) cortical thickness-
related analyses. a, b From left to right: 
SBE (“shyness”), OF 1 (“exploration”), 
and NO 1 (“neophilia”); individual 
squares represent the results of a single 
correlation analysis (Spearman's). Strength 
and direction of the correlation are color-
coded according to the legend next to b. 
Significant correlations are marked with 
asterisks (significance code: *p ≤ .05; 
**p ≤ .01)
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collected from larger samples of healthy individuals. For example, 
using structural MRI it was shown that London taxi drivers with 
high navigational experience had larger volumes of the posterior 
hippocampus compared to a control group, supporting the idea 
of a prominent role of the hippocampus in navigation (Maguire 
et  al.,  2000). This role of the human hippocampus and adjacent 
areas was supported by functional MRI data shortly thereafter 
(Hartley, Maguire, Spiers, & Burgess, 2003; for a recent review see 
Epstein, Patai, Julian, & Spiers, 2017). While functional MRI today 
is extensively used to further explore functional parcellation and 
connectivity in humans, in small animals, such as mouse lemurs, 
functional MRI remains methodologically challenging and needs 
further development.

The cognitive constructs addressed here, that is, procedural ob-
ject discrimination and stimulus-reward associative learning as well 

as response inhibition/cognitive flexibility were quantified using a 
highly standardized, computerized task on visual pairwise discrim-
ination learning and its reversal. To give a complete overview of 
the neurobiological bases of learning and memory is beyond the 
scope of this discussion. In brief, based on studies from humans 
and nonhuman primates, the current opinion on the neurobiological 
substrates for the cognitive functions considered here is the follow-
ing: The hippocampus and surrounding medial temporal areas play 
a prominent role in spatial learning and cognition as well as in the 
encoding of contextual/episodic memory, long-term memory con-
solidation, and object memory and recognition (Bachevalier, 2019; 
Lisman et al., 2017). Procedural learning and memory, on the other 
hand, are strongly dependent on the cerebellum and subcortical 
structures, such as the basal ganglia (Foerde & Shohamy,  2011). 
Executive functions, which allow for a flexible adaptation to 

F I G U R E  4   Graphs of exemplary correlations between brain morphometry and cognitive and behavioral measurements. (a–c) Cognitive 
phenotyping (N♀♂ = 21), (d–f) behavioral phenotyping (N♀♂ = 30). (a) PD 80 (object discrimination learning) versus volume of the left 
hippocampus; (b) PDR 50 (early reversal learning) versus thalamic volume; (c) PDR 50–80 (late reversal learning) versus cortical thickness of 
CX 24 (cingulate lobe); (d) SBE (“shyness”) versus volume of the amygdala; (e) OF 1 (“exploration”) versus cortical thickness of CX 6 (frontal 
lobe); (f) NO 1 (“neophilia”) versus volume of the caudate nucleus. (a-f) Filled black circles represent young subjects (age at test ≤ 3 years), 
filled gray circles represent middle aged subjects (age at test > 3 and ≤ 5 years), hollow circles represent old subjects (age at test > 5 years; 
age classification is in line with Marchal et al., 2012), and horizontal dashed lines represent the age-independent sample mean of the 
respective brain structural measurement
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changing environmental conditions and include response inhibition 
and cognitive flexibility, predominantly rely on prefrontal circuitry 
(Robbins, 1996). Due to the procedural and nonspatial nature of the 
pairwise discrimination task we used for the quantification of ob-
ject discrimination and reversal learning in our subjects, it is usually 
considered to be largely independent of the hippocampus and other 
medial temporal structures, but to rather rely on striatal structures 
(e.g., Bussey et  al.,  2012; Teng, Stefanacci, Squire, & Zola,  2000). 
However, correlations were found between hippocampal volume 
as well as the thickness of the temporal lobe and PD performance. 
This suggests that these structures do play a role in task acquisition, 
probably through their involvement in object identification and rec-
ognition memory (e.g., Baxter & Murray, 2001; Cohen et al., 2013; 
James, von Oertzen, Norbury, Huppertz, & Brandt, 2018; de Lima, 
Luft, Roesler, & Schroder, 2006; Winters et al., 2010).

For the early phase of the reversal test, which places high de-
mands on response inhibition and cognitive flexibility, our data 
strongly suggest an involvement of thalamic structures. Individual 
performance in the late phase, on the other hand, relates to anterior 
cingulate morphology. Again, these findings are in line with literature 
from humans and animal models: The thalamus and cingulate regions 
(both anterior and posterior) have been linked to response inhibition 
(e.g., Chudasama, Bussey, & Muir, 2001; Förstl & Sahakian, 1993) and 
behavioral flexibility in response to changes in environmental con-
tingency (e.g., Pearson, Heilbronner, Barack, Hayden, & Platt, 2011; 
Walton, Croxson, Behrens, Kennerley, & Rushworth, 2007), respec-
tively. Interestingly, our data also support the only previously pub-
lished study correlating structural brain measurements to cognitive 
ability in mouse lemurs (Picq et al., 2012). This study also found sig-
nificant correlations between executive functioning (assessed as a 
composite score of set shifting and reversal learning) and anterior 
and posterior cingulate thickness. Furthermore, spatial memory 

performance in the same study was linked to hippocampal volume 
and thickness of the entorhinal cortex (Picq et al., 2012).

4.2 | Animal personality

The concept of animal personality acknowledges that individuals 
of a given species, subpopulation, or even genetically identical 
laboratory strains show consistent (i.e., repeatedly measurable) 
interindividual differences in their behavior (Réale, Reader, Sol, 
McDougall, & Dingemanse,  2007). For mouse lemurs, the tem-
poral stability of interindividual behavioral differences in the 
here-used, open-field-based experiments has been confirmed nu-
merous times, both in the field and under laboratory conditions 
(Dammhahn,  2012; Verdolin & Harper,  2013; Zablocki-Thomas 
et  al.,  2018; Zablocki-Thomas et  al.,  2019). In our own colony, 
the repeatability, as estimated using repetition experiments of 
the SBE, OF, and NO and the calculated correlations (Spearman) 
of individual scores between first and second repetition, is high 
for the latency to emerge (SBE; N = 47, rSP = 0.72, p <  .001) and 
exploration (OF; N  =  47, rSP  =  0.75, p  <  .001) and a little lower 
for neophilia (NO; N = 47, rSP = 0.62, p <  .001). To differentiate 
between relevant personality traits, one of the most-used concep-
tual frameworks of animal personality was established by Réale 
and colleagues (Réale et al., 2007). In their article, five traits were 
distinguished and defined, namely shyness–boldness, explora-
tion–avoidance, activity, aggressiveness, and sociability. In this 
conceptual context, the standard open-field test (OF) primarily 
quantifies individuality on an exploration–avoidance continuum. 
In experimental, biomedical research in animals, anxiety has been 
quantified (Seibenhener & Wooten, 2015) with a positive associa-
tion of anxiousness to avoidance. By adding an unknown object to 

TA B L E  1  Summary of the principal component analyses

Variable OF 1: “exploration” Variable NO 1: “neophilia”

Frequency of zone changes (A-P) 0.88 Latency to first contact with the NO [s] −0.80

Number of visited zones (A-P) 0.68 Number of object displacements 0.65

Duration walking/running [s] 0.86 Latency to approach the NO [s] −0.77

Number the subject straightened up 0.66 Frequency of approaches toward the NO 0.87

Duration of freezing [s] −0.36 Frequency of contacts with the NO 0.91

Number the subject jumped 0.16 Duration of contacts with the NO [s] 0.83

Duration of climbing [s] 0.21

Duration spent in the emergence zone [s] −0.04

Duration spent in the central zone [s] 0.75

Duration spent in the periphery [s] 0.10

Frequency of central zone entries 0.89

Latency to first entry of the central zone [s] −0.80

Eigenvalue 4.63 3.95

Var. Expl. 45% 66%

Note: Components with eigenvalues greater than one were revealed for both behavioral tests, the OF and the NO. Bold numbers indicate factor 
loadings higher than 0.7.
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the open-field arena (NO), individual neophilia can additionally be 
assessed. The SBE used in our study is not explicitly mentioned in 
the article of Réale and colleagues, but is routinely used in differ-
ent studies to quantify individuality on a shyness–boldness con-
tinuum (e.g., Brown et al., 2005).

The amygdala, as a major component of the limbic system, has 
often been investigated in human literature in the context of person-
ality research (Davidson, 2003; Roxo, Franceschini, Zubaran, Kleber, & 
Sander, 2011) and is described to be mainly involved in emotional mod-
ulation and information processing between prefrontal and temporal 
association cortices (Sergerie, Chochol, & Armony, 2008). Furthermore, 
studies also showed high involvement of the amygdala when respond-
ing to stimulus novelty (Weierich, Wright, Negreira, Dickerson, & 
Barrett, 2010). Finally, in open-field experiments in rodents, the amyg-
dala has been shown to convey location-modulated (corner versus cen-
ter) information and to likely code for changes in the exploratory state 
of the animal (Gründemann et al., 2019). In our findings, the amygdala 
strongly related to the subject's first emergence into the open-field 
maze. Individuals with small amygdala volumes showed high latencies 
to emerge from their shelter. Similarly, in a study in macaques that were 
classified as either bold or reserved, based on the time they spent in 
the unprotected area of a play room, it was found that bold animals 
presented with bigger amygdalae as compared to reserved conspecifics 
(Haley et al., 2012). Additionally, we also found correlations between ex-
ploration during the OF and both, the premotor area (CX 6) of the frontal 
cortex and the visuomotor region (CX 7) of the parietal cortex, which are 
involved in the planning and execution of complex, coordinated move-
ments (Averbeck & Seo, 2008; Towe & Luschei, 1981; Weinrich, Wise, 
& Mauritz, 1984). Finally, our data suggest a link between the anterior 
cingulate cortex (CX 24) and exploration in the OF. The anterior cingu-
late cortex has previously been investigated in different studies to cor-
relate with novelty (Gardini, Cloninger, & Venneri, 2009), which matches 
our results, as subjects were naïve to the open field arena during the 
OF, which means the subjects were confronted with a new, unknown 
environment. In the NO, neophilia related to the volume of the caudate 
nucleus and the septal region. The caudate nucleus, as described be-
fore, is involved in procedural reward learning and memory functions 
(Grahn, Parkinson, & Owen, 2009), but is also considered to integrate 
spatial information with motor processes for the initialization and ex-
ecution of directed movements (Simon et al., 2002; Villablanca, 2010). 
Therefore, it has further been suggested to be involved in both, curi-
osity and goal-directed responses to novel stimuli in the environment 
(e.g., Cigrang, Vogel, & Misslin, 1986; Kang et al., 2009). In line with this, 
striatal lesioning in mice was found to increase the number of physical 
interactions with a novel object in an NO (Cigrang et al., 1986).

5  | CONCLUSION

As discussed in the previous paragraphs, our findings of a first 
exploratory linkage of brain morphology to behavior are in line 
with data on brain structural substrates of different behavioral 
performances in humans as well as in other primate and nonprimate 

animal models. Furthermore, they confirm a prominent role of the 
mouse lemur's cingulum in executive control, as previously suggested 
(Picq et al., 2012). For open-field-based testing, which is widely used 
in mouse lemurs to quantify both, personality traits and anxiousness 
(e.g., Dammhahn,  2012; Vinot et  al.,  2011; Zablocki-Thomas 
et  al.,  2019), our findings suggest limbic structures (especially the 
amygdala and cingulate regions), involved in emotional processing, 
as well as the caudate nucleus to underlie individual, phenotypic 
variation in the open-field maze. Therefore, our study provides likely 
candidates for neurobiological substrates of interindividual variation 
in both, cognition and animal personality in mouse lemurs and a 
valuable new basis for future studies on comparative psychology in 
this important nonhuman primate model.
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