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Abstract

Objective: We aimed to improve prediction of outcome for patients with colorectal liver 

metastases, via prognostic models incorporating PET-derived measures, including radiomic 

features that move beyond conventional standard uptake value (SUV) measures.

Patients and Methods: A range of parameters including volumetric and heterogeneity 

measures were derived from FDG PET images of 52 patients with colorectal intrahepatic-only 
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metastases (29 males and 23 females; mean age 62.9 years [SD 9.8; range 32–82]). The patients 

underwent PET/CT imaging as part of the clinical workup prior to final decision on treatment. 

Univariate and multivariate models were implemented, which included statistical considerations 

(to discourage false discovery and overfitting), to predict overall survival (OS), progression-free 

survival (PFS) and event-free survival (EFS). Kaplan-Meier survival analyses were performed, 

where the subjects were divided into high-risk and low-risk groups, from which the hazard ratios 

(HR) were computed via Cox proportional hazards regression.

Results: Commonly-invoked SUV metrics performed relatively poorly for different prediction 

tasks (SUVmax HR=1.48, 0.83 and 1.16; SUVpeak HR=2.05, 1.93, and 1.64, for OS, PFS and 

EFS, respectively). By contrast, the number of liver metastases and metabolic tumor volume 

(MTV) each performed well (with respective HR values of 2.71, 2.61 and 2.42, and 2.62, 1.96 and 

2.29, for OS, PFS and EFS). Total lesion glycolysis (TLG) also resulted in similar performance as 

MTV. Multivariate prognostic modeling incorporating different features (including those 

quantifying intra-tumor heterogeneity) resulted in further enhanced prediction. Specifically, HR 

values of 4.29, 4.02 and 3.20 (p-values=0.00004, 0.0019 and 0.0002) were obtained for OS, PFS 

and EFS, respectively.

Conclusions: PET-derived measures beyond commonly invoked SUV parameters hold 

significant potential towards improved prediction of clinical outcome in patients with liver 

metastases, especially when utilizing multivariate models.
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INTRODUCTION

Colorectal cancer is a common cancer worldwide, often burdened by liver metastases [1]. 

About 15% of patients have liver metastases at the time of diagnosis and an additional 15% 

developed liver metastases over time [2]; 5-year survival in patients with liver metastases 

was reported as low as 5% in untreated patients[2]. However, recent studies report a 5-year 

survival rate of about 40% following surgical resection of colorectal liver metastases [3]. 

Treatment options for colorectal liver metastases have expanded with new therapeutic 

modalities such as radiofrequency ablation, which imply a clinical need for improved 

prognostication to assist choice of therapy.

The emerging area of precision (or personalized) cancer medicine involves efforts towards 

the discovery and validation of biomarkers that move beyond diagnosis, to domains such as 

prognostication, disease progression tracking, and therapy response prediction and 

assessment. To this end, PET imaging provides valuable capabilities for non-invasive 

assessment and quantification of disease burden, and towards the development of effective 

imaging biomarkers of disease [4]. Overall, PET images present a wide array of information 

related to disease. However, in common clinical practice, only intensity-based standard-

uptake-value (SUV) metrics are utilized, particularly SUVmax or SUVpeak. This is due to 

the simplicity in the computation of these metrics, not requiring accurate segmentation of 
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the tumors. Specifically, SUVmax is computed as the maximum uptake in an area of 

interest, and SUVpeak is obtained by moving a 1-cm3 spherical region of interest over the 

area with increased tracer uptake (not necessarily conforming to the precise tumor outline) 

to maximize the enclosed average uptake [5, 6].

Quantitative volumetric tumor parameters, though less straightforward to compute, provide a 

notable frontier towards improved assessment of disease. In fact, there is increasing evidence 

that volumetric measures, particularly metabolic tumor volume (MTV) or total lesion 

glycolysis (TLG) can outperform their SUV counterparts, in a range of human solid tumors 

such as head & neck cancer, lung cancer, breast cancer, colorectal cancer and lymphoma [7–

16]. Tumor volumetric parameters facilitate estimation of total tumor burden in a patient at 

the time of diagnosis or recurrence. Furthermore, segmentation of PET images enables 

generation of SUVmean, which is also sometimes reported in the literature.

In the present work, we have performed extensive comparisons, including univariate and 

multivariate analyses involving a range of quantitative measures of tumor uptake, to assess 

optimal methods for prediction of clinical outcome in patients with liver metastases from 

colorectal cancer. Our analyses includes the use of volumetric parameters, as well as other 

advanced radiomic features which quantify heterogeneity [17–21] as increasingly studied in 

the emerging field of radiomics. The ultimate aim is that enhanced predictive models would 

result in significant improvements in management of patients, including non-invasive 

selection of patients with poor prognosis who could benefit from earlier and more intensive 

treatment strategies. These high-risk patients could also be identified for participation in 

clinical trials in order to better power discovery of effective therapies.

PATIENTS AND METHODS

Subjects

We analyzed data from 52 patients with colorectal intrahepatic-only metastases (29 males 

and 23 females; mean age 62.9 years [SD 9.8; range 32–82]). The patients had FDG 

PET/CT scans obtained before treatment, in years 2005 to 2010 (with patient outcome 

follow-ups up to 2017). The scans were performed as part of the clinical workup prior to 

final decision on treatment, most often in patients considered for liver surgery, as PET/CT 

was not part of primary standard workup for all patients with liver metastases from 

colorectal cancer. Treatment for liver metastases following FDG PET/CT included surgical 

resection, stereotactic radiotherapy, chemotherapy, radiofrequency ablation, or a 

combination of these therapies. The treatment modalities were modeled in our analyses.

We performed analyses of overall survival (OS), progression-free survival (PFS) and event-

free survival (EFS) for imaging biomarker derivation. Progression was defined as local 

recurrence in the liver, or new metastases in the liver or outside the liver. This could include 

new tumors in the intestine detected with ordinary control examinations: mainly, contrast-

enhanced CT of the thorax, abdomen and pelvis, and in few cases MRI and ultrasound. Of 

the 52 patients, number of events for OS (death), PFS (progression) and EFS (progression or 

death) were 40, 25 and 44, respectively. The PET/CT scans were acquired on Siemens 

Biograph TruePoint scanners at the PET Centre of Aarhus University Hospital. Typical 
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acquisitions started at 60min post-injection, from top of head to mid-thigh, and spanned 

3min/bed. Reconstructions involved iterative 2D OSEM which was chosen for consistency 

amongst patients including those scanned in earlier years (see discussion section).

Data analysis

Segmentation: Tumors were segmented based on the PET images, though the fused 

PET/CT images were used initially to ensure that the tumors were intrahepatic (and not 

metastases in lung or peritoneum). The identified tumors were segmented using: (i) 40% 

background-corrected SUVmax, (ii) 50% background-corrected SUVmax, (iii) SUV>2.5, or 

(iv) SUV>3.0 thresholding, all in 3D using the Hermes Hybrid Viewer PDR software 

(Hermes Medical Solutions, Sweden). Background correction was performed using a liver 

background ROI (~14 mL) placed on liver tissue with good distance to tumors, followed by 

contouring based on t=40% or 50% lower threshold, calculated as [SUVmax(tumor) – 

SUVmean(background)] × t + SUVmean(background) [22]. Histograms of PET counts were 

generated from the segmented tumors (in increments of ~0.02 SUV units used for creating 

discretized gray levels). This allowed moving beyond conventional PET-derived measures 

and to generate radiomic features quantifying heterogeneity (as elaborated next). In patients 

with multiple liver metastases (average of 1.8 tumors/person; 21 patients with multiple 

metastases), the histograms were combined, and subsequently analyzed.

Data features: A total of 51 features were extracted from each patient. This included 41 

image-derived radiomic features (as described in the next paragraph), and 10 features as 

follows: (1) age, (2) sex, and (3) post-imaging treatment information (described earlier, and 

modeled as input features in our analyses). We also incorporated pre-imaging treatment 

information, such as whether any therapy was delivered to the liver: (4) prior to PET (liver-

therapy-prior), or (5) <3 months prior to PET (liver-therapy-3mon-prior), or whether 

chemotherapy itself was specifically performed (6) prior to PET (chemotherapy-prior), or 

(7) <3 months prior to PET (chemotherapy-3mon-prior). We also included (8) number of 

liver metastases observed in PET scan. Furthermore, we categorized patients based on (9) 

whether metastases were detected by the time of diagnosis (synchronous) vs. up to 12 

months after diagnosis (early metachronous) vs. more than 12 months after diagnosis (late 

metachronous) [3]. We also explored another categorization for condition of existing 

metastases: (10) whether metastases were absent by the time of diagnosis (metachronous) 

vs. present at diagnosis, this latter itself consisting of two subsets: whether the specific 
tumors visualized by existing PET scan were present vs. absent at time of primary diagnosis.

We extracted 41 quantitative imaging features (radiomic features), which are elaborated in 

supplement A. To summarize, we included SUVmax, SUVpeak, SUVmean, MTV and TLG 

(thus n=5). We also computed a range of radiomic features that quantified PET-uptake 

heterogeneity. This included the recently introduced class of generalized effective total 

uptake (gETU) measures [23] which place varying degrees of emphasis on volumetric vs. 

uptake information (n=10), which are further discussed in the discussion section 4.2. It also 

included intensity histogram (n=19) and intensity-volume histogram (IVH) (n=7) measures 

[24, 25]. All metrics used in this work were standardized according to the framework of the 

image biomarker standardization initiative (IBSI) [26] for wider applicability of our results 
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to other users and centers. In the results section, we report on the performance of SUVmax, 

SUVpeak, SUVmean, MTV and TLG, as well as any other metrics that were found to be 

significant in univariate or multivariate analyses.

Survival analysis: Kaplan-Meier survival analysis was performed for OS, PFS and EFS, 

including both univariate and multivariate analyses. Prior to performing these analyses, 

feature selection was performed. Spearman correlations (r) amongst the 51 measures were 

computed, and those with r > 0.95 were considered relatively redundant with respect to one 

another (the results were nearly identical with the use of Pearson correlations). 

Subsequently, we reduced the original list to a narrow list. This was followed by application 

of (a) univariate and (b) multivariate survival analyses, which included statistical methods 

specific to each, as elaborated next, and as implemented in-house using MATLAB software.

a) Univariate analysis: The subjects were subdivided into two groups using the median 

threshold (p=50th percentile) for a given metric (e.g. MTV, etc.). Following this, the hazard 

ratios (HR) between the higher percentile group to the lower percentile groups were 

computed using Cox proportional hazards regression, and their associated 95% confidence 

intervals (CI) were also derived. For each metric, we also computed the p-values for curve 

separation (i.e. ability to reject the null hypothesis that HR=1). Correction for multiple 

testing of different metrics was performed using the false discovery rate (FDR) Benjamini–

Hochberg (BH) step-up procedure.

b) Multivariate analysis: Cox proportional hazards regression was again performed. A 

prognostic score was then generated for each multivariate Cox model by summing the 

products of each feature in the model and its corresponding regression coefficient (β). The 

median value of the prognostic score was then chosen as cut-off for the given model, and 

patients were thus dichotomized into low- and high-risk groups, for which the log-likelihood 

(LOGL) of Cox regression was measured. Stepwise forward selection of parameters was 

performed. Specifically, we tried two initializations: a model with a single metric that 

outperformed others in univariate analysis, or with a single conventional metric that 

outperformed others (see discussion). Subsequently we would test the inclusion of every 

metric that was not in the model, adding to the model the one that most significantly 

increased LOGL as quantified above. This process was repeated as long as addition of a new 

metric increased LOGL statistically significantly. Statistical significance between two 

models was assessed using the Akaike Information Criterion (AIC) for model selection, 

which would require an increase in LOGL by >1 by addition of a new metric. This 

constraint was imposed on model selection in order to discourage overfitting. In the 

discussion section, we discuss the use of more stringent criteria.

RESULTS

An example of segmentation for a subject with liver metastasis is depicted in Figure 1. 

When using SUV metrics, the four segmentation methods performed relatively similarly, but 

when performing volumetric analysis, 40% and 50% background-corrected SUVmax 

thresholding resulted in relatively improved performance especially in PFS (elaborated in 
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the discussion section). Rest of the paper describes results for 40% background-corrected 

SUVmax thresholding.

Of the original 51 metrics, 26 were retained following correlation analysis (listed in 

supplement B). We note that SUVmax and SUVmean were found to be highly correlated 

with SUVpeak (r=0.98, p-value <0.0001 for both). However, they were retained for further 

analysis and reporting (to allow comparison with prior literature).

Subsequently, univariate and multivariate Cox regression analyses were performed, and the 

respective results are summarized in Table 1 and Table 2, which indicate HR values, their 

associated 95% CI and p-values (i.e. of rejecting the null hypothesis that HR=1). In addition, 

the performances are visually depicted using Kaplan-Meier plots in Figures 2, 3 and 4 for 

OS, PFS and EFS, respectively.

The univariate results for number of liver mets, MTV, TLG, SUVpeak, SUVmean and 

SUVmax are specifically summarized in Table 1 (presented in order of significance), and 

plotted in Figures 2–4. We found that the number of liver mets, MTV and TLG 

outperformed the other metrics for OS, PFS and EFS. Amongst these variables, survival 

discrimination (p-value) was only significant for MTV and number of liver mets in both 

cases of OS and EFS after correction for multiple testing, as indicated in Table 1. It is also 

notable to see that amongst the metrics listed in Table 1, SUVmax (most commonly reported 

PET metric) performs the most poorly, and that volumetric measures perform better.

The radiomic feature V10–90 had p-values <0.05 in PFS and EFS analyses (0.014 and 0.025, 

respectively). It is elaborated in supplement A; in short, it is an IVH based metric, 

quantifying the difference between fraction of volume of the segmented tumor with 

intensities at least 10% (V10) and 90% (V90) of maximum gray level (i.e. V10–90 = V10-

V90). Also, whether any therapy was delivered to the liver <3 months prior to PET (liver-

therapy-3mon-prior) had p-values of 0.021 for OS. However, performance of these features 

was not significant after correction for multiple testing.

Subsequently, we performed multivariate analysis, using stepwise Cox regression (forward 

selection) as elaborated in the methods section. The results are summarized in Table 2. In the 

case of OS, HR value of 4.29 was obtained (also depicted in Figure 2). The final multivariate 

model (arrived at according to the statistical methods described in the methods section) 

included three metrics, namely (i) number of liver mets, (ii) liver-therapy-3mon-prior, and 

(iii) AUC-IVH. The definitions of radiomic features are provided in supplement A; in short, 

AUC-IVH is the area under the IVH curve, also known as AUC-CSH [25], which quantifies 

tumoral heterogeneity. In the case of PFS, an HR value of 4.02 was obtained (also depicted 

in Figure 3) where the final model included (i) number of liver mets, and (ii) SUVmax. 

Finally, in the case of EFS, an HR value of 3.20 was obtained (also depicted in Figure 4), 

and the final multivariate model consisted of three metrics, namely (i) number of liver mets, 

(ii) MTV, and (iii) histogram uniformity (also known as histogram energy) which is 

computed as the sum of squares of occurrence probabilities of discretized histogram 

intensities (see supplement A). Note that it is possible for parameters not to be significant in 

univariate analysis but to become significant in multivariate analysis [27].
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When building prognostic models excluding the use of volumetric or heterogeneity features 

(i.e. only using features 1–12 in supplement B), HR for OS dropped from 4.29 to 3.77 (with 

features: number of liver mets and liver-therapy-3mon-prior), while decreasing from 3.20 to 

2.42 for EFS (with feature: number of liver mets). HR for PFS remained the same. When 

further excluding any imaging features (i.e. making no use of images), models with only a 

single metric were obtained, with HR values of 2.34 for OS (chemotherapy-3mon-prior), 

2.08 for PFS (sex) and 1.82 for EFS (chemotherapy-3mon-prior).

Overall, it was seen that a simple imaging feature, namely the number of liver mets, 

performed strongly in univariate prediction of outcome, in contrast to SUV measures 

especially SUVmax, which did not perform well. Volumetric measures of MTV and TLG 

also depicted significant performance. Moreover, multivariate prognostic models 

incorporating radiomic features further improved prediction of outcome. Consequently, it 

was seen that volumetric and/or heterogeneity features that move beyond conventional SUV 

measures have the potential for significant prediction of outcome in patients with colorectal 

liver metastases.

DISCUSSION

Conventional measures vs. volumetric and heterogeneity parameters

In our univariate survival analyses of OS, PFS and EFS, SUV measures (max/mean/peak) 

did not perform as well as volumetric measures MTV or TLG (Figures 2–4). Furthermore, in 

multivariate analyses, only in the case of PFS, SUV added value in combination with 

number of liver mets.

In a study by de Geus-Oei et al. [28] of 152 colorectal metastatic patients (majority with 

involvement of the liver), only SUVmean was evaluated for OS. The resulting HR, though 

statistically significant, was only 1.17, while it was 1.81 in our study (Table 1). By contrast, 

SUVmax was evaluated for both OS and PFS by Dimitrova et al. [29] in a study of 43 

patients with colon cancer and unresectable liver metastases. SUVmax was not able to 

predict PFS, though it predicted OS with HR value of 2.05 (while it was 1.48 in our study). 

In a study by De Bryne et al. [30] of 19 metastatic colorectal cancer patients with potentially 

resectable liver lesions, post-treatment SUVmax was only reported, and an HR value of 1.20 

was obtained for prediction of PFS that was not statistically significant. The key finding in 

our analyses is that volumetric and heterogeneity metrics beyond SUV hold value for 

improved predictions of outcome.

Vriens et al. [31] evaluated 23 patients with colorectal liver metastases. The subjects 

underwent dynamic PET imaging, followed by measurement of glucose metabolic rates 

(MRglc) via Patlak graphical analysis. The authors demonstrated significant performances 

for OS (HR=3.61) and PFS (HR=3.11). It is unclear, and remains to be seen, how volumetric 

or heterogeneity features would perform in comparison if applied in the domain of dynamic 

PET imaging. The dynamic scans spanned a total of 50min from time of injection, and thus 

performance for routine static imaging (typically at 60min post-injection) was not reported 

in the study. Usage of dynamic scanning is expected to remain limited in the wide clinical 
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setting which commonly employs whole-body imaging. An alternative paradigm worth 

exploring is to incorporate dynamic imaging within multi-bed/whole-body imaging [32, 33].

Gulec et al. [34] and Shady et al. [35] studied 20 and 49 patients, respectively, undergoing 
90Y radioembolization of colorectal liver metastasis. Both studies reported ability of MTV 

and TLG measures to predict OS. In the former study, this was shown for pre- and post-

treatment scans individually, while comparison with conventional SUV measures was not 

reported. In the latter study, by contrast, response measures (i.e. changes from pre- to post-

treatment scans) were used, and it was additionally shown that response measures by 

SUVmax and SUVpeak were not predictive of OS, nor was CT-based Response Evaluation 

Criteria In Solid Tumors (RECIST) 1.0. By contrast, in a study by Lastoria et al. [36] of 33 

colorectal cancer patients with resectable liver metastases, response assessments by both 

SUVmax and TLG were found to add value to RECIST and pathologic responses towards 

prediction of OS and PFS (in fact more so for SUVmax than TLG in the case of OS). There 

were, however, two key differences between the studies by Shady et al. and Lastoria et al.: 
(i) The former study involved radioembolization therapy while the latter involved chemo

+anti-angiogenic therapy; (b) the cut-off threshold of response in the former study was set to 

30% decrease while for the more conservative latter study, the cut-off was set to 50% 

decrease in values of PET-based metrics.

In a study by Tam et al. [37] of 70 patients with colorectal liver metastases undergoing 

different therapies, SUVmean, SUVmax, TLG and MTV were all considered. The measures 

were not found to be predictive of OS (unlike other studies), but were significant for PFS 

(HR=2.46, 2.76, 2.94 and 3.01 for SUVmean, SUVmax, TLG and MTV, respectively). For 

each measure, threshold optimization was performed using receiver operating characteristic 

(ROC) analysis. Nonetheless, such ‘optimum cut-off approach’ has the associated problem 

[38, 39] that, even though it amplifies performance in the evaluation set, the probability of 

false discovery (erroneously obtaining a statistically significant result) increases. This is the 

reason we did not pursue this approach for further optimization, and instead used median 

thresholds (values summarized in Table 1 footnote). In addition, our analyses included a 

range of heterogeneity features (as elaborated in the supplement). We also performed 

multivariate analysis in which all metrics were comprehensively considered and only those 

adding value to prediction were selected. By contrast, in the above work, Cox analyses were 

performed separately for the above-mentioned imaging metrics, and thus their 

complementary value (if any) could not be deduced. Finally, the present work utilizes 

methods to account for multiple testing and to discourage overfitting.

In a very recent study by van Helden et al. [40], the authors performed radiomics analysis on 

pre-treatment PET images of 99 patients with metastatic colorectal cancer undergoing 

palliative systematic treatment. They found higher volumetric measures (MTV and TLG), 

asphericity as well as tumor heterogeneity to be predictive of impaired benefit and survival 

(OS, PFS) following treatment. Though the analysis (primary tumors and metastases) was 

different from our work (intrahepatic-only tumors), some similar overall trends were 

observed in that volumetric and few other radiomic features depicted greater predictive value 

than SUV measures.
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Overall, in the present effort we have shown that the number of liver mets, MTV and TLG 

(as observed or quantified in PET images) were powerful predictors of outcome. 

Furthermore, multivariate prognostic modeling incorporating radiomic features resulted in 

improved predictions of outcome. We also evaluated whether classification of metastases 

into synchronous vs. early metachronous vs. late metachronous improved prediction of 

outcome, as suggested elsewhere [3]. Furthermore, we assessed in the synchronous cases, 

whether there was value associated with our knowledge of whether the specific tumors in the 

analyzed PET images were originally present vs. absent at diagnosis. We did not find these 

categorizations to be predictive of outcome in OS, PFS or EFS analyses.

Generalized effective total uptake (gETU)

The recently introduced gETU metric [23] (as defined in supplement A and used in our 

analyses) enables generation of measures (via a free parameter a) that place varying 

emphases on PET uptake intensity vs. volumetric information, depending on the a value. As 

a → 0, gETU increasingly emphasizes the volumetric information, becoming equivalent to 

MTV when a<<1. For a=1, gETU is TLG, equally emphasizing volumetric and intensity 

information. For a>1, intensity is emphasized, such that for a>>1, gETU becomes equivalent 

to SUVmax, neglecting volumetric information altogether.

In Figure 5, we depict OS, PFS and EFS performance by varying parameter a in the gETU 

metric. It is seen that survival HR performance is especially improved in PFS and EFS when 

utilizing background-corrected SUVmax thresholding (40% or 50% thresholding methods 

perform the same for these metrics), outperforming absolute thresholding methods 

(SUV>2.5 and SUV>3.0). Furthermore, an overall trend is seen for thresholding methods 

that as one shifts towards volumetric information (lower a values), better performance is 

obtained in the analyses (OS, PFS, and EFS). This indicates the importance of utilizing 

volumetric information for prediction of outcome from baseline PET images of liver 

metastases, relative to relying purely on intensity information (e.g. SUVmax which is 

obtained on the far right). Finally, we saw in our multivariate analyses (results section) that 

MTV (which corresponds to gETU with a<<1) was retained in the OS and EFS models 

while SUVmax/peak/mean were not retained in any of the models. Overall, the implication 

of this plot is that PET-based metabolic tumor volume information is more important than 

pure uptake information for prediction of outcome in these patients. This is consistent with 

increasing evidence (as mentioned in the introduction) that, in a range of cancers, volumetric 

measures can outperform their SUV counterparts for assessment of disease.

Impact of different statistical criteria and different combinations of metrics

We used the AIC as criterion for multivariate model selection in stepwise Cox regression, 

accepting a model with an additional parameter if LOGL increased by >1. More 

conservative criteria may be considered to further discourage overfitting. This includes use 

of Wilks’ theorem [41] which states that 2(LOGL(model2)-LOGL(model1)) is 

approximately a chi-squared distribution with degree-of-freedom df=df(model2)-df(model1); 

setting p-value=0.05 for accepting a new model2 with an additional parameter (degree of 

freedom), the new LOGL must be higher by >1.92. This turns out to be nearly in par here 

with the Bayesian Information Criterion (BIC), requiring increase in LOGL (for n=52 
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patients) by >log(52)/2=1.98. It is also close to a required increase in LOGL by >2 as 

suggested for the effective parsimony information criterion (EPIC), corresponding to a 

likelihood ratio test at level 0.05 in the case of testing for the use of one additional parameter 

between two models [42]. When using the above-mentioned 1.92 threshold (instead of 1 

based on AIC), only the first two metrics in Table 1 were retained in the case of OS (number 

of liver mets and liver-therapy-3mon-prior), with final multivariate HR=3.77. PFS prediction 

remained the same (HR=4.02). In the case of EFS, only the number of liver mets was 

retained with HR=2.42 similar to the univariate model.

In our multivariate approach, at each step we accept that metric into the model which 

increased LOGL the most (and passed the statistical criterion). Nonetheless, it is possible to 

try different combinations of metrics, to select the combination that at the end produces the 

largest LOGL. This, however, requires a very large search space and is beyond the scope of 

our work. We did try one variation: we initialized the multivariate models twice, once by the 

best performing univariate model, and once by a conventional metric that performed the best 

(i.e. excluding volumetric or heterogeneity features at first iteration, but then allowing them 

in subsequent model selection iterations). This was followed by addition of metrics at every 

iteration that most increased LOGL. Interestingly, the latter initialization resulted in 

improved performance in one instance (for PFS) which is the result we report in Table 2.

Considerations and limitations

Our analyzed PET studies were performed in years 2005–2010, all involving 2D-OSEM 

image reconstruction and 8-mm post-reconstruction Gaussian filtering. Even though more 

advanced reconstructions (3D-OSEM and PSF modeling [43]) became available in later 

years, for consistency we only included 2D-OSEM reconstructions which were the only 

options available for earlier studies. For comparison purposes, we note that images with 

improved spatial resolution could lead to distinct (probably smaller) VOI volumes than 

obtained in our work, and for such images, one might need to lower the thresholds to obtain 

similar VOIs as we do.

We utilized a derivation set for univariate and multivariate analysis. To conclusively 

establish the proposed models, a distinct validation set is also required. In fact, there is an 

important frontier, awaiting to be more thoroughly explored in radiomics research, of 

validating previously derived measures and models. At the same time, to address the issue 

with false discovery in the context of multiple testing [38], the Benjamini–Hochberg (BH) 

step-up procedure was utilized for statistical analysis. Furthermore, our multivariate analyses 

invoked statistical criteria for the acceptance of new metrics in order to discourage 

overfitting. Not using any such criteria resulted in a larger number of metrics accepted into 

the multivariate models, with the appearance of improved performance. Nonetheless, we 

reported the more moderate results that included statistical acceptance criteria.

Our studies group of patients is somewhat heterogeneous in terms of treatment, but we 

incorporated pre- and post-treatment information as individual features within our predictive 

modeling to account for this heterogeneity. One may argue that our real-life clinical data set, 

and the significant findings for it, can render the findings more applicable to a general 
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population of patients with liver mets than results from a very select group. A more select 

group, at the same time, may result in more significant findings.

Finally, we note that in the present work, the radiomic features utilized were those that could 

be computed from histograms of segmented PET regions, consistent with existing readily 

available capabilities of imaging vendor platforms to produce histograms. An exception was 

the computation of SUVpeak which is available in routine practice. Future work and efforts 

include more sophisticated recording and analysis of segmented tumors, utilizing the various 

spatial uptake patterns available in the original images for the computation and analyses of 

larger sets of radiomic features [26, 44, 45]. It remains to be seen how effective the above-

mentioned histogram-based features are in comparison to broader set of radiomic features.

CONCLUSION

The present work shows that conventional, commonly-employed SUV metrics (SUVmax, 

SUVpeak, SUVmean) perform relatively poorly in outcome prediction tasks (OS, PFS, EFS) 

when assessing colorectal liver metastases from FDG PET images. By contrast, use of the 

number of liver metastasis provided significant performance. This was also the case for 

volumetric MTV and TLG measures. Furthermore, use of multivariate prognostic modeling 

while including radiomic features further improved outcome prediction. Our overall finding 

is that volumetric features outperform SUV-based metrics in the task of clinical outcome 

prediction, and that prediction can be further enhanced via multivariate models that include 

volumetric and/or heterogeneity measures. This improved prediction of clinical outcome has 

the potential to be used for non-invasive selection of patients for individual treatment 

modality or participation in clinical trials of different treatment regimes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
PET/CT images from a patient with colorectal liver metastasis. Sagittal, coronal, and 

transaxial slices (left-to-right) are shown. Overlaid on the images is 3D PET-derived 

segmentation via 40% background-corrected SUVmax thresholding. Tumors were identified 

based on the PET images, though the fused PET/CT images were used initially to ensure 

that the tumors were intrahepatic (and not metastases in lung or peritoneum).
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Figure 2. 
Kaplan-Meier curves for OS. Univariate results are shown for six different metrics (number 

of liver mets, MTV, TLG, SUVpeak, SUVmean, SUVmax), while multivariate result is also 

shown (Table 2 lists parameters in model). (+) signs indicate events at steps or last follow-up 

otherwise. Segmentation was performed using 40% background-corrected SUVmax 

thresholding. HR as well as associated 95%-CI and p-values are also reported. Group 1 

(lower risk) vs. Group 2 (higher risk) had 26 vs. 26 subjects in all plots, except for univariate 

number of liver mets (31 vs. 21).
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Figure 3. 
Kaplan-Meier curves for PFS. Univariate results are shown for six different metrics, while 

multivariate result is also shown (Table 2 lists parameters in model).
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Figure 4. 
Kaplan-Meier curves for EFS. Univariate results are shown for six different metrics, while 

multivariate result is also shown (Table 2 lists parameters in model).
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Figure 5. 
Plots of HR against varying parameter a in the gETU measure. The plots are shown for (left) 
OS, (middle) PFS, and (right) EFS, including the four different segmentations. Median 

thresholding of each metric was utilized for survival analysis. Decreasing parameter a values 

emphasize volumetric information, while increasing a values emphasize PET uptake 

intensity.
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Table 1

Univariate Cox Regression Analysis for OS, PFS and EFS

OS PFS EFS

Parameters* HR (95% CI) p-value HR (95% CI) p-value HR (95% CI) p-value

Num. of liver mets 2.71 (1.44–5.12) 0.0021** 2.61 (1.18–5.79) 0.018 2.42 (1.32–4.42) 0.0042

MTV 2.62 (1.38–4.98) 0.0034** 1.96 (0.87–4.41) 0.11 2.29 (1.23–4.24) 0.0086

TLG 2.62 (1.38–4.98) 0.0034** 1.96 (0.87–4.41) 0.11 2.29 (1.23–4.24) 0.0086

SUVpeak 2.05 (1.09–3.86) 0.027 1.93 (0.86–4.33) 0.11 1.64 (0.90–2.99) 0.10

SUVmean 1.81 (0.96–3.41) 0.068 0.82 (0.37–1.80) 0.62 1.35 (0.74–2.44) 0.33

SUVmax 1.48 (0.79–2.77) 0.22 0.83 (0.38–1.82) 0.64 1.16 (0.64–2.09) 0.63

*
Median thresholds for MTV, TLG, SUVpeak, SUVmean and SUVmax were 9.3mL, 58.3mL, 6.8, 5.3 and 7.8, respectively, arriving at 26 patients 

in each of the lower and higher risk groups. Number of liver mets was set to =1 vs. >1 arriving at 31 vs. 21 patients in the lower and higher risk 
groups.

**
p-values significant after correction for multiple testing (to control for FDR).

Eur J Radiol. Author manuscript; available in PMC 2020 September 22.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Rahmim et al. Page 21

Table 2

Multivariate Cox Regression Analysis for OS, PFS and EFS

Survival Analysis Parameters in the model HR (95% CI) p-value

OS Num. of liver mets
Liver-therapy-3mon-prior
AUC-IVH

4.29 (2.15–8.57) 0.00004

PFS Num. of liver mets
SUVmax

4.02 (1.67–9.70) 0.0019

EFS
Num. of liver mets
MTV
Histogram uniformity

3.20 (1.73–5.94) 0.0002
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