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Abstract

Our ability to engineer protein structure and function has grown dramatically over recent years. 

Perhaps the next level in protein design is to develop proteins whose function can be regulated in 

response to various stimuli, including ligand binding, pH changes, and light. Endeavors toward 

these goals have tested and expanded on our understanding of protein function and allosteric 

regulation. In this chapter, we provide examples from different methods for developing new 

allosterically regulated proteins. These methods range from whole insertion of regulatory domains 

into new host proteins, to covalent attachment of photoswitches to generate light-responsive 

proteins, and to targeted changes to specific amino acid residues, especially to residues identified 

to be important for relaying allosteric information across the protein framework. Many of the 

examples we discuss have already found practical use in medical and biotechnology applications.
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15.1 Introduction

Allostery in biomacromolecules can be broadly defined as “action at a distance,” in which a 

perturbation at one site (e.g., ligand binding, amino acid change) has an effect on the 

structure or function of some other distant site. The ability to allosterically regulate 

biomacromolecules is essential for life itself, with examples in DNA replication [57, 116], 

gene regulation [21, 56, 66, 119, 129], and biosynthetic pathways [2, 38, 58]. There is 

renewed interest in the design of therapeutics that target allosteric sites in proteins involved 

in disease [18, 60, 64, 100, 106, 121, 132]. There have also been significant advances in the 

engineering of novel allosteric regulation mechanisms into proteins. Such proteins are of 

substantial interest in biotechnology and medical fields, including in the production of 

biofuels and pharmaceuticals [80, 102, 103].

We have only just begun to understand allostery, this “second secret of life” [53, 136]. While 

some details differ among allosteric proteins, it is often useful to develop more general 

models to both understand and then even design new allosteric proteins. Towards this end, 

we first briefly outline two of the most widely accepted modern frameworks for allostery, 

the free energy landscape and network models, and then present examples that leverage 
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these models toward engineering allostery into proteins. It should be noted that our examples 

are representative of recent work, but are not exhaustive.

15.1.1 The Energy Landscape Model

The best-known early models for describing allostery are the Monod-Wyman-Changeux 

(MWC) and Koshland-Nemethy-Filmer (KNF) models, which focused on conformational 

changes in multimeric complexes [73]. While these models have proven extremely useful for 

quantifying conformational states for large complexes such as hemoglobin, they do not take 

into account non-rigid body dynamics. For example, there are now well-known examples of 

allosteric proteins that do not undergo substantial structural changes upon ligand binding 

[88, 94, 97], which could thus not be described by either the MWC or KNF type models. 

The free energy landscape model [25] can be viewed as a broader generalization of these 

early models, which can then also describe allostery in proteins that lack large 

conformational changes, and also expand our definition of allostery to include the effects of 

amino acid changes or changes to other physiochemical parameters (e.g., temperature, 

pressure). Within the free energy landscape model, proteins can fluctuate among many 

unique substates populated according to their relative free energies. Low-amplitude, high-

frequency motions such as a methyl rotation or a change in a side chain dihedral angle are 

represented as small energy barriers between substates, while larger barriers represent lower-

frequency, higher-amplitude motions such as exchange between major and minor 

conformational states. Molecular dynamics (MD) techniques such as Markov state models 

[93] and biophysical techniques such as nuclear magnetic resonance (NMR) spin relaxation 

[19] and relaxation dispersion [3], fluorescence resonance energy transfer (FRET) [78], and 

isothermal titration calorimetry (ITC) [92] are commonly used together to better understand 

these energy landscapes.

The free energy landscape of a protein can be highly malleable in that it changes in response 

to stimuli [76] such as ligand binding, mutagenesis, or even pressure [83, 139]. Efforts to 

engineer allostery in the context of the energy landscape model therefore focus on ways to 

restrict or increase conformational exchange under certain conditions, or to stabilize certain 

minor states correlated with protein function (Fig. 15.1a).

15.1.2 The Network Model

Another way to view a protein is to focus on the atomic-level noncovalent interactions that 

hold together its three-dimensional structure [89]. Within an amino acid interaction network, 

the nodes are usually full amino acid residues, and the edges contain information on which 

residues are interacting and the relative strength of those interactions (Fig. 15.1b). Residues 

with a large number of interactions are often considered to be important “hub” residues, and 

groups of interacting residues are sorted into cliques, communities, or clusters depending on 

the connectivity within the group [123]. Networks can be identified through a variety of 

techniques including bioinformatics analyses of multiple sequence alignments to identify 

evolutionarily coupled residues as performed by the statistical coupling analysis [63] (SCA) 

and direct coupling analysis [75] (DCA) algorithms. MD cross-correlation analysis [29] can 

identify energetically and dynamically coupled residues. NMR spectroscopy also offers a 
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number of physics-based methods to identify networks, including the Chemical Shift 

Covariance Analysis (CHESCA) [11] and RASSMM [40] algorithms.

Ligand binding to an allosteric protein at one site may transmit a series of structural 

changes, and changes to the noncovalent interactions lead to structural and functional 

changes at a distant site. Efforts to engineer allostery in the context of the network model 

focus on changing network residues by mutagenesis or covalent modification to 

allosterically “tune” an enzyme’s activity or even give it new functionality by modifying 

these network connections [1, 6, 7].

In our view, the network model is compatible with the free energy landscape model; the 

network model focuses on paths and webs of physical interactions within the protein, while 

the free energy landscape attempts to assign these interactions to various conformational 

substates. Traversing over the free energy landscape from one conformational substate to 

another necessitates the breakage and formation of noncovalent interactions that might be 

identified as part of an important amino acid interaction network.

15.2 Engineering Protein Allostery Through Domain Insertion

Under favorable circumstances, new allosteric proteins can be created by inserting a 

regulatory domain from a known allosteric protein into a new host protein (Fig. 15.2 and 

15.3). Upon allosteric effector binding, the regulatory domain undergoes a large 

conformational change, leading to substantial structural and functional changes in the host 

protein. The regulatory domain often changes the free energy landscape of the host protein 

by introducing new steric interactions between the regulatory domain and host protein. The 

goals of this section are to present select examples that highlight the different approaches for 

creating these chimeric proteins.

15.2.1 Rational Insertion of Regulatory Domains

The Parker lab has explored how allostery has evolved in nature, specifically in the amino 

acid biosynthesis pathways of various bacteria [4, 5, 16, 23, 43, 47, 58, 126]. Their method 

has primarily consisted of splicing ACT or CM regulatory domains from one (β/α)8 barrel 

enzyme onto another, similar to the schematic in Fig. 15.2a. The ACT domain is named for 

aspartate kinase, (AroH) chorismate mutase, and TyrA (i.e., TyrA is the bifunctional 

chorismate mutase/prephenate dehydratase in the Tyr biosynthetic pathway), all of which 

contain this domain. ACT domains consist of a βαββαβ fold, and typically occur when in 

contact with a second ACT domain to form a binding pocket for one or more small molecule 

effector ligands [58]. Ligand binding triggers a conformational change or a change in the 

oligomeric state of the enzyme that in turn modulates function of the catalytic domain. The 

AroQ chorismate mutase effector binding (CM) domain, in contrast, is an all-α-helical 

bundle that can turnover chorismic acid to prephenic acid, and binds prephenic acid when 

used as a regulatory binding domain [23]. Upon binding prephenic acid, the CM domain 

also undergoes a large conformational change. Cross et al. [16] spliced an ACT domain from 

Thermotoga maritima 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (DAH7PS) 

onto the catalytic (β/α)8 barrel domain of the unregulated DAH7PS from Pyrococcus 
furiosus via a flexible linker on the N-terminus of P. furiosus DAH7PS (Fig. 15.3a). 
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Surprisingly, the new chimeric protein was both catalytically active and allosterically 

inhibited by Tyr in a manner similar to that of T. maritima DAH7PS without any further 

modification. In a later publication, Fan et al. [23] swapped the regulatory domains of 

DAH7PS from T. maritima and Geobacillus sp. (TmaDAH7PS and GspDAH7PS, 

respectively). TmaDAH7PS and GspDAH7PS differ structurally, primarily in that 
TmaDAH7PS has an ACT regulatory domain and GspDAH7PS has an AroQ CM regulatory 

domain. In GspDAH7PS, the CM reduces DAH7PS activity in response to binding prephenic 

acid, and when transplanted onto the TmaDAH7PS (β/α)8 catalytic domain conferred that 

regulation. Similarly, the fusion of the TmaDAH7PS Tyr-binding ACT domain onto the (β/

α)8 catalytic domain of GspDAH7PS conferred inhibition upon Tyr binding. These studies 

(and others48) were remarkable in how readily new allosteric mechanisms could be 

conferred onto these proteins, suggesting that the ability to allosterically regulate the 

catalytic domains may be intrinsic to these proteins, and perhaps to these types of protein 

folds.

For the creation of new allosteric chimeric proteins, it is common to insert the regulatory 

domain into the middle of the catalytic domain (Fig. 15.2b). Some of these new allosteric 

proteins have inserted an intrinsically disordered protein (IDP) domain that undergoes a 

transition between a high entropy disordered state to a low entropy ordered state, depending 

on the ligand-bound state, temperature, and/or pH. For example, Choi et al. [14] designed a 

maltose-dependent β-lactamase-maltose binding protein (BLA-MBP) chimeric protein in 

which the BLA domain was inserted in place of residues 317 and 318 of the MBP domain, 

and the amino acid sequence Asp-Lys-Thr was placed between the N-terminus of BLA and 

residue 319 of MBP. The construct, known as C4, was not allosterically regulated but did 

have BLA activity. Nonetheless, by changing the linker, they were able to develop 

allosterically regulated variants. For example, they added varying amounts of Gly residues to 

the linker resulting in temperature-dependent allosteric regulation, which was attributed to 

differences to entropic contributions with and without maltose. In another variant, a varying 

repeat Glu-Ala-Gln-Ala linker was substituted for Asp-Lys-Thr. Since Glu-Ala-Gln-Ala is 

more α-helical at low pH and more random coil at high pH, the proposal was to create 

variants that had a pH-dependent sensitivity to maltose. Indeed, experimental evidence 

showed that higher linker flexibility at high pH or high temperature resulted in greater 

conformational heterogeneity in the BLA domain, resulting in a higher population of less-

active states until maltose was bound. Maltose binding under high pH or high temperature 

conditions reduced conformational entropy but increased the population of the active 

conformations, resulting in greater β-lactamase activity. The constructs lacked allosteric 

regulation when their respective linkers were α-helical at low pH or under low temperature 

conditions. These studies indicated that proteins can be engineered to respond 

simultaneously to ligand binding and changes to physiochemical parameters (i.e., pH and 

temperature), providing additional levels of control over protein function.

In a similar example, Meister et al. [71] took advantage of a previously identified insertion 

site in BLA [31–33] and inserted calmodulin (CaM) in such a way that BLA was split into 

two halves, BLA 24–194 and BLA 196–286, in a manner analogous to Fig. 15.2b. The 

resulting chimeric protein had β-lactamase activity in the absence of Ca2+ because the 

central helix of CaM was disordered under those conditions, allowing the two halves of the 
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BLA domain to come together. Upon addition of Ca2+, the helix became rigid, which 

separated the two half BLA domains and abrogated catalytic activity. In this case, the high-

entropy state was more active because it is likely thermodynamically favorable for the 

hydrophobic core of BLA to come back together and exclude solvent from those nonpolar 

residues. These sets of studies indicated that domain insertion and thoughtful linker 

engineering can lead to rational enthalpy and entropy changes to the underlying free energy 

landscapes of these proteins.

In a rather unique example, Guo et al. [34] created an allosteric Ca2+ electrochemical sensor. 

A calmodulin domain was inserted into the redox enzyme PQQ-glucose dehydrogenase with 

the goal of creating a biosensor that could quantify Ca2+ concentrations in biological fluids. 

PQQ-glucose dehydrogenase had been used as an electrochemical biosensor for glucose, but 

Guo et al. attempted to further engineer this enzyme through domain insertion of a 

calmodulin domain. The loop connecting strands A and B of β-sheet 3 of PQQ-glucose 

dehydrogenase was chosen as the insertion site since strand A is part of the catalytic domain 

involved in abstracting a proton from the glucose O1 atom. The thought was that the large 

conformational change in the CaM domain upon binding Ca2+ would result in a structural 

change that would activate the redox reaction catalyzed by PQQ-glucose dehydrogenase, 

resulting in an electrical impulse. Indeed, the chimeric protein could detect dilute Ca2+ in 

saliva. In a later refinement, the chimeric protein was placed in direct contact with 

conducting electrodes and a semiconductor by conjugating it to a graphene nanosheet 

associating ligand, PBSE [54].

In the above examples, new allosteric proteins were created that responded to ligand 

binding. There are also several examples of newly designed light-controlled proteins. The 

LOV2 domain from Avena sativa has been used to control the function of a variety of 

proteins via photoswitchable allosteric regulation [15, 26, 27, 39, 59, 65, 72, 74, 77, 84, 86, 

105, 110, 114, 117, 125, 127, 130, 133, 137, 138]. A conformational change occurs upon 

absorption of blue light due to a conserved cysteine in the LOV2 domain forming a covalent 

bond with the flavin cofactor, altering the conformation of the Jα helix at the C-terminus 

and a helix at the N-terminus (Fig. 15.3b). The differences in structure and conformational 

dynamics between the “dark” and “light” states allow the LOV2 domain to be used as a 

photoswitch [35, 36]. Another strategy for rationally engineering light-controllable allostery 

is exemplified in the design of a photoswitchable mammalian pyruvate kinase by Gehrig et 

al. [27]. Through MD simulations, they found sites on the kinase that are highly surface-

exposed and undergo conformational changes when an allosteric effector is bound. They 

inserted the LOV2 domain into these locations and demonstrated reversible control of the 

enzyme by light in mammalian cells.

Most of the aforementioned examples can be framed within the free energy landscape 

model, but in one notable example, Lee et al. fused a LOV2 domain and Escherichia coli 
dihydrofolate reductase (DHFR) at surface sites in each protein that are connected to 

allosteric amino acid interaction networks (Fig. 15.3b). By connecting the allosteric 

networks of the two proteins, they were able to control the catalytic activity of the DHFR 

enzyme with light [59].
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15.2.2 Random Insertion of Regulatory Domains

While there are many elegant examples of well-designed chimeric allosteric proteins, 

rational domain insertion often requires prior knowledge of the regulatory domain and host 

proteins’ mechanisms and structures, which may not be generally available for proteins of 

interest. In these cases, random domain insertion may still generate new allosteric proteins, 

regardless of the depth of protein structure and function knowledge. For random domain 

insertion, an appropriate library of insertion variants must be created, and then a method for 

screening functional allosteric enzymes must be available. The Ostermeier lab’s methods for 

the creation of insertion libraries include random double-stranded breaks introduced by 

DNase I [17, 31, 32] or S1 nuclease [132], or by inverse PCR [91] into the insertion target 

within an expression vector (Fig. 15.4). The Ostermeier methods utilize random deletions 

and insertions of amino acids near the gene insertion site and random circular permutations 

of the insertion DNA to increase the diversity of the library. The resulting plasmid prior to 

insertion is blunt-ended linear DNA, with productive linear plasmids having the insert target 

split on either end. The blunt-ended DNA insert is then ligated into the plasmid, resulting in 

a circular expression vector for the chimeric protein. In contrast, the method of the Kim lab 

[95, 112, 113] involves the use of a Mu transposon for gene insertion (Fig. 15.4). A 

transposon is a double-stranded DNA sequence that can be randomly inserted into a target 

DNA sequence through the use of a transposase. This method also allows for random 

circular permutations. In both methods, the resulting libraries contain many variations on the 

insert sequence. The need for screening limits which chimeric proteins can be generated 

through random domain insertion. There must be an observable indication that either the 

insertion target or the insertion domain is active, where cell- or lysate-based assays are more 

amenable to high throughput screening.

The work of Guntas et al. [31–33] provided an early template for random domain insertion 

for chimeric protein production with circular permutations and tandem deletions and repeats. 

The initial screening process for the target maltose-dependent β-lactamase consisted of 

transforming the vector library into E. coli and plating the cells on Luria-Bertani agar with 

ampicillin and maltose. Only cells that contained library members with functional β-

lactamase activity were further tested for maltose-dependent β-lactamase activity. In the first 

iterations of this study [32], 70% of library members had β-lactamase successfully inserted 

into MBP, and 4% could also bind maltose. One member, RG13 (Fig. 15.3c), was shown to 

have a great amount of switching behavior, with very little β-lactamase activity in the 

absence of maltose and a 25-fold increase in the β-lactamase activity in the presence of 

maltose. Wright et al. [131] determined that the BLA domain of the chimeric protein 

primarily samples conformations where it is less active, and addition of maltose allows BLA 

to sample conformations closer to its native state in the full BLA protein.

Wright et al. [132] later applied the blunt-end random domain insertion method (Fig. 15.4) 

to create a prodrug-activating protein that selectively activates in the presence of the 

hypoxia-inducible factor 1α (HIF-1α), a marker for some types of cancer. This protein, 

Haps59, was a fusion of the HIF-1α-binding CH1 domain of the p300 protein and yeast 

cytosine deaminase (yCD), an enzyme that converts the prodrug 5-fluorocytosine (5FC) to 

the toxic 5-fluorouracil (5FU), a chemotherapeutic agent. The library was first transformed 
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into GIA39 E. coli, a uracil auxotroph lacking cytosine deaminase. Since the target chimeric 

protein would convert 5FC into the toxin 5FU in the presence of HIF-1α, the first stage of 

screening consisted of negative selection where 5FC and uracil were present and cells 

possessing cytosine deaminase activity in the absence of HIF-1α did not grow due to 5FU 

toxicity. Surviving cells then had their plasmids isolated and transformed into GIA39 cells 

containing a glutathione-s-transferase-HIF-1a fusion (gstHIF-1α) plasmid with an arabinose 

promoter. The cells were plated on agar supplemented with cytosine and arabinose so that 

members that had cytosine deaminase activity in the presence of HIF-1α could grow but 

members without cytosine deaminase activity could not. The most promising chimeric 

protein, Haps59, was demonstrated to significantly decrease cell survival in human breast 

cancer and colorectal cancer cells in the presence of 5FC under hypoxic conditions similar 

to those in tumors, but not under normal oxygen conditions present outside of tumors.

Flow cytometry analysis fluorescent-assisted cell sorting (i.e., FACS) has become a popular 

method for screening libraries for desired functions. Ribeiro et al. [102, 103] used this 

selection method to create a more efficient endo-β-1,4-xylanase. Xylanase is an important 

enzyme for the conversion of plant biomass to fermentable sugars for biofuel production. 

Unfortunately, product inhibition from xylose is a significant limiting factor for xylanase 

function. The xylose binding domain from xylose binding protein (XBP) was selected as an 

insert domain since it undergoes a significant conformational change upon binding xylose. 

The resulting protein possessed increased xylanase activity even after large amounts of 

xylose product were formed. Because the goal was to create an improved version of an 

already active enzyme where the effector molecule was also the product, initial screening 

consisted of determining xylose-binding activity. E. coli cells lacking wild-type XBP were 

used since XBP is required for the efficient uptake of xylose. Cells were transformed with a 

pT7T3GFP_XBP plasmid, which contained a xylose promoter and would express GFP and 

the chimeric protein containing the XBP domain. FACS was used to sort for cells that 

displayed xylose binding, and these cells were further screened for xylanase activity. Cells 

with xylanase activity were determined by the formation of halos on agar xylan plates after 

staining with Congo Red, indicating xylan breakdown to xylose.

Nadler et al. [81] utilized the Mu transposon to insert GFP (green fluorescent protein) into a 

ligand-binding domain to demonstrate the creation of allosteric metabolite sensors. To 

demonstrate their technique, they created a single-fluorescent protein biosensor (SFPB) to 

quantify in-cell levels of trehalose. A binding event in the ligand binding domain was 

predicted to trigger an allosteric change in fluorescence in the inserted circularly permuted 

GFP domain. Oakes et al. [90] also utilized this technique with the goal of introducing 

allosteric regulation into the CRISPR-associated protein Cas9 by inserting the alpha 

estrogen receptor, which crystallographic evidence had shown undergoes a significant 

conformational change upon ligand binding. To identify sites where the estrogen receptor 

domain could be inserted, mouse PDZ-domain insertion sites were screened for several 

rounds in E. coli, with round one selecting for insertions that did not cause a frameshift and 

were not reversed. Round two screened for Cas9’s ability to suppress RFP (red fluorescent 

protein) expression with the insertion present at a random site to weed out non-functional 

Cas9 activity. Sites on Cas9 that best tolerated insertion were clustered around flexible 

loops, the ends of helices, and on the surface of the protein. Once functional insertion sites 
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were identified, the protein variants were then screened for estrogen receptor insertion and 

assayed for Cas9 activity in a similar way to the PDZ screening in the presence and absence 

of a 4-hydroxytamoxifen ligand.

The rational design methods of regulatory domain insertion benefit from computation and 

structural knowledge to tune the thermodynamic and steric parameters of the chimeric 

protein to achieve the desired functional modulation. The random domain insertion methods 

take advantage of clever library development and screening assays, benefitting from but not 

necessitating structural knowledge of the regulatory domains and host proteins. These 

methods have brought new insights into the free energy landscapes underlying protein 

regulation, and have already resulted in new allosteric proteins finding practical use in 

biotechnology and medical applications.

15.3 Engineering Protein Allostery Through Covalent Modification

Allostery and long-range communication may be intrinsic to all protein folds. Instead of 

whole domain insertions, more subtle changes may likewise result in new allosteric 

regulation. Covalent modification of protein scaffolds represents another method for altering 

or creating allostery in proteins. Rather than adding a new domain to perturb a structural 

ensemble, covalent modification often either restricts the accessible conformations with a 

linker or perturbs an amino acid interaction network by conjugating a bulky molecule to a 

labile, surface-exposed amino acid.

Putri et al. used a spiropyrin photoswitch linker (Fig. 15.5a) to engineer a light-sensitive 

human serum albumin (HSA) [98]. The linker was conjugated to a surface-accessible 

cysteine via Michael addition in subdomain IA, which resulted in the regulation of ligand 

release at subdomain IB greater than 130 Å away. For example, the HSA ligands methylene 

orange and bromocresol green were released upon UV irradiation, and methyl orange 

binding affinity decreased by three-fold after UV irradiation. MD simulations confirmed that 

the subdomains were not directly interactions, indicating that changes to ligand affinities 

were due to longer-range network interactions.

One of the most common and useful covalent attachments is the azobenzene photoswitch, 

which reversibly isomerizes between cis and trans conformations [67, 98, 101]. Several 

strategies have been employed to integrate the azobenzene photoswitch: it can be directly 

incorporated into a peptide during peptide synthesis reactions [61, 122], incorporated into a 

protein via non-natural amino acids in vitro [79, 82] or in vivo [9], crosslinked to the protein 

to one or two solvent-exposed cysteines [79, 128, 135], and/or incorporated into a protein-

binding ligand [96, 109, 124]. Generally, the isomerization of an azobenzene derivative 

between trans and cis conformations changes the relative free energies of the active and 

inactive protein conformations. In one example, Schierling et al. crosslinked an azobenzene 

derivative to the restriction enzyme PvuII, allowing allosteric inhibition to be reversibly 

controlled by light. Here, two cysteine residues were conjugated to the bifunctional 

azobenzene derivative 4,4′-bis (maleimido)azobenzene (Fig. 15.5b, f). The switch from cis 
to trans conformation disrupted the PvuII secondary structure, altered the active site 

structure, and reduced enzyme activity by 16-fold [108]. In another example, Ritterson et al. 
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crosslinked two cysteine residues in cadherin, a cell-cell adhesion protein, using the 

bifunctional azobenzene derivative BSBCA (Fig. 15.5c). Upon irradiation with near-UV 

light, the apparent Ca2+ binding affinity decreased 18-fold. Because Ca2+ binding is linked 

to cadherin dimerization, the function of cadherin was controlled by light. The photoswitch 

was reversible up to at least three light/dark cycles. A genetically encoded azobenzene 

derivative has also been developed for use in E. coli allowing for the generation of 

azobenzene photoswitches in live cells [79] (Fig. 15.5d).

Key surface exposed residues might also be covalently labeled to control protein function. 

For example, Bongard et al. [8] discovered a class of small molecules, quinazolin-4 (3H)-

one hydroxamic esters, that covalently modify Lys residues (Fig. 15.5e). They found that 

these molecules allosterically activate DegS, a bacterial serine protease, by modifying the 

conformation of a loop in the protease domain. By changing the Lys residues that were 

covalently modified, they were able to determine which modifications were responsible for 

allosteric activation. The Lys residue responsible for the activation was found to be part of 

an allosteric amino acid interaction network. This strategy of covalent modification can be 

applied to other proteins for allosteric regulation or to find noncatalytic residues that are part 

of allosteric amino acid interaction networks (see Fig. 15.1b).

15.4 Modifying Protein Allostery Through Mutagenesis

The ability to quickly create point mutations in a target protein has been a boon for 

molecular biology and biochemistry. With some prior knowledge about a protein’s structure 

and amino acid sequence, small modifications to the amino acid sequence can be made to 

create pH switchable proteins or identify and modify the amino acid interaction networks 

that allow a protein to function. These studies generally represent more subtle changes than 

whole domain insertions or covalent modification. This section will summarize select 

examples from the literature where mutagenesis was used as a tool to modify, study, or 

create new allostery.

15.4.1 Generating pH-Dependent Proteins Through Mutagenesis

Since a protein’s conformation is so dependent on its charge, there are many examples of 

pH-switchable proteins [44, 51, 68, 70, 87, 107, 115, 120]. Examples found in nature 

include the E. coli chaperone HdeA [41], β-ureidopropionase in the pyrimidine catabolic 

pathway [69], bovine β-lactoglobulin [99], human prolactin [49, 55], and nitrophorin 4 

(NP4) [20]. The ability to engineer pH-dependent allosteric proteins has great medical 

potential. For example, it is well known that tumors often create an acidic environment, 

which may allow for pH-sensitive proteins to functionally target cancer cells. There are also 

stark pH differences within cells, potentially allowing for even more specific targeting in 

diseased states that affect membrane-bound organelles such as mitochondria or lysosomes.

NP4 is a protein used by the kissing bug Rhodnius prolixus to selectively release nitric oxide 

into its victim’s tissues via pH-dependent conformational changes. When deprotonated at 

the higher pH in the tissue, a hydrogen bond with Asp30 is broken, causing a conformational 

change that results in the release of bound nitric oxide (Fig. 15.6). Di Russo et al. used pH 

replica exchange molecular dynamics (pH-REMD) [46, 118] to describe the free energy 
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landscape of NP4’s pH-dependent conformational change. By creating a variant that 

destabilized the open conformation but did not affect the pKa of Asp30 in either 

conformation, they were able to show that the observed pKa depends on both the equilibrium 

constant for the conformations and the pKa at each conformation as predicted by their 

model. In addition to changing the equilibrium constant between conformations, the pKa and 

local dynamics of buried ionizable residues in proteins can be altered by changing the 

distribution of surface charges, as demonstrated by Pey et al. using E. coli thioredoxin [104].

In these studies, the coupling between protonation state equilibrium and conformational 

equilibrium must be considered in order to understand the thermodynamics of the pH-

dependent conformational change. Exploring this further, Liu et al. studied the coupling of 

the protonation state to the conformation of the inner residues of staphylococcal nuclease by 

substituting ionizable residues into the interior of the protein and measuring the pKa values 

of these residues [62]. By taking into account the conformational equilibrium and the pKa of 

the residue of interest in each conformation there was excellent agreement with the 

experimentally observed pKa values and structural information for buried ionizable residues 

in the same protein [45].

There are now various examples of engineering proteins to be responsive to pH changes by 

substituting buried residues for ionizable residues. Zimenkov et al. [140] designed peptides 

that reversibly self-assemble into fibrils in response to pH changes. The self-assembly 

results from helix-coil transitions in the peptides when His residues in the helix are 

protonated. There are also biomedical applications to engineering pH-sensitive proteins. The 

fibronectin (Fn3) domain is a useful scaffold for engineering proteins that bind to proteins 

associated with cardiovascular disease and cancer. By engineering His residues into the 

hydrophobic core, Heinzelman et al. [37] engineered Fn3 domains that bind epidermal 

growth factor receptor (EGFR) with much lower affinity at low pH, and the effect was 

shown to be reversible. A similar strategy was used to engineer pH-responsive binding 

proteins for the Fc portion of human immunoglobulin (HIgG) derived from the 

hyperthermophilic Sso7d protein by Gera et al. [28]

Although most examples of engineered pH-dependent allostery involve substituting 

ionizable residues into the hydrophobic core of a protein, other residues can also be 

substituted to create pH-dependent allostery. Lysteriolysin O, a pore-forming protein 

secreted by Listeria cytogenes that destroys cholesterol-rich cell membranes, was engineered 

to be activated at slightly acidic pH via an allosteric mechanism. Kisovec et al. [50] 

substituted an Ala residue for a Tyr residue in the vicinity of ionizable residues previously 

identified to affect pH-dependent stability of the protein, changing the pKa values of the 

buried ionizable residues.

15.4.2 Perturbing Allosteric Amino Acid Interaction Networks with Mutagenesis

In the past decade, there have been several examples of mutational studies that identified and 

perturbed amino acid interaction networks. In several cases described here, changing 

network residues distal from the binding or active sites of proteins have wide implications 

for protein function and allostery. These studies have been of recent interest due to the rise 

of allosteric drugs and the hunt for druggable “cryptic” allosteric sites.
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A long-standing problem in cellular signaling is tuning substrate and protein interaction 

specificity. For example, several PDZ domains have intersecting substrate specificity but 

play discrete roles in signaling pathways [24]. Gianni et al. investigated this problem using 

double mutant cycle analysis [42] on two specific PDZ domains that have computational 

evidence supporting distinct allosteric networks [52]. Double mutant cycle analysis helps to 

determine if two sites are allosterically and energetically coupled. Through these studies, 

they were able to determine the binding kinetics for 31 protein variants of each binding 

partner. These energetic constraints determined that the two binding partners had distinct 

allosteric mechanisms and that these allosteric networks were not conserved across the 

protein family. The authors emphasized the importance of amino acid composition to 

allosteric networks [30].

Introducing point mutations can also provide experimental evidence for the presence of 

amino acid interaction networks that play a critical role in allostery. Holliday and coworkers 

identified two dynamic amino acid clusters within cyclophilin A using RASSMM 

(relaxation techniques and single-site multiple mutations) [40]. RASSMM utilizes the high 

sensitivity of NMR methods to identify hot spots that are related to active site structural 

dynamics. Within the two coupled networks in cyclophilin A, two key “hot spot” residues 

were identified (Fig. 15.7). When these residues were perturbed, the active site dynamics 

and enzyme turnover were negatively impacted, despite both residues being greater than 15 

Å from the active site. Similar methods can be applied to discover dynamically-coupled 

networks in other proteins.

There are several other NMR methods that can be used to identify and perturb allosteric 

networks in proteins. Among these is chemical shift covariance analysis (CHESCA) [111], 

which is similar to RASSMM in that it helps to elucidate allosteric mechanisms in proteins. 

CHESCA has been utilized to determine amino acid interaction networks in several proteins, 

including the alpha subunit of tryptophan synthase [2], a DNA repair protein (Rad50) [10], 

and phosophohexomutase [134]. In a different NMR approach to allostery, Cui and 

coworkers described a method that solely relies on total protein 1H, 15N chemical shift 

perturbations, or CSPs [17]. In order to probe the allosteric sites in tyrosine phosphatases, 

they introduced several Ala substitutions in an acidic loop region and then monitored 

chemical shift changes in residues distal from the active site. Using this method, they 

identified two separate amino acid interaction networks. When network residues were 

changed, a marked decrease in enzyme activity was noted, despite the distance of these 

network residues from the active site. Tyrosine phosphatases have been proposed to be 

potential drug targets for the treatment of diabetes, cancer, and obesity, and so the 

identification of these network residues helps to identify protein surfaces that might be 

targetable by allosteric drugs.

15.4.3 Engineering Allostery “Out Of” Proteins

All of the examples above have explored ways to generate new allosteric proteins. However, 

it is sometimes advantageous to render a protein unresponsive to allosteric regulation while 

maintaining other functions. For example, metabolic enzymes are often allosterically 

regulated, but such regulation might interfere in a particular synthetic scheme [22]. One 
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great recent example is the engineering of tryptophan synthase (TS) for the synthesis of 

novel indole analogs. TS is composed of two subunits, the alpha subunit (αTS) that 

generates indole, which is then directly channeled through a hydrophobic tunnel to the beta 

subunit (βTS) that completes tryptophan biosynthesis. Only the catalytic activity of βTS was 

desired for the synthesis of indole analogs, but the large decrease in βTS activity in the 

absence of αTS made synthesis difficult [85]. The Arnold lab [13] sought to remedy this 

problem by using directed evolution to generate βTS that recapitulated the allosteric 

activation in the absence of αTS. The resulting βTS had greater catalytic activity than the 

native complex and also a more diversified substrate portfolio.

In further studies, Buller and coworkers sought to identify the mechanism by which their 

evolved βTS was able to fully function in the absence of αTS [12]. By monitoring the 

steady-state concentrations of βTS intermediates, they determined that their directed 

evolution variants progressively changed the rate-limiting step of the reaction. In addition, 

their variants shifted the steady-state distribution, favoring the tryptophan bound products 

(Fig. 15.8). They concluded that the amino acid substitutions stabilized a population in βTS 

that is typically only favored when bound to αTS – therefore recapitulating the complex 

activity in just the βTS subunit. The TS example provides an important counterexample for 

allostery engineering – instead of engineering in allostery, the goal was to engineer allostery 

out of βTS so the enzyme was fully capable of functioning alone.

15.5 Conclusion

The ability to control engineered proteins allosterically would revolutionize medicine and 

industry. Here, we have provided examples that illuminated the fundamentals of allostery, 

and have shown that there are newly designed allosteric proteins already finding practical 

use. Rational and random domain insertion methods appear to be the most prolific in 

creating novel allosteric proteins. The modular nature of certain types of catalytic and 

regulatory domains may be why these approaches are so successful. The ability to engineer 

photoswitchable proteins is especially exciting, which has been accomplished mainly 

through LOV2 domain insertion and/or insertion of the azobenzene photoswitch through 

covalent modification. Likewise, pH-switchable proteins could offer means to specifically 

target different cellular locations or activate only under certain disease conditions. The 

identification of amino acid interaction networks through a variety of biophysical and 

computational methods [1] offers not only a means to potentially engineer allostery and 

function, but these methods can also identify protein surfaces that may be amenable to small 

molecule targeting and allosteric regulation.
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Fig. 15.1. 
Frameworks for understanding allostery. (a) In the free energy landscape model, proteins are 

considered to be ensembles of different conformations. Local minima represent different 

conformations, with their free energies determining relative populations, and free energy 

barriers determining exchange rates between conformations. Allosteric inhibitors and 

activators can change the topology of the energy landscape by altering populations or the 

kinetics of exchange between conformations. (b) The network model places emphasis on 

correlated structural dynamics of amino acid residues being responsible for allosteric effects. 

A perturbation at one site can have an effect on a surrounding cluster of amino acids, which 

then can propagate through the amino acid residue interaction network to effect changes at a 

distant active site or other binding site. The network signals travel through highly connected 
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hub residues, which may be important engineering points to change protein function and 

regulation
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Fig. 15.2. 
Methods of rational domain insertion. (a) Homologous proteins with catalytic domains are 

often structurally similar enough that regulatory domains sensitive to different effectors can 

be swapped or added to homologs without a regulatory domain, as in the above example 

where the blue regulatory domain is spliced onto the orange catalytic domain. (b) In cases 

where the protein with the desired function does not have any allosteric homologs, a 

conditionally disordered linker that becomes ordered in response to environmental changes 

or a regulatory domain can be inserted into the middle of a loop in the host protein sequence. 

In this example, the green enzymatic domain is inactive when the yellow regulatory domain 

is in its open apo conformation. Once the regulatory domain binds its effector ligand, it 

adopts a conformation that allows the enzymatic domain to adopt its active conformation
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Fig. 15.3. 
Examples of allosteric enzymes engineered through domain insertion. (A) 
PfuACTTmaDAH7PS with Tyr (yellow) bound to the ACT domain (magenta) with the 

DAH7PS domain in slate (PDB: 4GRS) [16]. PfuACTTmaDAH7PS is typically depicted as a 

homotetramer. It should be noted that only one subunit is shown here for clarity. (B) DHFR-

LOV2 with LOV2 domain inserted at residue 120 of DHFR (PDBs: 1RX2, 2V0U) [59]. 

Upon irradiation with light, C450 covalently bonds to the flavin cofactor in the LOV2 

domain. The changes in conformation and dynamics propagate through both domains. (C) 
The MBP-BLA construct RG13 generated by random domain insertion of BLA (red) into 

MBP (blue) (PDB: 4DXB) [48]
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Fig. 15.4. 
Methods of random domain insertion. Details on the major steps of creating gene insertion 

libraries are shown in brief
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Fig. 15.5. 
Covalent modification of proteins to control allostery. (a) Conjugation of spiropyran to a Cys 

residue and isomerization to the merocyanine form. (b) Conjugation of the bifunctional 

azobenzene derivative 4,4′-bis (maleimido)azobenzene to two cysteine residues and 

isomerization between trans and cis forms. (c) Conjugation of the bifunctional azobenzene 

derivative 3,3′-bis (sulfonato)-4,4′-bis (chloroacetamido)azobenzene (BSBCA) to two Cys 

residues and isomerization between trans and cis forms. (d) Isomerization of the genetically 

encoded azobenzene derivative AzoPhe. (e) Covalent modification of a Lys residue by 

quinazolin-4 (3H)-one hydroxamic ester. (f) Covalent modification of PvuII with azomal 

(PDB: 1NI0), adapted from Schierling et al. [108]. Active site residues (cyan) are disrupted 

upon isomerization of azomal to the trans form

Gorman et al. Page 25

Adv Exp Med Biol. Author manuscript; available in PMC 2020 September 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 15.6. 
pH-dependent modulation of the NP4 protein. Closed (top) and open (bottom) 

conformations of NP4. Protonation of Asp30 stabilizes the closed conformation, while 

deprotonation stabilizes the open conformation. (Reprinted with permission from Di Russo, 

N. V.; Martí, M. A.; Roitberg, A. E. Underlying Thermodynamics of PH-Dependent 

Allostery. J. Phys. Chem. B 2014, 118 (45), 12,818–12,826. Copyright 2014 American 

Chemical Society)
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Fig. 15.7. 
The RASMM method for identifying dynamically coupled amino acid interaction networks 

in proteins. Amino acids distal from the active site are identified as “hot spots” based on 

their R2 relaxation dispersion profiles in the apo and substrate-bound states. Residues that 

are linked allosterically to the active site are expected to show a measurable change in R2 

relaxation dispersion behavior in the presence of substrate. To identify the global 

communications networks, single site mutations of “hot spot” residues are generated and 

global R2 relaxation dispersion profiles are examined. Reprinted from Structure, Volume 25 

Issue 2, MJ Holliday, C Camilloni, GS Armstrong, M Vendruscolo, EZ Eisenmesser. 

Networks of Dynamic Allostery Regulate Enzyme Function, 276–286, Copyright (2017), 

with permission from Elsevier
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Fig. 15.8. 
Engineering allostery “out of” the beta subunit of tryptophan synthase. (a) A crystal 

structure of the COMM domain of βTS representing the differences in the open/closed 

conformations through the catalytic cycle. The “extended” state represents the open 

conformation. As the nreaction proceeds, the COMM domain enters the fully closed 

conformation (E (A-A)). (b) A theoretical reaction coordinate illustrating the energy levels 

of the βTS intermediates. The engineered beta subunit (PfTrpB2B9) creates a decrease in 

energy of the product bound state. This results in a more efficient enzyme without the 

presence of the allosteric effector (αTS). Reprinted with permission from Buller, A. R. et al. 

Directed Evolution Mimics Allosteric Activation by Stepwise Tuning of the Conformational 

Ensemble. J. Am. Chem. Soc. 140, 7256–7266 (2018). Copyright 2018 American Chemical 

Society
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