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Highlights
Inborn errors of immunity affecting all key
molecular components of the interferon
(IFN)-I signalling pathway [IFN-alpha/
beta receptor (IFNAR)1, IFNAR2, Janus
kinase 1 (JAK1), tyrosine kinase 2
(TYK2), signal transducer and activator
of transcription (STAT)1, STAT2, and in-
terferon regulatory factor 9 (IRF9)] have
been identified in humans.

Deficiency of IFNAR results in potentially
The concept that type I interferons (IFN-I) are essential to antiviral immunity de-
rives from studies on animalmodels and cell lines. Virtually all pathogenic viruses
have evolved countermeasures to IFN-I restriction, and genetic loss of viral IFN-I
antagonists leads to virus attenuation. But just how important is IFN-I to antiviral
defence in humans? The recent discovery of genetic defects of IFN-I signalling
illuminates this and other questions of IFN biology, including the role of the
mucosa-restricted type III IFNs (IFN-III), informing our understanding of the
place of the IFN system within the concerted antiviral response. Here we review
monogenic lesions of IFN-I signalling pathways and summarise the organising
principles which emerge.
fatal susceptibility to live-attenuated viral
vaccines, butwithout general susceptibil-
ity to common childhood viral diseases.
Clinically evident vulnerability to a broader
spectrum of viral diseases, including re-
spiratory viruses such as influenza as
well as live-attenuated viral vaccines,
often accompanies deficiency of STAT2
and IRF9. These molecules transduce
signals downstream of IFN-I and IFN-III,
suggesting that the latter provides com-
pensatory antiviral defence in IFNAR-
deficient patients.

Children with defects in IFN-I and IFN-III
signalling are not particularly susceptible
to viruses such as cytomegalovirus
(CMV), suggesting that this virus has
successfully evolved mechanisms to
overcome IFN-I/III restriction.

STAT1-deficient patients, who lack sig-
nalling in response to all types of IFN (I,
II, and III), show the widest viral suscepti-
bility of all.

Pathological dissemination of parenter-
ally delivered live-viral vaccines in other-
wise healthy children should signify an
inborn error of IFN-I immunity until
proved otherwise.
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Is IFN-I Essential to Human Antiviral Immunity?
Interferon (IFN, see Glossary) was discovered more than 60 years ago by Isaacs and
Lindemann [1]. This soluble factor, produced by virally infected cells in culture, conferred an an-
tiviral state when applied to uninfected naïve cells prior to infection. Its discovery led to the clin-
ical application of IFN-I (IFNα) as the first host-directed antiviral therapy [2]. Over the intervening
six decades, the molecular basis of IFN-I activity has been carefully dissected (Box 1) and its es-
sential function in antiviral defence has been confirmed in model organisms [3]. In parallel with
these discoveries has come the realisation that virtually all human viral pathogens encode strate-
gies to evade and/or subvert the antiviral activity of IFN-I [4,5]. Furthermore, loss of viral IFN-I an-
tagonists leads to virus attenuation and is being exploited for the development of novel live viral
vaccines [6]. The ‘arms race’ between host and virus plays a decisive role in viral pathogenesis,
driving viral evolution and restricting interspecies transmission [4,5].

The IFN System
IFN-I does not operate in isolation. Additional IFNs have been identified; namely, IFNγ (type II IFN)
[7] and the mucosa-restricted IFNs (IFNλ1–4, or type III IFNs) [8–10]. These IFN types differ in their
range of activity in tissues and their tendency to cause immunopathology and can be considered
part of an integrated ‘IFN system’. IFN-III is produced by most cells but acts mainly at epithelial
surfaces, due to constrained receptor expression [11]. IFN-III restricts virus replication at the point
of initial encounter without inducing systemic immune activation or immunopathology [10–16] – a
relatively high-yield, low-cost outcome. By contrast, most tissues respond to IFN-I, which as-
sumes greater importance when viruses breach epithelial barriers (e.g., invading into the lym-
phatics, bloodstream, or brain), but with an inherently greater risk of toxicity, particularly for the
brain [17]. Finally, type II IFN (IFN-II) (IFNγ) is an extremely potent immunostimulatory cytokine,
with the greatest potential for immunopathology. While expression of the IFNγ receptor (IFNGR)
is, like that of the IFN-I receptor (IFNAR), widespread, the production of IFNγ is tightly controlled
and restricted to specialised immune cells [18]. Since all IFNs share the ability to induce an antiviral
state in responding cells, there is scope for compensation if one or more IFN type is disabled. The
brain parenchyma is a notable exception since it cannot respond to IFN-III, and cells capable of
making IFNγ are generally absent from the brain.
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Box 1. Canonical IFN-I Signalling

In the current paradigm, the type I IFNs (IFN-Is) – comprising 13 subtypes of IFNα and one of IFNβ, IFNε, IFNκ, and IFNω –

all signal at the single heterodimeric IFN alpha/beta receptor (IFNAR) expressed by all nucleated cells. By contrast, re-
sponses to the type III IFNs (IFNλ1–4, IFN-III), identified first in 2003 [8–10], are constrained by the restricted expression
of the IFN lambda receptor (IFNLR) on epithelial cells, (human) hepatocytes, and some immune cell subsets
[11,16,60,61,71]. In the canonical IFN-I pathway, IFN-I binding initiates an intracellular signalling cascade in which recip-
rocal transphosphorylation of the receptor-associated kinases JAK1 and TYK2 is accompanied by phosphorylation of
the signal transducers and activators of transcription STAT1 and STAT2 [59,83,95]. The majority of the transcriptional re-
sponse to IFN-I is attributable to the heterotrimer comprising phosphorylated STAT1 and 2 together with IRF9 [56,95,96].
This complex, known as ISGF3, translocates to the nucleus where it interacts with an ISRE [97] in the promoter of multiple
ISGs [97]. A fraction of the phosphorylated STAT1 also homodimerises to form the GAF [98], agonising a distinct but over-
lapping set of genes bearing GAS elements, typically associated with type II IFN (IFNγ) signalling [98]. A broadly similar
pathway is activated in response to IFN-III [8–10]. This simplified model omits multiple STAT-dependent and STAT-inde-
pendent signalling pathways activated downstream of IFNAR, some of which involve unphosphorylated ISGF3 compo-
nents assembled in distinct transcriptional complexes (e.g., STAT2:IRF9, U-ISGF3) [99].
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Given the ability of viruses to evade IFN-I in their natural hosts, how important is this response for
antiviral immunity in humans? This question has added relevance given that dysregulation of IFN-I
immunity may promote viral pathogenesis [17,19]. In humans, inborn errors of immunity that
compromise the expression and/or function of genes such as TLR3, IFIH1, IRF3, and IRF7 in-
volved in synthesis of IFN-I, IFN-III, and other proinflammatory mediators in response viral infec-
tion, are associated with heightened clinical susceptibility to viral disease [20–30]. These
disorders underline a central principle: that innate immunity makes an essential contribution to
viral defence in humans. However, the fact that these pathways engage a range of innate immune
effector mechanisms beyond the IFN-I response means that the precise involvement of IFN-I in
this process remains uncertain. To dissect this, we turn to defects of the cellular response to
IFN-I itself.

Within this group of autosomal recessive (AR) diseases are loss-of-expression variants negating
the response to IFN-I alone (IFNAR1 or IFNAR2), responses to both IFN-I and IFN-III (i.e., STAT2,
IRF9), and STAT1 variants, which negate responses to all IFNs (Figure 1). These inborn errors of
immunity produce a phenotype of vulnerability to severe and/or recurrent viral disease (Table 1),
the clinical significance of which depends on the extent of compromise to the IFN system as a
whole. However, variable expressivity is also recognised; for example, ranging from death in in-
fancy to survival into adulthood with no apparent phenotype in some signal transducer and acti-
vator of transcription (STAT)2-deficient patients [31]. This may, among other factors, be due to
environmental differences in the range and dose of viruses encountered by individual patients
and/or the effectiveness of compensatory immune pathways against specific pathogens [32].

IFNAR Deficiency
Deficiency of IFNAR acts as the most specific readout of the involvement of IFN-I in human anti-
viral defence, revealing an essential but surprisingly narrow function attributable to IFN-I. IFNAR
comprises two subunits, IFNAR1 and IFNAR2. Homozygosity for a nonsense IFNAR2 variant
was first reported in two siblings, coming to light when the proband developed fatal encephalitis,
complicated by haemophagocytic lymphohistiocytosis (HLH), following receipt of the live-
attenuated measles, mumps, and rubella (MMR) vaccine [33]. Analysis of patient dermal fibro-
blasts revealed undetectable IFNAR2 protein expression accompanied by absent transcriptional
responses to IFNα/IFNβ. This resulted in failure to mount an antiviral state in response to recom-
binant IFNα and an inability to control the replication of genetically modified IFN-sensitive viruses
in vitro. These defects were rescued by complementing patient cells with wild-type (WT) IFNAR2.
Notably, and surprisingly, prior to receipt of MMR the proband had been healthy with no apparent
phenotype of heightened sensitivity to common childhood viral diseases. This was true despite
Trends in Genetics, January 2021, Vol. 37, No. 1 47
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Glossary
Antiviral state: a cellular state of
resistance to virus entry, replication,
assembly and/or release, governed by
the expression of multiple antiviral
effector gene products (ISGs), many of
them induced by interferons.
Bacille Calmette–Guérin (BCG): a
live-attenuated form ofMycobacterium
bovis developed in 1921 as a vaccine
against Mycobacterium tuberculosis.
Haemophagocytic
lymphohistiocytosis (HLH): a life-
threatening systemic immune disorder
characterised by widespread immune
cell activation (predominantly
lymphocytes, NK cells, and
macrophages) and dysregulated
cytokine signalling, leading to end-organ
damage.
Inborn errors of immunity: rare
genetic disorders of human immune
function, due to germline pathogenic
variants, typically monogenic. These are
usually inherited, although they can also
arise de novo or result from somatic
mutation.
Interferons (IFNs): the term applied to
secreted cytokines mediating ‘viral
interference’, defined as the ability of
virus-infected cells to produce a
substance that, when added to
uninfected cells, ‘interferes with’ viral
infection.
Interferon-stimulated gene factor 3
(ISGF3): a heterotrimeric complex of
STAT1, STAT2, and IRF9 and the
principal transcription factor responsible
for ISG induction in response to IFN-I
and IFN-III.
Interferon-stimulated genes (ISGs):
a group of genes induced in response to
IFNs, responsible for the functional
activity of IFNs.
Interferon-stimulated response ele-
ment (ISRE): ISRE in the promoters of
ISGs is bound by ISGF3 to activate
transcription in response to IFN-I and
IFN-III. This is distinct from the IFNγ
activation site (GAS), which is bound by
homodimers of tyrosine phosphorylated
STAT1, also known also GAF.
Systemic inflammatory response
syndrome (SIRS): a syndromic
description for systemic inflammation
arising from a broad range of noxious
stimuli (including trauma, infection,
malignancy, immune-mediated disease,
etc) that, if unchecked, can lead to
multiple organ dysfunction,
cardiovascular collapse, and death.
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serological testing revealing evidence of prior infection with the herpesviruses Epstein–Barr virus
(EBV) and cytomegalovirus (CMV). Supporting this unexpectedly narrow vulnerability to viral dis-
ease, the patient’s IFNAR2-deficient sister remained well without a clinically apparent defect of
viral resistance (MMR was withheld). It was suggested that this narrow phenotype might reflect
residual IFNAR1-dependent signalling, as reported in Ifnar2−/- mice [34]; however, a similar clini-
cal phenotype was recognised in two unrelated children bearing homozygous nonsense muta-
tions in IFNAR1 [35]. Their clinical phenotype – healthy until exposure to live-attenuated viruses
– recapitulated IFNAR2 deficiency. Both suffered life-threatening dissemination of live viral vac-
cines, either MMR or yellow fever vaccine [35]. In cells (dermal fibroblasts and EBV-
transformed B cells) from these cases, the IFNAR1 protein and transcriptional response to
IFNα/IFNβ was absent, conferring a defect of antiviral state induction to recombinant IFNα or
IFNβ, rescued by complementation with IFNAR1. As in IFNAR2-deficient cases, IFNAR1 defi-
ciency was not associated with clinically evident vulnerability to viruses encountered in the natural
environment such as influenza, other common respiratory viruses, or herpesviruses including
CMV, despite serological evidence of past infection [35]. Thus, unlike in mice, the clinical and mo-
lecular consequences of human IFNAR1 and IFNAR2 deficiency appeared to be indistinguish-
able. Responses to IFNγ were intact in both IFNAR1- and IFNAR-deficient fibroblasts in vitro
[33,35], again contrasting with findings in murine cells [36,37]. Although not systematically
assessed, none of the defects of development or homeostasis reported in Ifnar1−/- mice [38]
have been observed to date in IFNAR-deficient humans.

IFN-III Compensation?
The apparent lack of vulnerability to naturally occurring viral pathogens initially encountered at
mucosal surfaces in IFNAR-deficient patients is striking and at first glance appears in stark con-
trast to IFNAR-deficient mice, which are profoundly susceptible to multiple viruses. However, it is
important to consider the route of viral exposure in judging these apparent phenotypic differ-
ences. Ifnar1−/- mice are indeed highly susceptible to viruses when challenged by intravenous
or intraperitoneal inoculation [3]. However, when challenged with influenza or respiratory syncytial
virus (RSV) via the respiratory mucosa they displayed no increase in viral susceptibility compared
withWT controls [12]. This has been attributed to the capacity of IFN-III to compensate entirely for
the loss of IFN-I antiviral activity at the respiratory mucosa [12,14,39]. Deletion of Ifnar and Ifnlr to-
gether renders mice extremely vulnerable to infection of the respiratory tract [12,14,39]. An obvi-
ous hypothesis for why IFNAR-deficient patients become severely ill following immunization with
some live-attenuated vaccines is that intramuscular injection bypasses the IFN-III response,
which would normally be encountered during natural infections, leading to widespread dissemi-
nation of the attenuated virus and disease. This has been (indirectly) tested in mice, where
Ifnar1−/- mice are vulnerable to the dissemination of vaccine-strain YFV (YFV-17D) when it is
injected by the intramuscular or intraperitoneal routes [40]. An interesting corollary is that patients
with defective IFN-I immunity may be susceptible to viruses that naturally bypass the mucosa; for
example, arthropod-borne pathogens such as dengue virus. As with any susceptibility state,
pathogen exposure is a key factor governing disease expressivity [32], and IFNAR-deficient pa-
tients have not been knowingly exposed to arboviruses [33,35]. An open question is whether sim-
ilar compensation occurs in exclusive defects of IFN-III (Box 2).

The implication of these experiments of nature is that there is redundancy between IFN-I and IFN-
III in mediating the antiviral state at mucosal surfaces. One would predict a more significant phe-
notype to arise in defects that compromise both IFN-I and IFN-III responses simultaneously. For
such an example, we turn to defects of the shared signal transduction pathway downstream of
these receptors, beginning with defects of the interferon-stimulated gene factor 3 (ISGF3)
complex [STAT1, STAT2, and interferon regulatory factor 9 (IRF9)].
48 Trends in Genetics, January 2021, Vol. 37, No. 1



Type I interferons (IFN-I): a group of
cytokines comprising 13 subtypes of
IFNα, IFNβ, IFNε, IFNκ, and IFNω, with a
range of antiviral, growth inhibitory, and
immunoregulatory properties in
vertebrate immune systems;
increasingly recognised to have
immunopathological potential, subject to
stringent negative feedback control.
Type II interferon (IFN-II): a single
cytokine, IFNγ, produced mainly by
lymphocytes, which in addition to its
primary role in immunomodulation has
antiviral properties through the induction
of a transcriptional programme distinct
from but overlapping that of IFN-I and
IFN-III.
Type III interferons (IFN-III):
comprises four cytokines – IFNλ1,
IFNλ2, IFNλ3, and IFNλ4. IFN-III
activates an intracellular signalling
cascade similar to that of IFN-I. It is
produced by most cells in response to
pattern recognition receptor signalling
but acts on a more restricted range of
cell types.
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Homozygous STAT1 Deficiency
AR complete STAT1 deficiency leads to a profound defect of immunity with broad susceptibility to
infectious pathogens, extending to herpesviruses as well as intracellular bacteria (including
mycobacteria). This pattern reflects the participation of STAT1 in signalling by all IFNs [i.e., IFN-
I, IFN-II (IFNγ), and IFN-III], thereby disrupting critical functions of IFNγ among specialised cells
of the immune system. It is the only disorder described in this review where haematopoietic
stem cell transplantation (HSCT) is indicated and has documented life-saving potential in patients
[41,42]. Heterozygosity for hypomorphic variants in human STAT1 produces clinical vulnerability
to mycobacteria but not viruses due to the selective impact on IFNγ signalling and thus will not be
considered further.

Complete AR STAT1 deficiency was first identified in unrelated infants presenting with dissemi-
nated bacille Calmette–Guérin (BCG) infection who succumbed to severe viral illness [caused
by recurrent herpes simplex virus 1 (HSV1) encephalitis in one and an unknown viral pathogen in
the other] [43]. Sequencing of the candidate disease gene STAT1 revealed in one child a homo-
zygous frameshift deletion (c.1757-1758delAG) while the other bore a homozygous missense
variant (p.L600P) and preserved mRNA expression. Consistent with the complete absence of
STAT1 protein in each child, resulting in loss of ISGF3 and IFNγ-activated factor (GAF) DNA-
binding activity, patient cells were completely refractory to IFN in the induction of an antiviral
state in vitro. Subsequent cases of complete STAT1 deficiency broadly recapitulated this pheno-
type [44], although sometimes with additional inflammatory features such as severe hepatitis [45]
or HLH [41] provoked, at least in the latter case, by viral infection. Homozygosity for a
hypomorphic STAT1 allele was shown to produce a less severe phenotype both in vitro and
in vivo [46,47]. The profound clinical impact of STAT1 deficiency and the therapeutic benefit of
HSCT reflect the broad importance of this transcription factor in immunity.

Homozygous STAT2 Deficiency
Biallelic loss-of-expression variants of the transcription factor STAT2 produce a milder clinical
phenotype than STAT1 deficiency comprising viral susceptibility without associated problems
in handling bacteria, owing to STAT2’s more restricted role in IFN-I and IFN-III signalling. Com-
pared with defects of IFNAR, STAT2 deficiency has a broader clinical phenotype, encompassing
viral disease caused by vaccine-strain viruses as well as common viral pathogens encountered at
mucosal surfaces [31,48–50]. Presumably, this is due to the parallel disruption of IFN-I and IFN-III
responses. As previously mentioned, the phenotype of viral susceptibility in STAT2 deficiency
also has variable expressivity, for reasons that remain unclear.

STAT2 deficiency was originally described in a kindred of five individuals with a spectrum of dis-
ease ranging from death in infancy to survival into middle age with no apparent phenotype [31].
Homozygosity for a variant (c.381+5G>C) causing aberrant STAT2mRNA splicing and undetect-
able STAT2 protein expression was accompanied by a profound in vitro defect of the expression
of IFN-stimulated response element (ISRE)-containing genes and failure to mount an IFN-I-
mediated antiviral state [31], defects that were rescued by STAT2 complementation. Patient
cells expressed a small subset (10%) of interferon-stimulated genes (ISGs) induced in WT
cells [31], most of which contained gamma activation site (GAS) elements within their promoters,
presumably reflecting a residual amount of IFNAR-dependent signalling via GAF. Whilst STAT2
deficiency almost certainly compromises ISGF3 function in response to IFN-III, this prediction
has yet to be formally tested owing to the lack of available patient cell types that reliably express
a functional IFN lambda receptor (IFNLR). Treatment with IFNγ protected STAT2-deficient cells
against cytopathic effects of vesicular stomatitis virus [49], suggesting the compensatory induc-
tion of an antiviral state, as described in IFNAR-deficient cells.
Trends in Genetics, January 2021, Vol. 37, No. 1 49
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Figure 1. Canonical Interferon (IFN) Signalling Pathways and Their Genetic Lesions. Displayed are the three IFN pathways and a brief summary of the viral
susceptibility phenotypes that accompany molecular defects of these pathways. IFN-I receptor (IFNAR) deficiency selectively impairs the IFN-I response, predisposing
to disease secondary to inoculation with live-attenuated viral vaccines. Since IFN-I responses play a part in preventing the systemic dissemination of viruses, IFNAR-
deficient individuals would hypothetically be vulnerable to arboviruses transmitted via the bloodstream. STAT2 and IRF9 are central to the response to both IFN-I and
IFN-III, the latter mediating antiviral immunity at mucosal surfaces. Thus, these molecular defects are accompanied by problems in handling both live-attenuated viral
vaccines and mucosally transmitted viruses such as influenza. In the case of STAT2 deficiency, variable expressivity of the phenotype is recognised. STAT1 deficiency
is the most clinically serious defect since it compromises the response to all IFNs simultaneously. This is associated with susceptibility to a broad range of viruses,
including herpesviruses. Because IFN-II is also critical to responses to mycobacteria, STAT1 deficiency is accompanied by life-threatening complications of
mycobacterial infection. Tyrosine kinase 2 (TYK2) and (partial) Janus kinase 1 (JAK1) deficiency are also associated with mycobacterial susceptibility, alongside a much
milder phenotype of viral disease. In the case of TYK2 deficiency, this may be due to the ability of IFN-III, and to a lesser extent IFN-I, to signal independently of TYK2.
Complete JAK1 deficiency has not been reported. Abbreviations: CMV, cytomegalovirus; EV, enterovirus; GAF, IFNγ-activated factor; HSV, herpes simplex virus;
ISGF3, interferon-stimulated gene factor 3.
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Complete deficiency of STAT2 was subsequently reported in a further five children in three kin-
dreds [48–50], totalling ten individuals (additional patients have been identified but their details re-
main unpublished). Some of these individuals had more obvious problems with common
childhood viruses, such as viral pneumonia and enteroviral meningitis, than in the original kindred
[49]. In total, viral disease had a fatal outcome in two of ten cases. All six children known to have
been exposed to MMR have experienced dissemination of vaccine-strain viruses to the lungs
and/or brain (Table 1). The outcome of herpesvirus infections in these patients was seemingly un-
remarkable, except for one child with prolonged EBV replication following primary infection [49]
and another with herpes gingivostomatitis [31]. There were no reports of CMV disease despite
serological evidence of exposure. Measures of adaptive immune cell number and immunoglobu-
lin production were normal, with one or two minor exceptions [49]. This suggests that adaptive
immunity, and/or IFN-II signalling, provides compensatory immunity to CMV and possibly other
herpesviruses in STAT2-deficient patients. In some cases, viral disease has also been associated
with significant systemic inflammation, reaching the criteria for HLH [50], apparently responsive to
immunoglobulin therapy [49,50]. This and related inflammatory phenotypes are observed in other
disorders (IFNAR2, STAT1, IRF9), implying immunopathology caused by aberrant activity of com-
pensatory immune pathways.
50 Trends in Genetics, January 2021, Vol. 37, No. 1
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Table 1. Human Molecular Defects of IFN-I Signalling and Their Associated Phenotypesa,b

Gene Protein expression Severe/recurrent viral disease Uncomplicated
infection

Asymptomatic
exposure

Other clinical manifestation Refs

IFNAR1 Absent P1: MMR encephalitis
P2: disseminated 17D YFV
(MMR without incident)

P1: none
P2: none

P1: CMV
P2: CMV,
HSV1, HSV2

No [35]

IFNAR2 Absent P1: MMR encephalitis (fatal)
P2: none (MMR withheld)

P1: HHV6
P2: none

P1: CMV, EBV
P2: unknown
(SCIG)

No [33]

STAT1 Absent P1: recurrent HSV
encephalitis (fatal)
P2: unknown viral pathogen
(fatal)

Unknown Unknown Both: disseminated BCG [43]

STAT1 Absent Vaccine-strain polio virus
shedding
EBV-driven LPD post-HSCT

HRV, PIV2,
polio vaccine

None Disseminated BCG
Severe hepatitis
Multiorgan failure post-HSCT
(fatal)

[45]

STAT1 Reduced expression of
truncated nonfunctional
protein ( Ex3)

Recurrent CMV pneumonitis
Encephalitis (cause not
identified)

Viral GI
infections and
RTIs
Cutaneous
HSV1

Unknown Pulmonary NTM infection
Sepsis
Recurrent pneumonia
(BCG naïve)

[44]

STAT1 Absent HLH, possibly related to MMR
and/or HHV6

Nil stated Unknown (BCG naïve) [41]

STAT1 Splicing defect ( Ex23) with
low-level expression of WT
protein

P1: None noted
P2: HSV1 gingivostomatitis,
hospitalisation for CMV and
VZV infection

Unknown Unknown P1: recurrent NTS infection (BCG
naïve)
P2: Salmonella meningitis (BCG
naïve)

[46]

STAT1 Splicing defect ( Ex8) with
low-level expression of WT
protein

P1: severe varicella
P2: none noted

Unknown P1: CMV, EBV
P2: unknown

P1: disseminated NTM infection
(BCG naïve), Candida line
infection
P2: disseminated BCG
Septic shock (fatal)

[47]

STAT2 Absent (multiple splicing
defects)

P1: MMR
pneumonitis/hepatitis
HSV1 gingivostomatitis
IAV pneumonia
P2: fatal viral illness (10
weeks)
P3: none noted (childhood
history unknown)
P4: bronchiolitis
MMR encephalitis (SNHL)
P5: hospitalisation with viral
illness

P1: none
P2: N/A
P3: unknown
P4: varicella
P5: varicella

P1: EBV
P2: N/A
P3: MMR, VZV,
CMV
P4: Unknown
P5: Unknown

None [31]

STAT2 Absent P1: opsoclonus–myoclonus
syndrome post-MMR with late
recurrence
P2: MMR encephalitis (MuV)

P1: unknown
P2: unknown

P1: Unknown
P2: Unknown

Mild renal tubulopathy
Defect of mitochondrial fission

[48]

STAT2 Absent (premature
stop/splicing defect)

P1: MMR hepatitis
Severe RSV, EV, AdV
Fatal febrile illness (7 years)
P2: severe varicella
MMR pneumonitis/hepatitis
EV meningitis
Prolonged primary EBV

P1: unknown
P2: RSV, IAV,
EV, AdV

P1: Unknown
P2: Unknown

‘Inflammatory’ responses to viral
infection

[49]

STAT2 Absent HLH post-MMR Unknown HHV6, CMV,
VZV, RSV,
AdV, PIV1–3

No [50]

(continued on next page)
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Table 1. (continued)

Gene Protein expression Severe/recurrent viral disease Uncomplicated
infection

Asymptomatic
exposure

Other clinical manifestation Refs

IRF9 Reduced expression of
truncated product ( Ex7)

Severe IAV pneumonitis
Biliary perforation post-MMR
Recurrent bronchiolitis

HMPV, RSV,
AdV, PIV1-4

HSV1, CMV,
HRV, EV

(i) Periodic fever
(ii) C1q autoantibody

[52]

IRF9 Absent P1: disseminated VZV post
vaccination
Severe dengue fever and Zika
virus disease
EV encephalitis
IAV pneumonia
RSV bronchiolitis
P2: none (on SCIG)

P1: dengue,
IBV pneumonia
P2: none

P1: Unknown
P2: Unknown

P1: recurrent pneumonia and
bronchitis, septic shock with
purpura fulminans
P2: none

[53]

JAK1 Unaffected None VZV (shingles),
HPV

Unknown Recurrent mycobacterial infection
Metastatic bladder carcinoma
(fatal)

[57]

TYK2 Absent P1: PIV3 pneumonia,
recurrent oropharyngeal
HSV1
P2: none
P3: none
P4: none
P5: none
P6: unspecified viral infection
of skin
P7: none
P8: recurrent herpes
gingivostomatitis and aseptic
meningitis

P1: molluscum
contagiosum
P2: shingles

Unknown P1: eosinophilia, elevated IgE
Disseminated BCG
NTS infection
Candidiasis
Ocular sarcoidosis
P2: disseminated BCG
Recurrent Brucella meningitis
P3: TB, bacterial meningitis (fatal)
P4: meningitis, otitis media, UTI,
asthma
P5: disseminated BCG
P6: disseminated BCG
P7: TB
P8: none

[60]

TYK2 Absent None Unknown HHV6, IAV,
parvo-B19
MMR
vaccinated

Recurrent bronchopneumonia
Duodenal perforation
Anal/skin abscesses

[61]

TYK2 Absent Recurrent herpes
gingivostomatitis and aseptic
meningitis

VZV Unknown Disseminated BCG [62]

aAll of the variants included above are pathogenic in homozygosity or compound heterozygosity.
bAdV, adenovirus; CNS, central nervous system; ECMO, extracorporeal membrane oxygenation; EV, enterovirus; HHV6, human herpesvirus 6; HPV, human papilloma-
virus; HRV, human rhinovirus; IAV/IBV, influenza A/B virus; LPD, lymphoproliferative disease; MuV, mumps virus; NTM, nontuberculous mycobacteria; NTS, non-typhoidal
Salmonella; PIV, parainfluenza virus; RTI, respiratory tract infection; SCIG, subcutaneous immunoglobulin; SNHL, sensorineural hearing loss; TB, tuberculosis.

Trends in Genetics
Homozygous IRF9 Deficiency
The clinical and molecular impact of IRF9 deficiency echoes STAT2 deficiency, reflecting the inti-
mate cooperation of these transcription factors in IFN-I and IFN-III signalling. IRF9 is the main
DNA-binding component of ISGF3. Alone, IRF9 has minimal ISRE-binding capacity or transcrip-
tional activity [51]. AR IRF9 deficiency has been described in three children in two kindreds
Box 2. IFN-I Compensation?

Compensatory interactions between IFN-I and IFN-III go both ways. The IFNLR is formed from IL10RB, the ubiquitously
expressed subunit of the IL10 receptor, and IFNLR1, which displays tissue-restricted expression mainly in epithelial cells
and hepatocytes. AR loss-of-expression mutations of IL10RB confer susceptibility to severe, early-onset inflammatory
bowel disease, a phenotype indistinguishable from null mutations of IL10RA or IL10 itself [100], presumably reflecting
the dominant role of loss of IL10 signalling in this phenotype. Notably, there have been no reports of clinical susceptibility
to mucosal viral disease [either respiratory or gastrointestinal (GI)] in over 20 patients reported to date with deficiency of
IL10RB (reviewed in [101]). This implies, but does not prove, that defects in IFN-III signalling are compensated by IFN-I,
in apparent contrast to the situation in mice, where IFN-III plays an nonredundant role in defence against rotavirus and
norovirus in the intestine [13,15] and in restricting influenza virus to the upper airway [16]. An open question is whether
IL10RB deficiency might confer a subtler defect of mucosal antiviral immunity in specific circumstances.
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[52,53]. In the original report, the proband bore a homozygous IRF9missense variant producing a
truncated IRF9 protein lacking the IRF association domain (IAD), a critical domain for STAT inter-
action. Full-length IRF9 lacks a nuclear export signal and is predominantly localised to the cytosol
through its constitutive interaction with STAT2 [51,54]. Loss of the IRF9 IAD led to an inability to
bind STAT2 and was associated with constitutive nuclear localisation of IRF9 Ex7 [52]. In the sec-
ond kindred, homozygosity of an IRF9 variant allele (c.577+1G>T) in two siblings was accompa-
nied by undetectable IRF9 protein expression [53]. An elder sibling who died with pathological
dissemination of yellow fever vaccine was probably similarly affected. In cells from IRF9-
mutated patients, STAT1 and STAT2 were appropriately phosphorylated on IFNα treatment;
however, binding to an ISRE probe was completely impaired, consistent with the failure to form
a functional ISGF3 complex. Consistent with this defect of ISGF3 assembly in IRF9-deficient
cells, the transcriptional induction of classical ISRE-containing ISGs was abolished [52,53].
RNA-seq studies of IRF9 Ex7 cells revealed the expression of a subset of ISGs in patient cells,
some to a higher magnitude than controls, implying the activity of ISGF3-independent complexes
such as GAF [52]. Responses to IFNγ were preserved in cells bearing the truncated IRF9 protein
(IFNγ response was not reported in IRF9-null cells), in contrast to reports in Irf9−/- mouse embry-
onic fibroblasts [55] and in U2A cells, an IRF9-deficient fibrosarcoma cell line [56].

As in STAT2 deficiency, IRF9-deficient children experienced life-threatening problems in control-
ling vaccine-strain viruses and evidence of increased susceptibility to mucosal viral pathogens but
not herpesviruses [52,53] (Table 1). Adaptive immune parameters were normal when monitored
during health in the first child; the proband in the second kindred had mildly reduced IgG and was
treated with intravenous immunoglobulin (IVIG) [53]. In another similarity with some STAT2-
deficient patients, periodic fevers and severe systemic inflammatory response syndrome
(SIRS) suggestive of autoinflammation were noted, the trigger for which was not identified
[52,53].

Receptor-Associated Kinases
The receptor associated kinases Janus kinase 1 (JAK1) and tyrosine kinase 2 (TYK2) play key
roles in linking innate IFN receptor ligation to transcriptional activation. However, unlike most of
the signalling molecules considered in this review, which have specific functions in IFN signalling,
JAK1 and TYK2 participate in a wide range of additional cytokine and growth factor signalling
pathways. Thus, from our IFN-centric perspective, these disorders are nonspecific and less infor-
mative. Nevertheless, they provide some interesting insights.

Partial JAK1 Deficiency
Biallelic hypomorphic mutations in JAK1 have been reported in a single individual to date [57]. The
impact of these variants on IFN-I signalling was modest, with minimal compromise of the tran-
scriptional response. Consistent with this partial defect of IFN-I signal transduction, no evidence
of a clinically relevant defect of antiviral immunity was observed in this patient, beyond a single ep-
isode of uncomplicated varicella zoster virus (VSV) reactivation (shingles). JAK1 participates in
signalling through a large range of cytokines, including IFNγ, and compromise of these cytokine
pathways appears to dictate the clinical phenotype, which was dominated by susceptibility to
mycobacterial infection and early-onset bladder carcinoma (Table 1). Complete JAK1 deficiency
has not been described in humans. Based on observations in Jak1−/- mice, this might be ex-
pected to be incompatible with postnatal life [58].

AR TYK2 Deficiency
A different picture emerges for patients deficient in TYK2. In the canonical model of IFN-I signal-
ling, based on studies in TYK2-deficient U1A fibrosarcoma cells [59], TYK2 is essential. However,
Trends in Genetics, January 2021, Vol. 37, No. 1 53
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Outstanding Questions
Why do disease outcomes vary
significantly between patients with the
same genetic defect? Is this explained
by differences in exposure or do
these disorders highlight variation in
other immune compensatory
mechanisms?

How relevant are IFN-I/IFN-III defects
to antiviral immunity across an individ-
ual’s lifespan? Does susceptibility di-
minish with age, as seen in other
monogenic innate immune disorders
(often attributed to the immunological
education of the adaptive immune
response)?

To what extent, if any, do defects in
IFN-I signalling impact subtler aspects
of adaptive immune maintenance
and/or function in humans?

Does IFN-III protect IFNAR-deficient
human epithelial surfaces from viral in-
fection? Epithelial cells respond to
both IFN-I and IFN-III, and IFNAR-
deficient patients appear no more vul-
nerable to mucosally acquired viruses
than the general population.

Is the route of live-viral vaccine delivery
a determinant of pathogenicity? Does
the process of attenuation facilitate
mutations that confer enhanced repli-
cation capacity, pathogenicity, or tro-
pism in IFN-I-incompetent hosts?

What pathomechanism underlies
hyperinflammatory phenotypes in
some patients deficient in STAT2 or
IRF9? Inflammatory disease in this
scenario may reflect failure to control
viral replication, the exaggerated
immunopathogenic activity of
compensatory immune pathways, a
defect of negative regulation, or a
combination of these.

Can knowledge of the organisation of
the IFN system be harnessed in antivi-
ral therapy or human vaccine design?
For example, IFN-III may provide an ef-
fective agent for prophylaxis or therapy
of mucosal viral disease, free from the
systemic toxicity associated with IFN-
I, and is being explored in three Phase
II clinical trials currently recruiting for
novel coronavirus disease (COVID-19)
(NCT04343976i, NCT04354259ii,
NCT04344600iii). Rationally designed
replication-competent viruses deleted
complete deficiency of TYK2 in humans has a relatively mild clinical impact on antiviral immunity
(Table 1). Reported in 11 individuals, in all cases accompanied by absent TYK2 protein expres-
sion, the clinical phenotype is dominated by susceptibility to mycobacterial and/or fungal infec-
tions [60–63], again presumably due to the involvement of TYK2 in other cytokine pathways.
Initially considered a cause of hyper-IgE syndrome [63], this was refuted by the subsequent iden-
tification of multiple TYK2-deficient cases lacking this phenotype [60]. No patients experienced
problems handling live-viral vaccines. Naturally encountered viral infections reported in TYK2-
deficient patients were in most cases mild, with herpes gingivostomatitis in three patients accom-
panied in one case by viral pneumonia; two individuals developed aseptic meningitis.

Studies in virally transformed fibroblasts, T cells, and B cells from TYK2-deficient patients demon-
strated reductions in IFNAR1 and IL10RB expression [60,61], consistent with the loss of a scaf-
folding function of TYK2 towards these receptor subunits [64]. Interestingly, in response to IFN-I
there was residual – albeit substantially reduced – STAT1 phosphorylation, ISGF3 and GAF DNA
binding, and ISG expression [60,61]. Cell-type variation was apparent, since responses to IFNα in
transformed T cells (as well as monocytes from a single case) were absent [60,61]. Unexpectedly,
IFN-III signalling (assayed in patient EBV-transformed B cells and TYK2 knockout HAP1 cells) was
preserved, suggesting that it may be TYK2 independent [60,61]. While these findings are incon-
clusive, they imply that residual IFN-III (and possibly also IFN-I) responses in TYK2-deficient pa-
tients are of a sufficient magnitude to sustain antiviral immunity. These results are broadly
compatible with Tyk2−/- mice, which are less susceptible than Ifnar1−/- mice to experimental
VSV infection [65], and where IFN-I signal transduction is only partially impaired [65,66]. Thus,
IFN-III and IFN-I responses appear to be at least partially TYK2 independent.

Interspecies Differences in IFN-I Biology?
Since much of our current understanding of IFN-I biology is derived from mouse models, we
briefly consider how the phenotypes of deficient mice and humans compare. Human and
mouse genomes contain 17 IFN-I and one IFNG genes; humans have four IFN-III genes
(IFNL1–4), whereas mice have two (Ifnl2/3) [8–10]. IFN-I signalling molecules show variable inter-
species diversity. Human and mouse IFNAR1 and IFNAR2 proteins share only 50% homology
[67]. While STAT1 is highly conserved, STAT2 has 70% homology, the lowest of all STATs [68].
Consequently, certain viral IFN-I antagonists (e.g., flaviviral NS5 proteins) do not function in the
mouse because they fail to bind murine STAT2 [69,70]. Another difference is that human but
not murine hepatocytes respond to IFN-III [39,71,72]. Accordingly, recombinant human IFNλ1
is being explored as a therapy for viral hepatitis [73].

Despite the inherent limitation of comparing results from experimental and natural infection, and
the fact that most viral pathogens are human adapted, viral susceptibility phenotypes of deficient
humans and mice broadly correspond, particularly in the case of TYK2, STAT1, and STAT2
[65,66,74–76]. Viral susceptibility has not been systematically analysed in Irf9−/- mice [55]. The
apparent exception is IFNAR-deficient mice, which demonstrate broader susceptibility to herpes-
viruses, such as HSV [77] and (murine) CMV [78,79], than humans. In addition, a range of defects
in haematopoietic stem cell (HSC) maintenance [80,81], immune cell number [e.g., reduced nat-
ural killer (NK) cells [82], expanded CD11c+ myeloid cells [83]], increased bone turnover [84], and
altered responses to alternative cytokines [colony stimulating factor 1(CSF-1), interleukin (IL)6,
and IFNγ [36,37,85]], attributed to the loss of constitutive IFN-I signalling in IFNAR-deficient
mice [38], were not observed in human patients [33,35]. Despite several caveats (low patient
numbers, the absence of deep immunophenotyping data), an obvious question is why human im-
munity is seemingly not impacted to the same degree by defective IFN-I signalling.
54 Trends in Genetics, January 2021, Vol. 37, No. 1
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for key IFN-evasion proteins are show-
ing promise as viral oncotherapy and
as vectors in animal vaccines and
may play an important role in next-
generation vaccines or gene-therapy
vectors.
Concluding Remarks
Human genetic disorders reveal that IFN-I is an important, and in certain circumstances essential,
component of the concerted antiviral response, at least in early life. However, IFNAR-deficient
patients appear significantly less susceptible to viruses that are restricted in their replication to
mucosal surfaces than patients deficient in STAT2 or IRF9. This is likely to be because IFNAR-
deficient patients will have preserved IFN-III responses in mucosal sites, whereas STAT2- and
IRF9-deficient patients will not, although this has yet to be proved in patient material (see Out-
standing Questions).

A spectrum of disease severity is also apparent, whereby the impact of STAT1 deficiency is more
serious than loss of STAT2 or IRF9, seeming to correlate with the extent of compromise to the IFN
system as a whole (Figure 2). Another notable difference between complete STAT1 deficiency
and other disorders is the vulnerability of patients with the former to herpesviruses, and in partic-
ular CMV – presumably due to defective IFNγ responses in STAT1 deficiency. The apparent lack
of CMV disease in patients with defects in IFN-I responses is striking (Table 1) and implies that
CMV has evolved such sophisticated immune evasion strategies so as to render IFN-I effectively
redundant, in contrast to the situation in vitro, where CMV has an early growth advantage in IFN-I/
IFN-III-incompetent fibroblasts [86]. CMV susceptibility is a clinical feature of defects of IFNγ sig-
nalling such as IFNGR- or STAT1- deficiency [87,88]. The only monogenic defect of IFN-I signal-
ling in which CMV susceptibility was reported – involving a hypomorphic IFNAR1 variant [89] –
was probably explained by digenic inheritance of a null mutation in IFNGR2.

An intriguing phenotype of immune dysregulation accompanies monogenic defects in IFNAR2,
STAT2, STAT1, and IRF9, which warrants further investigation. Hyperinflammatory manifesta-
tions range from periodic fever [52] and hepatitis [45] to HLH [33,41,50] and severe SIRS [53].
While temporally associated with viral infection, there is not always sustained viral replication,
and in some instances no obvious infectious precipitant could be identified [53]. We speculate
that a combination of distinct aetiological factors may contribute, including increased pathogen
load and overactivity of compensatory immune pathways, such as IFNγ and/or inflammasome-
dependent IL1 signalling (which is negatively regulated by IFN-I [90,91]).

While providing insight, these disorders also raise several interesting avenues for further enquiry
(see Outstanding Questions). Data from TYK2-deficient humans are intriguing, implying that re-
sponses to IFN-III and possibly also to IFN-I proceed independently of TYK2 in certain cell
types and that the residual IFN-I/IFN-III signalling in TYK2 deficiency may be sufficient for antiviral
defence. This would be consistent with the capacity of very low concentrations of IFN-I to induce
an antiviral state [92]. From the clinical perspective, IFNγmight offer a potential therapeutic option
in some of themolecular disorders described. IFNγ provides a degree of antiviral compensation in
IFNAR-, STAT2-, and IRF9-deficient cells in vitro, although in vivo its use may come at a cost of
immunopathology. Some of the findings in patient cells – for example, the preserved responses
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to IFNγ – contrast with what has been observed in IFNAR- or IRF9-deficient murine or fibrosar-
coma cell systems [36,37,55,56], calling into question the clinical relevance of a large body of lit-
erature derived from these models.

Viruses face a race between the speed of virus replication and the establishment of an antiviral
state mediated by any of the three IFN types. Any viral defect has the potential to tip the balance
in this race against the virus. Consequently, in a normal acute infection, the IFN system is likely to
constitute a constant selective pressure that keeps viruses maximally fit in terms of replication
speed and competence, as well as in the maintenance of mechanisms to circumvent the IFN re-
sponse [93,94]. The outcome of this race is also likely to be extremely important in governing viral
pathogenesis and host range. Collectively, the insights from human genetics summarised here
reveal the essential nature of the human IFN system as a whole and how certain viral pathogens
(e.g., CMV) subvert restriction by some, but not all, IFN types. These insights are helping to trans-
form our understanding of the function and interconnectedness of the IFN system and its place in
the concerted antiviral response in humans, which should inform the development of next-
generation vaccines and antiviral therapies.
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