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Abstract

Social distancing, a non-pharmaceutical tactic aimed at reducing the spread of COVID-19,

can arise because individuals voluntarily distance from others to avoid contracting the

disease. Alternatively, it can arise because of jurisdictional restrictions imposed by local

authorities. We run reduced form models of social distancing as a function of county-level

exogenous demographic variables and jurisdictional fixed effects for 49 states to assess the

relative contributions of demographic and jurisdictional effects in explaining social distancing

behavior. To allow for possible spatial aspects of a contagious disease, we also model the

spillovers associated with demographic variables in surrounding counties as well as allow

for disturbances that depend upon those in surrounding counties. We run our models weekly

and examine the evolution of the estimated coefficients over time since the onset of the

COVID-19 pandemic in the United States. These estimated coefficients express the

revealed preferences of individuals who were able to and chose to stay at home to avoid the

disease. Stay-at-home behavior measured using cell phone tracking data exhibits consider-

able cross-sectional variation, increasing over nine-fold from the end of January 2020 to the

end of March 2020, and then decreasing by about 50% through mid-June 2020. Our estima-

tion results show that demographic exogenous variables explain substantially more of this

variation than predictions from jurisdictional fixed effects. Moreover, the explanations from

demographic exogenous variables and jurisdictional fixed effects show an evolving correla-

tion over the sample period, initially partially offsetting, and eventually reinforcing each

other. Furthermore, the predicted social distance from demographic exogenous variables

shows substantial spatial autoregressive dependence, indicating clustering in social dis-

tancing behavior. The increased variance of stay-at-home behavior coupled with the high

level of spatial dependence can result in relatively intense hotspots and coldspots of social

distance, which has implications for disease spread and mitigation.
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Introduction

The transmission of an infectious disease such as COVID-19 depends on its basic reproduc-

tion number R0, the expected number of cases directly generated from contact with an infected

person. Social distancing, a non-pharmaceutical tactic, can reduce R0 by limiting contact with

infected persons. Social distancing may arise naturally if individuals prefer staying at home to

avoid infection and have the capacity to stay at home. Or it can arise by governmental fiat as a

non-pharmaceutical intervention to curb the spread of the disease through restrictions on

individual activities over a jurisdiction. In this paper, we examine how these factors explain

social distancing using U.S. cell phone tracking data. We also examine whether individual

behaviors differ across jurisdictions or exhibit other spatial patterns.

Modeling social distancing requires confronting two issues. First, social distancing depends

upon the prevalence of COVID-19, and the spread of COVID-19 depends upon social distanc-

ing. Therefore, social distancing and the spread of COVID-19 are simultaneously determined,

which complicates estimation of their individual effects [1, p. 151]. Second, the various ways

individual jurisdictions track the disease may introduce measurement error issues that further

complicate identification [1, p. 134]. Insofar as the process of obtaining a test may depend

upon demographic variables such as population density (rural versus urban), age, education,

race, and income, this can lead to measurement error correlated with variables in the model.

For example, drive-through testing has become popular, but this may select against poorer res-

idents without a car. Measurement error correlated with variables in the model is termed dif-
ferential measurement error, and this can lead to bias in estimation [2].

To avoid the issues of simultaneity and measurement error, we focus on reduced form

modeling of social distancing as gauged by the change in the log of the percentage of individu-

als staying at home each week using cell phone tracking data. The reduced form involves a

regression of the dependent variable as a function of exogenous demographic variables (popu-

lation density, age, education, race, and income) as well as jurisdictional fixed effects for 49

states (Hawaii excluded due to data coverage). Because of the spatial nature of a contagious dis-

ease, we also model the spillovers associated with demographic variables in surrounding coun-

ties, as well as allow for spatially dependent disturbances at the county level. This also mirrors

the possible spatial aspects of natural disasters [3, 4]. We run a separate reduced form regres-

sion for each week of data and examine the evolution of the estimated coefficients over time

since the onset of the COVID-19 pandemic in the United States. These estimated coefficients

express the revealed preferences of individuals who chose to stay at home to avoid the disease,

subject to their constraints.

The estimation results show that predicted social distance from demographic exogenous

variables explains substantially more variation in individual stay-at-home behavior than

predictions from jurisdictional fixed effects. In addition, the explanations from demo-

graphic exogenous variables and jurisdictional fixed effects show an evolving correlation

over the sample period. For the 12th week of the data (corresponding to the second full

week of April), when all states had restrictions in place following the national emergency

declaration, the predictions from the demographic variables explain 43.83% of the variance

while the fixed effect predictions explain 13.11% of the variance, with a correlation between

these two predictive components of −0.0130. By the last week of the data in our sample (the

second week of June), demographic variable predictions explain 33.18% of the variance

while fixed effect predictions explain 8.83% of the variance, with a correlation between these

two predictive components of 0.1778. A negative correlation implies that predictions from

fixed effects and demographic effects partially cancel or offset. A zero correlation implies

that the fixed effect and demographic effect predictions operate independently. A positive
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correlation implies that fixed effect and demographic effect predictions reinforce or comple-

ment each other.

Regression models on spatial data often result in clustered residuals or spatial error depen-

dence. For example, consultation among officials of nearby counties could lead to them adopt-

ing similar policies and thus obtaining similar results. Indeed, we find statistically significant

spatial error dependence. In contrast, we do not find statistically significant spillovers from the

demographic exogenous variables in surrounding counties. In other words, the racial compo-

sition or average income of surrounding counties do not appear to significantly affect the

observed social distance in a county. In addition, because the underlying exogenous demo-

graphic variables and thus the predictions show substantial spatial autoregressive dependence

(between 0.851 to 0.914, depending on the week), this indicates that social distances will also

cluster. Over the course of the data, the cross-sectional variation in social distances increased

over nine-fold from 0.0050 in week 1 to 0.0474 in week 9, and then fell by about half to 0.0234

in week 20. The increased variance coupled with the high level of spatial dependence can result

in relatively intense hotspots and coldspots of social distances.

An emerging literature surveyed by [5] and [6] points out that the constant basic reproduc-

tion number assumed in compartmental models (the Susceptible-Infectious-Recovered, or SIR

models) used in epidemiology to model disease transmission is untenable given that behavioral

responses to the fear of infection [7–12], underlying health conditions [13, 14], and work envi-

ronment [15–18] all influence the decision to social distance. Our results show that individual

behavioral responses matter, even when jurisdictional restrictions are in place, in affecting the

basic reproduction number.

Models that allow for the basic reproduction number to vary over time to capture changes

in behavior or policy such as [19] show a better fit with the data on the spread of COVID-19.

Our results add to this line of work by suggesting that individuals with the capacity and desire

to avoid risk in hard hit areas may lead to models overestimating the spread of disease based

on initial infections. Conversely, individuals in areas without much incidence of the disease

may not engage in social distancing and thus be quite susceptible to the disease when it finally

spreads. They also suggest that the worst cases for disease spread may exist in areas where the

residents have reduced capacity to avoid risk through voluntary distancing such as in poor,

densely populated neighborhoods. In this setting the constant R0 assumption may hold.

Data and background

Demographic data is collected from the American Community Survey (ACS) data provided by

the U.S. Census. We use the 5-year estimates that conclude in the year 2018, because this is the

most recent ACS data that includes coverage for every U.S. county. We take a county’s popula-

tion size to be the population estimated by the U.S. Census for July 1, 2019. To convert the

population level into a population density, we obtain county land area from the 2019 release of

the U.S. Census Gazetteer data.

Table 1 reports summary statistics of the exogenous variables used in this study. Population

density (Pop) is the most highly skewed variable, with a minimum of 0.04 people per square

mile (Yukon-Koyukuk, AK) and a maximum of 71,872.6 people per square mile (New York,

NY). In the median county, 29.3 percent of households have at least one child (Child) under

18 years of age. In the median county, 87 percent of the population have not obtained a bache-

lor’s degree or higher (HS), and 89.9 percent of the population is white (White). The median

household income (Income) for the median county is $49,871.8.

We infer county-level rates of individuals staying at home using GPS data from SafeGraph.

The company collects anonymized location data of individuals via GPS pings from cell phones.
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In response to the pandemic, SafeGraph released their aggregated and anonymized data to

researchers, and began publishing additional data, including a Social Distancing Metrics data-

set. This dataset covers all 50 U.S. states as well as Washington, D.C. We find incomplete

county coverage in Hawaii, and therefore exclude it from our analysis. The Social Distancing

Metrics data record, aggregated to a Census Block Group (CBG) level, the number of active

devices in the CBG on a given day and the count of those devices that never leave the user’s

inferred home location on that day. We aggregate these CBG-level numbers to the county-

level and then define our proxy for social distancing by dividing the number of devices

completely at home by the total number of active devices. The average rate of devices staying

at home over a given week is then taken to be the level of social distancing in the county.

Table 2 presents the evolution of this measure of social distancing over the 21 weeks of data

in our sample beginning with the third week of January, 2020. The median percentage of

Table 1. Percentiles of exogenous demographic variables.

Percentiles Pop Child HS White Income

Min 0.0 6.7 52.0 3.9 20,188.0

5th 1.0 20.7 75.2 47.5 33,528.2

10th 4.0 22.8 78.3 60.6 36,876.4

25th 16.3 26.0 83.0 77.3 42,479.5

50th 44.4 29.3 87.0 89.9 49,871.8

75th 114.5 32.5 90.1 95.1 57,468.2

90th 396.0 36.2 92.1 96.9 67,184.6

95th 856.0 38.0 93.2 97.6 77,227.2

Max 71,872.6 70.1 100.0 100.0 136,267.0

https://doi.org/10.1371/journal.pone.0239572.t001

Table 2. Percentiles of percentage staying home by week.

Week Min 5th 10th 25th 50th 75th 90th 95th Max

1 6.68 17.30 18.33 20.09 22.22 24.74 27.35 29.30 50.78

2 7.37 17.19 18.16 19.94 22.16 24.56 27.24 29.59 50.11

3 8.19 19.62 20.90 23.10 25.52 28.11 30.86 32.78 50.17

4 5.54 18.25 19.42 21.39 23.58 26.07 28.45 30.22 47.79

5 5.89 18.27 19.28 21.01 23.17 25.57 27.96 30.05 48.48

6 6.58 19.80 20.81 22.43 24.57 26.66 29.11 30.90 52.05

7 8.16 16.49 17.40 18.86 20.75 22.77 24.57 26.09 49.51

8 6.54 16.53 17.76 19.65 21.68 23.80 25.83 27.16 49.74

9 6.25 23.35 24.71 27.04 29.51 32.08 35.02 37.02 50.84

10 5.15 23.37 24.92 27.64 31.04 35.22 39.11 41.38 55.73

11 7.68 28.41 29.72 32.68 35.69 39.28 42.74 45.17 59.49

12 6.01 29.09 30.50 33.00 36.23 39.94 43.39 45.77 60.51

13 6.80 26.75 28.48 31.35 34.90 38.78 42.62 45.24 59.26

14 4.80 24.64 26.14 28.84 32.09 35.73 39.84 42.42 57.42

15 5.70 23.22 24.87 27.45 30.89 34.63 38.45 40.93 55.26

16 7.71 22.66 24.23 27.40 31.40 35.31 38.83 41.61 57.80

17 5.14 22.08 23.67 26.47 29.99 33.71 37.16 39.84 53.55

18 4.50 21.04 22.55 25.23 28.72 32.01 35.52 38.05 52.48

19 3.36 20.93 22.23 24.58 27.65 31.18 34.69 36.95 54.00

20 4.25 19.66 20.88 23.08 26.09 29.72 33.52 35.61 54.81

21 9.68 20.21 21.66 23.98 27.30 30.90 34.85 36.55 53.15

https://doi.org/10.1371/journal.pone.0239572.t002
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people social distancing is about 25% prior to President Trump’s National Emergency Declara-

tion on March 14, 2020 (week 7). Following the declaration, there is a sharp increase in indi-

viduals staying at home in weeks 8 through 12. It begins to decline in mid-April when

individual states relaxed their stay-at-home restrictions, but stays elevated relative to pre-emer-

gency levels. The variation in the range of social distancing shows a similar pattern across the

weeks.

The presidential emergency declaration was not the only governmental response to the

pandemic. States responded to the health care crisis by issuing non-pharmaceutical interven-

tions (NPI), such as mandated closure of certain businesses. The responses varied by state, and

were implemented at varying points over our sample period. Moreover, these de jure NPIs

have heterogeneous de facto implementation/enforcement. As [20] document, an extensive

variety of the actual policies were implemented at different times over the outbreak. This het-

erogeneity impedes direct modeling of specific measures. To address these issues, we include

state fixed effects along with other control variables. The efficacy of the underlying restrictions

will implicitly appear as evolving parameter estimates by week.

We also obtain county-level disease data from the New York Times and report summary sta-

tistics of new disease counts in Table 3 for illustrative purposes. The highly decentralized

nature of disease tracking leads to significant issues in U.S. disease case data. Substantial het-

erogeneity exists at the county level due to differences in testing eligibility (whether an individ-

ual can receive a test), testing access (whether the county had test kits available), testing rules

(e.g., whether tests are required on the deceased), and reporting rules (e.g., classification of

results for non-residents). As Table 3 shows, fewer than five percent of counties reported new

cases in the week of the national emergency declaration. This is not because cases were rare at

this time, but rather because of limitations in testing availability during the first months of the

Table 3. Percentiles of new cases by week.

Week Min 5th 10th 25th 50th 75th 90th 95th Max

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.00

6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.00

7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 80.00

8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 330.00

9 0.00 0.00 0.00 0.00 0.00 0.00 1.00 13.00 1,802.00

10 0.00 0.00 0.00 0.00 0.00 2.00 23.00 61.65 6,646.00

11 0.00 0.00 0.00 0.00 1.00 10.00 45.00 117.30 7,953.00

12 0.00 0.00 0.00 0.00 2.00 12.00 54.00 131.30 9,155.00

13 0.00 0.00 0.00 0.00 2.00 12.00 55.00 136.65 6,687.00

14 0.00 0.00 0.00 0.00 2.00 13.00 64.30 157.65 9,302.00

15 0.00 0.00 0.00 0.00 2.00 15.00 68.00 173.65 11,750.00

16 0.00 0.00 0.00 0.00 2.00 15.00 71.00 171.65 10,331.00

17 0.00 0.00 0.00 0.00 2.00 15.00 67.00 163.30 9,563.00

18 0.00 0.00 0.00 0.00 3.00 18.00 72.00 163.25 9,792.00

19 0.00 0.00 0.00 0.00 3.00 17.00 68.00 165.25 5,915.00

20 0.00 0.00 0.00 0.00 3.00 18.25 75.00 165.65 4,502.00

21 0.00 0.00 0.00 0.00 4.00 18.00 79.00 175.65 5,194.00

https://doi.org/10.1371/journal.pone.0239572.t003
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pandemic [21, 22]. The various sources of measurement error or selection mechanisms present

in these data motivate the approach we use which avoids case data. We discuss the statistical

justifications for this in the following section.

Empirical strategy

As mentioned earlier, the virus contagiousness depends on social distancing, and social dis-

tancing may depend upon both the contagiousness and virulence of the virus. Ideally, one

could model these as simultaneous equations where the system dependent variable Yt is an n ×
2 matrix. Specifically, Yt contains an n × 1 vector of observations on the virus vt and an n × 1

vector of observations on the social distancing variable, ht, which could represent the propen-

sity of residents to stay in their homes at time t as shown in (1) and (2). In (2) X represents the

exogenous explanatory variables, Γt represents the parameters governing the influence of each

endogenous variable on the other at time t, and Et represents the disturbances at time t.

Yt
ðn�2Þ

¼ ht
ðn�1Þ

vt
ðn�1Þ

h i

ð1Þ

Yt
ðn�2Þ

Gt
ð2�2Þ

¼ X
ðn�kÞ

Bt
ðk�2Þ

þ Et
ðn�2Þ

ð2Þ

The equation representation in (2) is referred to as a structural form of the model [23,

p. 528] and these require special techniques or data to avoid inconsistent estimation. Specifi-

cally, if the virus vt and the social distancing variable ht are simultaneously determined, estimat-

ing a single equation of social distancing as a function of the virus will lead to inconsistent

parameter estimates of the effect of the virus vt on social distancing ht. In other words, estimat-

ing an equation such as ht = x1 β(t)1 + � � � + xp β(t)p + vt β(t)p+1 + ε(t) will lead to an inconsistent

parameter estimate of β(t)p+1, the effect of the virus vt on social distancing ht [1, p. 151]. A simi-

lar situation exists in economics where modeling supply and demand but ignoring simultaneity

led to incorrect signs on the effects of price on supply and demand. This motivated many of the

techniques and ideas associated with simultaneous equations from the 1930s onward [24].

However, the identification and estimation of structural equations in (2) sometimes proves

challenging. The most common means of obtaining identification requires a variable (instru-

ment) that affects one of the endogenous variables, but not the other. Unfortunately, this exo-

geneity condition cannot be tested empirically and becomes a potential weak point in the

analysis. Moreover, the non-uniform nature of reporting of COVID-19 tests, hospitalization,

and deaths across jurisdictions raises issues about measurement error concerning the virus. In

a simultaneous equation system, measurement error in one equation (virus) could affect the

other equation (social distancing). To avoid this, we resort to modeling the unrestricted

reduced form [23, p. 528] as shown in (3). In an unrestricted reduced form each dependent

variable can be estimated consistently when using all the exogenous variables in X. The result-

ing parameter estimates Pt in (4) show the effect of a particular exogenous variable on the

dependent variable.

Yt ¼ XPt þ EtG
� 1

t ð3Þ

Pt ¼ BtG
� 1

t ð4Þ

Because the exogenous variables, X, do not change over the period, each cross-sectional

estimate can yield different sets of estimates of Pt. In this way choices by individuals concern-

ing their desire to avoid the virus can express an evolving response to the presence of the
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disease. Staying at home reveals a preference for safety (subject to the capacity to stay at

home). Our interest concerns the changes in behavior over the rise of the disease and to do

this we difference the reduced form equations at time t and time 0 as shown in (5).

Yt � Y0 ¼ X½Pt � P0� þ ½EtG
� 1

t � E0G
� 1

0
� ð5Þ

Note, for the unrestricted reduced form one can estimate this equation by equation. In this

case, since the focus lies on social distancing as a function of the exogenous variables, we can

move to a simpler single equation model, a subject taken up in the next section.

In summary, social distancing and disease are determined simultaneously and a simple sin-

gle equation estimation that treats one of the endogenous variables as a typical right hand side

variable can lead to inconsistent estimates. Although one could attempt to simultaneously

model these variables using a structural form, identification of these systems can be challeng-

ing. In addition, the disease data have many non-uniform reporting issues that may adversely

affect estimation. To avoid this we resort to unrestricted reduced form modeling. The reper-

cussions of the prevalence of the disease show up in the evolving parameter estimates since

the exogenous variables stay fixed over the period of the disease. By differencing the reduced

forms at time 0 and time t we see the change in individual behavior as a function of the exoge-

nous variables.

Model

In this section we describe the actual single equation model used in estimation based on the

reduced form interpretation in the previous section. We begin by defining y(t) as log of the

percentage of the population staying at home at week t, h(t), as in (6). In contrast to the previ-

ous section, we switch to a parametric notation indexed by t because this allows use of both

subscripts and powers for the various components in the models. The indexing of the parame-

ters, disturbances, and dependent variable by t in the model indicates a series of cross-sectional

regressions where the values of the parameters over time reflect individuals’ revealed prefer-

ence for safety by staying at home. Because our interest focuses on the relative change in y(t)
over time our dependent variable Δ(t) in (7) equals y(t) − y(0). Using changes may help reduce

omitted variables that have a similar influence over period 0 and t. Because our period of

differencing is relatively short (up to 20 weeks), many influences from omitted variables may

be reduced.

yðtÞ
ðn�1Þ

¼ lnðhðtÞÞ ð6Þ

DðtÞ
ðn�1Þ

¼ yðtÞ � yð0Þ ð7Þ

We selected variables to represent the basic demographic characteristics of population den-

sity, age, education, race, and income. For ease of interpretation, we selected only one variable

from each major category. Specifically, the explanatory variables include the log of the popula-

tion density (Pop), log of the percentage of households with children under 18 (Child), log of

the percentage of workers without a college degree (HS), log of percentage White in the popu-

lation (White), and log of median income (Income) as shown in (8) to (12). Because some

counties have no minority residents, we coded the race variable as White to avoid taking the

log of 0. Similarly, some counties have no college graduates and so we coded the education var-

iable as the percentage of the population without a college degree. This would include individ-

uals that did not complete high school, but for simplicity we denoted this as HS. The Child
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variable captures some element of age, but also captures the effect of school shutdowns which

may have forced many parents to stay at home.

Pop ¼ ln ðPopulationÞ � ln ðAreaÞ ð8Þ

Child ¼ ln ðHouseholds With Persons Under 18Þ � ln ðPopulationÞ ð9Þ

HS ¼ ln ðPeople without Collge DegreeÞ � ln ðPopulationÞ ð10Þ

White ¼ ln ðWhite IndividualsÞ � ln ðPopulationÞ ð11Þ

Income ¼ ln ðMedian IncomeÞ ð12Þ

We use the demographic explanatory variables in (8) to (12) to compose the n × 5 matrix Z
in (13) and also create a n × 50 matrix S of dichotomous variables for 49 States in (14) as well

as a constant vector (intercept). Specifically, we include a constant term ιn defined in (15) and

exclude the District of Columbia from the dichotomous variables to avoid perfect multicolli-

nearity in (14).

Z
ðn�5Þ
¼ ½Density Child HS White Inc � ð13Þ

S
ðn�50Þ

¼ ½ in AL AK AZ . . . WV WI WY � ð14Þ

in
ðn�1Þ

¼ ½ 1 1 . . . 1 �
0

ð15Þ

The contagious nature of COVID-19 suggests the need of explicitly incorporating spatial

aspects into the model. We do so in four ways: (1) we examine changes in social distancing

behavior and that should reduce the influence of omitted variables with relatively constant

importance; (2) we incorporate fixed jurisdictional effects (S); (3) we allow for spillovers from

exogenous demographic variables from surrounding counties to enter the model; and (4) we

allow for spatial dependence in the disturbances which can capture nearby omitted variables.

To specify spillovers and dependence in the disturbances, spatial econometrics often uses a

n × n weight matrix W to create spatial lags of variables so that Wv becomes the spatial lag of

an n × 1 variable v. This matrix contains positive, fixed elements if observations neighbor each

another and zero elements for non-neighboring observations as shown in (16). Also, to pre-

vent neighbors from predicting themselves the diagonal elements of W equal 0 as specified in

(17). Most commonly, W is row normalized so that each row sums to 1 as in (18). Because

each row sums to 1 and W contains only non-negative elements, W is a row-stochastic matrix

[25, 26]. Note, a matrix can be row-stochastic in the linear algebra sense while containing only

non-stochastic elements in the probabilistic sense. Therefore, Wv becomes an average of

observations that lie nearby each element of v and (Wv)i does not contain vi. Having λ(t)2(−1,

1) as shown in (18) leads to a sufficient condition for a positive definite covariance matrix in
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many spatial econometric models using row-stochastic W.

Wij > 0 if observations i; j are neighbors; otherwise Wij ¼ 0 ð16Þ

Wii ¼ 0 ð17Þ

Win ¼ in; lðtÞ 2 ð� 1; 1Þ ð18Þ

To incorporate all of these spatial aspects into a model, we selected the spatial Durbin

model (SDM) in (19) and (20) as well as the spatial Durbin error model (SDEM) with jurisdic-

tional fixed effects as general specifications as shown in (21) and (22). The SDM and SDEM

subsume non-spatial ordinary least squares (OLS) with and without jurisdictional fixed effects,

the spatial lag of X model (SLX) with and without jurisdictional fixed effects, and the spatial

error model (SEM) with and without jurisdictional fixed effects. However, they do not nest

each other and the SDM also nests the spatial autoregressive model (SAR). Note, the acronymn

SAR stands for a spatial error model in spatial statistics such as in Orr (1975), but stands for a

spatially lagged dependent variable model in spatial econometrics. The SDM can yield models

with global spatial spillovers while the SDEM only yields local spatial spillovers. For untrans-

formed dependent and independent explanatory variables, the estimates from OLS, SLX, SEM,

and SDEM also equal the respective marginal effects. For the SDM and SAR the parameter

estimates do not equal the marginal effects. For a discussion of these two models and the

restrictions that lead to OLS, SLX, and SEM see [26], [27], as well as [28]. Note, other research

using these spatial econometric models for investigating the virus, but not social distance, has

found significant spatial influences on the disease [29, 30].

DðtÞ ¼ lðtÞWDðtÞ þ S � aðtÞ þ Z � bðtÞSDM þWZ � yðtÞSDM þ εðtÞ ð19Þ

εðtÞ � Nð0; s2InÞ ð20Þ

DðtÞ ¼ S � aðtÞ þ Z � bðtÞSDEM þWZ � yðtÞSDEM þ xðtÞ ð21Þ

xðtÞ ¼ lðtÞWxðtÞ þ εðtÞ ð22Þ

To show the ability of the SDEM to nest other well known spatial models in more detail, we

present these more specific models in (23) to (28). The SDEM with fixed effects subsumes the

non-spatial OLS with and without jurisdictional fixed effects (23, 24), spatial lag of X (SLX)

with and without jurisdictional fixed effects (25, 26), and the spatial error model (SEM) with

and without jurisdictional fixed effects (27, 28). In the models without jurisdictional fixed

effects, the scalar κ(t) represents the effect at time t of the constant vector ιn or intercept.

DðtÞ ¼ inkðtÞ
ð1�1Þ

þ ZbðtÞO þ εðtÞ ð23Þ

DðtÞ ¼ SaðtÞ þ ZbðtÞO� FE þ εðtÞ ð24Þ

DðtÞ ¼ inkðtÞ þ ZbðtÞSLX þWZyðtÞSLX þ εðtÞ ð25Þ

DðtÞ ¼ SaðtÞ þ ZbðtÞSLX� FE þWZyðtÞSLX� FE þ εðtÞ ð26Þ

DðtÞ ¼ inkðtÞ þ ZbðtÞSEM þ xðtÞ ð27Þ
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DðtÞ ¼ SaðtÞ þ ZbðtÞSEM� FE þ xðtÞ ð28Þ

Note, if θ(t) is non-zero and Z and WZ exhibit correlation, estimates of β(t) in a model

without WX can exhibit bias [26, 28]. If λ(t) 6¼ 0, inference based on the assumptions of inde-

pendent disturbances can be inconsistent [26, 31]. Estimation of the independent error models

in (23) to (26) can use ordinary least squares. Estimation of the SDM, SDEM and the SEM in

(19), (21), (27) and (28) requires other techniques such as maximum likelihood [26, 31]. Note,

minimizing sum of squared errors will typically lead to overly large values of λ(t), whereas

maximum likelihood involves a log-determinant term ln|In − λ(t)W| that penalizes such

large values [26, 31]. We used maximum likelihood to produce the estimates in the empirical

section.

In terms of interpretation, β(t) from the non-spatial OLS and SEM has the usual partial

derivative interpretation where changes to an explanatory variable’s value for an observation

only affect that observation’s dependent variable. However, the SLX and SDEM contain the

term WZ and this allows for an observations’ neighbor value to have an effect on the observa-

tion. In the SLX and SDEM β(t) measures the direct effects and θ(t) measures the indirect
effects of a neighbor on an observation [26, 27]. Because of the double log specification of the

empirical model, one can interpret the estimates as elasticities.

Various specifications such as the spatially autoregressive model (SAR) or the spatial Dur-

bin model (SDM) incorporate a spatially lagged dependent variable, WΔ(t).

DðtÞ ¼ lðtÞWDðtÞ þ inkðtÞ þ ZbðtÞSAR þ εðtÞ ð29Þ

DðtÞ ¼ lðtÞWDðtÞ þ SaðtÞ þ ZbðtÞSAR� FE þ εðtÞ ð30Þ

DðtÞ ¼ lðtÞWDðtÞ þ inkðtÞ þ ZbðtÞSDM þWZyðtÞSDM þ εðtÞ ð31Þ

DðtÞ ¼ lðtÞWDðtÞ þ SaðtÞ þ ZbðtÞSDM� FE þWZyðtÞSDM� FE þ εðtÞ ð32Þ

The incorporation of the spatially lagged dependent variable for these models means that

the estimates do not equal the marginal effects in contrast to the error models (SLX, SEM, and

SDEM) presented earlier. To use the example of SDM with fixed effects from (32), solving for

Δ(t) yields an expression in (33) with the endogenous variable on the left-hand side and the

exogenous variables on the right-hand side. Note, (In − λ(t)W)−1 = In+ λ(t)W+ λ(t)2 W2+ . . .

and thus this has the effect of incorporating the immediate spatial lag of the exogenous vari-

ables, a spatial second order lag of the exogenous variables, and so forth. Terms such as W2

provide a second-order spatial lag so that W2 v equals W(Wv) so that this term gives the spatial

average of the spatial average of v. Higher order powers of W act in a similar way. A high order

power of W will often have all positive elements and therefore each observation affects every

other observation and this means that models using such high powers of W have a global

nature. Therefore, the SDM contains both local and global spatial lags of the exogenous vari-

ables. Note that if the magnitude of λ(t) is low, (In − λ(t)W)−1 might converge in just a few

terms and therefore the model still has a local nature. This sometimes makes it difficult to dis-

tinguish SEM and SAR or SDEM and SDM when low levels of spatial dependence exist.

DðtÞ ¼ ðIn � lðtÞWÞ
� 1
½SaðtÞ þ ZbðtÞSDM þWZyðtÞSDM� FE þ εðtÞ� ð33Þ

To summarize, we use differencing of the dependent variable, jurisdictional fixed effects,

demographic variables, spatial spillovers, and spatial error dependence to explain social
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distancing. First, differencing of the dependent variable may reduce the influence of any omit-

ted variable whose importance does not change much over the sample time period (20 weeks).

Second, since states have set forth restrictions due to the disease, jurisdictional fixed effects

should play a role in social distancing. Third, most social cross-sectional phenomena vary with

demographics and thus the inclusion of demographic exogenous variables. Specifically, the

nature of the disease suggests that population density matters. Also, having a child present in

the household may require an adult in residence with school and day care closures. Education

often dictates the types of jobs that individuals hold and many of the jobs that allow remote

work require more education. Income also allows individuals the ability to socially isolate.

Fourth, a contagious disease suggests spatial spillovers and so these should be present in the

more general models. Fifth, cross-sectional data models often exhibit spatially dependent

residuals and so a model should be capable of handling them. This still leaves a number of pos-

sible specifications. Given the array of possible spatial specifications, we wish to examine their

performance in the next section. We also examine a number of alternative specifications in a

later section in which we explore the robustness of our principal model.

Specification search

Because the choice of the model as well as the form of W has potential to affect the results, we

conducted a specification search using the well known Bayesian Information Criterion [32] or

BIC. For the BIC, the optimal model has the lowest value out of a series of candidate models.

Specifically, we examined SAR, SEM, SDEM, and SDM with and without jurisdictional fixed

effects. The results appear in Table 4 (note the BIC that we report is scaled by n to facilitate for-

matting). For the models with fixed effects, during the first five weeks, SAR had the lowest

BIC, during week six SDM had the lowest BIC, and during weeks 7–20 SEM displayed the

Table 4. BIC across models across weeks (15 nearest neighbors).

Week SEM SDEM SDM SAR SEM SDEM SDM SAR

FE FE FE FE Con. Con. Con. Con.

1 2.5518 2.5613 2.5504 2.5396 2.4607 2.4726 2.4726 2.4632

2 3.0407 3.0487 3.0388 3.0292 2.9404 2.9505 2.9499 2.9436

3 3.0842 3.0933 3.0855 3.0757 3.0078 3.0207 3.0204 3.0093

4 3.0608 3.0697 3.0599 3.0503 2.9878 2.9967 2.9962 2.9925

5 3.1429 3.1554 3.1499 3.1396 3.0696 3.0751 3.0744 3.0978

6 3.8823 3.8858 3.8783 3.8837 3.7998 3.8031 3.8012 3.8142

7 4.2429 4.2515 4.2472 4.2469 4.1638 4.1728 4.1714 4.1834

8 4.2248 4.2274 4.2251 4.2361 4.1681 4.1638 4.1618 4.2309

9 4.2628 4.2659 4.2635 4.2722 4.2054 4.2023 4.2018 4.2596

10 3.8942 3.8992 3.8956 3.9120 3.8360 3.8364 3.8354 3.9218

11 3.8481 3.8537 3.8489 3.8619 3.7873 3.7840 3.7830 3.8823

12 3.9223 3.9296 3.9249 3.9367 3.8579 3.8611 3.8615 3.9380

13 3.9104 3.9175 3.9130 3.9279 3.8354 3.8330 3.8328 3.9043

14 3.7966 3.8072 3.8049 3.8135 3.7241 3.7288 3.7288 3.7785

15 3.7573 3.7699 3.7669 3.7692 3.6913 3.7001 3.6993 3.7389

16 3.7505 3.7621 3.7592 3.7598 3.6918 3.7016 3.7013 3.7430

17 3.7297 3.7417 3.7357 3.7363 3.6618 3.6726 3.6716 3.6949

18 3.7037 3.7148 3.7123 3.7084 3.6367 3.6458 3.6452 3.6613

19 3.7328 3.7436 3.7407 3.7401 3.6657 3.6745 3.6737 3.6913

20 3.7288 3.7395 3.7352 3.7373 3.6526 3.6616 3.6611 3.6768

https://doi.org/10.1371/journal.pone.0239572.t004
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lowest BIC. For the models using only a constant, SEM showed the lowest BIC for weeks 1–7,

12, and 14–20, SDM showed the lowest BIC from weeks 8–11 and 13, while SDEM showed the

lowest BIC in week 12. Taken as a whole the SEM seemed to display the lowest levels of BIC

across the weeks and so we will take this as our base model. Note, the models without fixed

effects provided a lower BIC than the models with fixed effects. However, the role of the fixed

effects is theoretically important in this application and so we will leave these in our base

model. We also examined different numbers of neighbors. Using 15 nearest neighbors resulted

in the lowest BIC in week 20 for SEM with fixed effects (3.7288). Using 14, 16 nearest neigh-

bors yielded higher values of 3.7294, 3.7304. In summary, we will use SEM with fixed effects

(SEM-FE) with 15 nearest neighbors as our base model.

The various information criteria such as Akaike Information Criterion (AIC) [33, 34] and

BIC differ on the weight given to parsimony versus performance and a criterion such as AIC

which does not penalize model complexity as much as the BIC would result in different rank-

ings of the models. To further examine the performance of alternative models, in a later section

we fit the SAR, SEM, SDEM, and SDM with and without jurisdictional fixed effects, SEM FE

with 10 as well as 20 nearest neighbors, and SEM FE applied to an alternate measure of social

distance. We subsequently examine the correlation among the marginal effects of these 8 spec-

ifications across the 20 weeks of the data. In the next section, we provide our base model

SEM-FE estimates.

Estimates

We use the spatial error model (SEM) with fixed effects for each jurisdiction as the baseline

model as described previously in (28) and (22). Estimation uses a W matrix based on 15 near-

est neighbors. We examine the sensitivity to choices of W in the following section. The results

of estimation of the demographic exogenous variables appear in Table 5 where t-values appear

below their respective estimates. The results of estimation of the significant fixed effect coeffi-

cients appear in Table 6.

Over the course of time the estimated coefficient on population density (Pop) started at a

significant −0.007 in week 1 indicating that urban dwellers stayed home less than rural dwell-

ers at the beginning of the rise of the disease. However, this changed over time until population

density showed a positive 0.025 coefficient indicating that urban dwellers stayed home more

than rural dwellers by week 20. The break in behavior occurred between weeks 5 and 6 where

population density switched from a significant −0.014 to a significant 0.014. Percentage of

households with children (Child) also showed an evolution from significant −0.021 to 0.046,

with a large break occurring from week 6 to week 8. This may represent the repercussions of

school closures in many areas. The Child variable coefficient reached a peak of 0.125 in week 9

and declined to 0.046 in week 20. The coefficient associated with the log of the proportion of

individuals without a college degree (HS) went from a −0.068 to a peak of −0.954 in week 15,

with a break happening between week 7 and 8. The coefficient declined to a significant −0.768

by week 20. This could have happened because individuals with a college degree may have

been able to work at home which increased the percentage of the time they stayed at home rel-

ative to their less-educated counterparts. Areas with a higher log proportion of whites (White)

showed an insignificant effect of staying at home in week 1 of −0.006, which rose to a signifi-

cant 0.089 by week 9 and declined back to insignificance (−0.011) by week 20. Again, the larg-

est break happened between weeks 7 and 8. Finally, median income (Inc) also began with an

insignificant effect in week 1 of −0.007, then rose by a factor of 22 by week 13 to a significant

0.502, again with a large break between weeks 7 and 8. From the peak it declined in magnitude

to a significant 0.046 in week 20. Note, estimates of the spatial error dependence parameter
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λ(t) always exhibited significance but generally fell from early in the crisis (λ(t) = 0.542, 0.657

in weeks 1, 2) to later in the crisis (λ(t) = 0.349, 0.399 in week 18,20). This indicates that the

influence of spatially related omitted variables fell over this time period.

The fixed effect estimates across jurisdictions shown in Table 6 show some interesting fea-

tures. Strikingly, at a one percent level (two tailed test), none of the 49 jurisdictions show a sta-

tistically significant effect in weeks 1 through 8 relative to the base jurisdiction of the District

Table 5. ‘stay-at-home’ SEM estimates (with state fixed effects—Not shown).

Week Pop Child HS White Inc λ(t)
1 −0.007 −0.021 −0.068 −0.006 −0.007 0.542

−6.286 −2.761 −2.404 −0.971 −0.758 14.116

2 −0.007 −0.009 −0.157 0.005 −0.000 0.657

−4.388 −0.908 −4.338 0.634 −0.021 18.708

3 −0.005 0.000 −0.151 0.003 −0.004 0.375

−3.435 0.046 −4.088 0.367 −0.381 8.212

4 −0.008 0.014 −0.177 0.016 0.009 0.465

−5.354 1.473 −4.845 2.130 0.760 11.089

5 −0.014 0.038 −0.340 0.057 0.011 0.429

−8.856 3.848 −8.892 7.340 0.909 10.131

6 0.014 0.020 −0.119 0.021 0.037 0.442

5.986 1.365 −2.164 1.876 2.207 10.170

7 0.029 0.068 −0.141 0.021 0.077 0.351

10.988 3.962 −2.151 1.627 3.866 7.787

8 0.032 0.119 −0.442 0.074 0.212 0.423

11.861 6.938 −6.758 5.582 10.518 9.521

9 0.042 0.125 −0.455 0.089 0.240 0.367

15.349 7.145 −6.835 6.680 11.744 8.053

10 0.027 0.100 −0.653 0.072 0.191 0.439

11.762 6.855 −11.669 6.363 11.091 9.944

11 0.026 0.101 −0.721 0.078 0.173 0.420

11.680 7.046 −13.150 7.118 10.311 9.455

12 0.025 0.094 −0.797 0.069 0.179 0.407

10.930 6.359 −13.997 6.123 10.342 9.041

13 0.030 0.090 −0.769 0.065 0.163 0.502

13.012 6.090 −13.555 5.657 9.320 11.932

14 0.028 0.078 −0.874 0.024 0.141 0.455

12.872 5.619 −16.233 2.194 8.646 10.754

15 0.026 0.060 −0.954 0.019 0.104 0.409

12.391 4.449 −18.003 1.865 6.551 9.377

16 0.026 0.066 −0.911 0.002 0.117 0.377

12.536 4.922 −17.314 0.176 7.421 8.424

17 0.027 0.065 −0.828 −0.008 0.091 0.432

12.733 4.854 −15.889 −0.791 5.768 10.074

18 0.029 0.061 −0.747 −0.002 0.083 0.349

14.031 4.606 −14.650 −0.230 5.437 7.675

19 0.025 0.071 −0.822 −0.022 0.060 0.416

12.149 5.304 −15.784 −2.179 3.855 9.674

20 0.025 0.046 −0.768 −0.011 0.046 0.399

12.190 3.393 −14.786 −1.030 2.925 9.018

https://doi.org/10.1371/journal.pone.0239572.t005
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of Columbia. In week 10 and 11, eight and five of the 49 states did exceed the critical value of

2.58, respectively. Despite the paucity of t−values with a large magnitude, a joint likelihood

ratio test across all jurisdictions shows in terms of a fixed effects versus a single intercept

model, twice the difference in likelihood between SEM-FE and SEM gives values between 84.8

to 199.2 over the 20 weeks. The critical value at one percent would be 74.92 (based on 49 d.f.).

Therefore, one cannot reject the hypothesis that the fixed effects are jointly significant. Inter-

estingly, the intercept in Table 6 only differs significantly from zero in 3 out of the 20 weeks.

To obtain some insight into the relative contributions of jurisdictional fixed effects and of

demographic exogenous variables, we break apart the overall prediction D̂ðtÞ in (34) into a

fixed effects component D̂ðtÞFE in (35) and a demographic component D̂ðtÞD in (36). As is well

known, the variance of the sum of two random variables equals the sum of their individual var-

iables along with an interaction term in (37).

D̂ðtÞ ¼ D̂ðtÞFE þ D̂ðtÞD ð34Þ

D̂ðtÞFE ¼ SâðtÞ ð35Þ

D̂ðtÞD ¼ Zb̂ðtÞSDEM� FE ð36Þ

var ðD̂ðtÞÞ ¼ var ðD̂ðtÞFEÞ þ var ðD̂ðtÞDÞ

þ2 var ðD̂ðtÞFEÞ
1=2
� var ðD̂ðtÞDÞ

1=2
� corr ðD̂ðtÞFE; D̂ðtÞDÞ

ð37Þ

To make (37) more intuitive, we redefine (37) in terms of R2(t) in (38) with R2(t) for indi-

vidual components of R2(t)FE in (39) and R2(t)D in (40). This allows writing the overall R2(t) in

terms of the individual components of R2(t)FE and R2(t)D as well as the correlation between the

predictions corr ðD̂ðtÞFE; D̂ðtÞDÞ in (41).

R2ðtÞ ¼
var ðD̂ðtÞÞ
var ðDðtÞÞ

ð38Þ

R2ðtÞFE ¼
var ðD̂ðtÞFEÞ
var ðDðtÞÞ

ð39Þ

Table 6. State fixed effect estimates from reduced form SEM significant at 1% level.

Week 9 10 11 12 13

C. −1.47 . . 1.13 1.13

AL . 0.32 0.34 . .

GA . 0.34 0.32 . .

LA 0.39 0.34 0.30 . .

MI . 0.31 0.31 0.32 .

MS . 0.35 0.36 . .

NJ . 0.32 . 0.32 0.33

OK . 0.35 . . .

TX . 0.35 . . .

https://doi.org/10.1371/journal.pone.0239572.t006
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R2ðtÞD ¼
var ðD̂ðtÞDÞ
var ðDðtÞÞ

ð40Þ

R2ðtÞ ¼ R2ðtÞFE þ R2ðtÞD þ 2 � RFE � RD � corr ðD̂ðtÞFE; D̂ðtÞDÞ ð41Þ

From (41), when the correlations between the fixed effect and demographic predictions are

negative, the sum of the relative variances overstates R2(t). In other words, when correlations

are negative, the predictions from fixed effects and demographic variables work partially in

opposite directions and thus the overall variance of the prediction is lower than the sum of the

parts. When correlations are positive, the predictions from fixed effects and demographic vari-

ables work partially in the same directions and thus the overall variance of the prediction is

higher than the sum of the parts. Note, when the correlation between the fixed effect predic-

tions and the demographic predictions equals 0, the overall R2(t) just equals the sum of fixed

effect R2(t)FE and the demographic variable R2(t)D.

In the context of social distancing, a positive correlation between the fixed effect predictions

and the demographic predictions suggests that the more restrictive counties also had individu-

als reducing their exposure, while the less restrictive counties had individuals taking on rela-

tively more exposure. A negative correlation suggests that the actions of individuals and

counties partially cancel.

Table 7 shows the variance of y by each week as well as R2(t)FE, R2(t)D, R2(t), and the corre-

lation between D̂ðtÞFE and D̂ðtÞD. Several patterns emerge from Table 7. First, the variance

increases by over eight-fold from week 1 to to its peak at week 9, before falling by about 50%

Table 7. Variance of predictions of staying at home from state fixed effect, explanatory variables, relative variances, correlation between these, and R2(t).

Week Var. Rel. Var. Rel. Var. Ratio Correlation R2(t)
Stay at Home Fixed Effect Predictions Demo. Predictions Demo. to FE Var FE, Demo. Predictions

1 0.0050 0.1287 0.0419 0.3258 −0.0762 0.1594

2 0.0086 0.1302 0.0233 0.1786 −0.2156 0.1297

3 0.0078 0.1630 0.0157 0.0961 −0.1239 0.1661

4 0.0083 0.1827 0.0349 0.1908 −0.0929 0.2027

5 0.0084 0.1865 0.1352 0.7251 −0.4276 0.1859

6 0.0187 0.1718 0.0647 0.3764 −0.0210 0.2321

7 0.0277 0.1191 0.1799 1.5100 −0.0566 0.2824

8 0.0396 0.1799 0.3610 2.0070 −0.0782 0.5010

9 0.0474 0.1280 0.4184 3.2688 0.0477 0.5685

10 0.0315 0.1473 0.4431 3.0084 −0.0792 0.5499

11 0.0307 0.1594 0.4481 2.8103 −0.0999 0.5542

12 0.0333 0.1311 0.4383 3.3432 −0.0130 0.5632

13 0.0345 0.1168 0.4303 3.6850 0.0256 0.5585

14 0.0313 0.0929 0.4434 4.7717 0.1101 0.5810

15 0.0302 0.0969 0.4145 4.2775 0.1805 0.5837

16 0.0293 0.1045 0.4261 4.0780 0.1108 0.5773

17 0.0275 0.0948 0.3798 4.0069 0.1909 0.5470

18 0.0255 0.0861 0.3870 4.4929 0.1720 0.5359

19 0.0258 0.1009 0.3505 3.4725 0.1820 0.5200

20 0.0234 0.0883 0.3318 3.7591 0.1778 0.4809

https://doi.org/10.1371/journal.pone.0239572.t007
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by the end of the data in week 20. Second, the overall R2(t) increases from 0.1594 to 0.5685

from week 1 to week 9, before falling to 0.4809 in week 20. Third, the correlation between

D̂ðtÞFE and D̂ðtÞD is materially negative from weeks 1 through 5, almost zero from weeks 6 to

13, and materially positive from weeks 14 to 20. Notwithstanding their magnitudes, all the cor-

relations, except in weeks 6, 12, and 13, were statistically significant from 0 at the 1% level.

Therefore, the additive property of the relative R2(t) components approximately holds from

week 6 through 13. Fourth, over weeks 8 through 20 the explanatory power of demographic

variables R2(t)D rises relative to its values over weeks 1 through 7. Note, during this latter

half of the sample, states invoked varying portfolios of non-pharmaceutical interventions to

encourage social distancing. These actions, as a well as a national declaration of a state of emer-

gency and increased media coverage of the pandemic, simultaneously increased the salience of

the risk of COVID-19. By week 14, more positive correlations between the fixed effect predic-

tions and the demographic variable predictions emerged, which suggests some reinforcing

alignment between jurisdictional and individual behavior.

We now examine the potential for spatial clustering of social distances. Table 8 shows the

week-by-week cross-sectional spatial autoregressive coefficients for the change in social dis-

tancing (Δ(t)), the overall predicted change in social distancing (D̂ðtÞ), the fixed effect predic-

tions (FE), the demographic variable predictions (D), and the regression residuals from the

SEM fixed effect model (r̂). The overall predicted change in social distance displays more spa-

tial autocorrelation than the actual change in social distance. Breaking this down further into

the fixed effect and the demographic predictions, the fixed effect predictions show more spatial

autocorrelation than the overall prediction such that each week has an autoregressive coeffi-

cient l̂ðtÞFE of over 0.98. Thus, the fixed effect predictions slowly vary over space. This occurs

because the effects appear in blocks for all the counties in the state and only show transitions at

Table 8. Autoregressive coefficient for Δ(t), overall prediction, FE prediction, demographic prediction, residuals

from SEM FE.

Week l̂ðtÞ
DðtÞ l̂ðtÞ

D̂ðtÞ l̂ðtÞFE l̂ðtÞD l̂ðtÞr̂

1 0.727 0.969 0.986 0.914 0.535

2 0.759 0.973 0.989 0.879 0.646

3 0.669 0.977 0.986 0.878 0.380

4 0.718 0.972 0.984 0.890 0.466

5 0.630 0.917 0.987 0.898 0.421

6 0.692 0.967 0.990 0.888 0.421

7 0.664 0.942 0.987 0.909 0.344

8 0.785 0.931 0.987 0.892 0.414

9 0.808 0.930 0.986 0.896 0.351

10 0.780 0.912 0.984 0.880 0.423

11 0.783 0.911 0.984 0.878 0.396

12 0.786 0.913 0.986 0.874 0.389

13 0.806 0.914 0.985 0.879 0.472

14 0.799 0.906 0.986 0.866 0.430

15 0.798 0.905 0.986 0.854 0.383

16 0.793 0.904 0.988 0.856 0.376

17 0.797 0.910 0.983 0.860 0.388

18 0.779 0.910 0.982 0.868 0.339

19 0.780 0.904 0.984 0.853 0.378

20 0.758 0.901 0.982 0.851 0.368

https://doi.org/10.1371/journal.pone.0239572.t008
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borders. The demographic predictions also display substantial spatial autocorrelation from

0.851 to 0.914 and show the potential for peaks and valleys of changes in social distance. For

completeness, we present the spatial autoregressive coefficients for the residuals from the SEM

model with fixed effects. These are much lower, but still material.

In summary, the change in social distancing shows substantial spatial dependence which

leads to hotspots (peaks) and coldspots (valleys) in social distancing behavior and that the

fixed effect predictions are too smooth (spatially autocorrelated) to account for the variation.

Of the various components forming the prediction, the demographic predictions come closest

to matching the spatial character of actual changes in social distance.

Specification robustness

In this section we examine the robustness of the findings to alternative formulations of the

model. Specifically, in the following five subsections, we (a) fit SEM without fixed effects; (b)

calculate marginal effects from SDM with fixed effects; (c) estimate SEM-FE employing an

alternative measure of social distance; (d) examine the correlations from the marginal effects

of the demographic variables from various models using different W and with different depen-

dent variables; and (e) examine the sensitivity of the results from employing alternative specifi-

cations of the explanatory variables.

SEM without fixed effects

In the specification search section of our paper, we computed the BIC from SEM, SAR, SDEM,

and SDM with and without fixed effects. In 14 out of the 20 weeks SEM without fixed effects

achieved the lowest BIC in 14 out of the 20 weeks. Nonetheless, we selected SEM with fixed

effects as the base model because theoretical considerations indicated that the model should

have fixed effects. In this subsection, we explore the performance of SEM without fixed effects.

Specfically, we fit (27) using maximum likelihood. The results appear in Table 9. The signs and

magnitudes for the coefficients seem similar to those for the base model, and we will take up a

more detailed comparison in a later subsection. However, we note that the autoregressive coef-

ficient λ(t) has increased substantially from the base model estimates and now ranges between

0.637 to 0.766 versus 0.349 to 0.657 for the base regression in Table 5. This points to spatial

error dependence as a more parsimonious substitute for fixed effects across jurisdictions.

SDM

The SDM with fixed effects often resulted in the highest likelihood across weeks. As discussed

in the model section of our paper, the SDM in (33) results in marginal effects that do not equal

parameter estimates. Accordingly, we estimated (33) and computed the direct and indirect

average marginal effects which appear in Tables 10 and 11. We omit the estimates of fixed

effects as these were not significant at the one percent level. As a casual summary, the esti-

mated direct effects from the SDM with fixed effects match closely the estimates of SEM with

fixed effects (estimates are marginal effects for the SEM). As before, we will takeup a more

detailed comparison between the base regression, SEM without fixed effects, and the direct

effects from SDM with fixed effects in a later subsection.

Different measure of social distance

We now turn to an alternative measure of social distance. We examine median home time

as opposed to the previous analysis of percent of time spent at home. Table 12 shows the
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percentiles of this variable by week. Like percent of time spent at home, median home time

started at a lower level, reached a peak around week 12, and then declined.

Table 13 provides estimates of SEM with fixed effects for the exogenous variables. The

results qualitatively match those from estimating SEM with fixed effects when using the per-

centage stayed at home dependent variable. Namely, Pop, Child, and Income have a positive

Table 9. ‘stay-at-home’ SEM estimates without state fixed effects.

Week Con. Pop Child HS White Inc λ(t)
1 0.392 −0.006 −0.024 −0.051 −0.008 −0.003 0.718

2.126 −5.695 −3.252 −1.833 −1.297 −0.294 27.517

2 0.798 −0.005 −0.009 −0.143 0.005 −0.000 0.766

3.391 −3.597 −0.945 −4.019 0.726 −0.043 31.984

3 0.513 −0.003 −0.007 −0.111 0.002 0.005 0.675

2.130 −1.808 −0.748 −3.036 0.303 0.463 23.846

4 0.533 −0.006 0.008 −0.158 0.014 0.013 0.723

2.222 −4.374 0.882 −4.348 1.885 1.131 27.129

5 0.922 −0.011 0.031 −0.291 0.052 0.017 0.686

3.701 −7.307 3.139 −7.667 6.538 1.394 23.160

6 −0.326 0.017 0.014 −0.084 0.023 0.038 0.705

−0.909 7.791 0.995 −1.553 1.970 2.214 24.997

7 −0.574 0.032 0.076 −0.138 0.040 0.055 0.625

−1.340 12.320 4.397 −2.128 3.025 2.686 19.955

8 −0.990 0.034 0.120 −0.420 0.097 0.201 0.749

−2.281 12.141 6.834 −6.367 7.007 9.389 26.298

9 −1.472 0.045 0.123 −0.405 0.110 0.234 0.709

−3.337 15.394 6.942 −6.022 7.814 10.881 23.252

10 0.452 0.028 0.103 −0.640 0.080 0.191 0.741

1.229 11.824 6.980 −11.378 6.768 10.573 26.406

11 0.822 0.028 0.096 −0.687 0.082 0.179 0.752

2.292 11.882 6.618 −12.465 7.091 10.163 27.082

12 1.042 0.028 0.088 −0.750 0.082 0.183 0.726

2.809 11.822 5.885 −13.153 6.891 10.097 25.462

13 1.030 0.033 0.084 −0.717 0.070 0.168 0.736

2.803 13.482 5.685 −12.667 5.950 9.344 25.076

14 1.857 0.032 0.072 −0.816 0.031 0.148 0.691

5.351 13.861 5.193 −15.251 2.872 8.816 22.699

15 2.653 0.029 0.048 −0.899 0.019 0.123 0.687

7.744 13.241 3.507 −17.043 1.785 7.398 23.357

16 2.521 0.028 0.063 −0.884 0.013 0.123 0.689

7.373 12.879 4.618 −16.787 1.208 7.433 23.707

17 2.249 0.029 0.053 −0.771 −0.012 0.110 0.689

6.700 13.388 3.905 −14.955 −1.144 6.787 23.400

18 1.988 0.030 0.052 −0.708 −0.008 0.104 0.637

6.041 14.172 3.955 −14.017 −0.772 6.561 20.190

19 2.599 0.026 0.063 −0.785 −0.028 0.080 0.674

7.743 12.673 4.694 −15.217 −2.639 4.945 23.002

20 2.626 0.026 0.035 −0.741 −0.019 0.069 0.648

7.887 12.851 2.604 −14.478 −1.774 4.275 21.001

https://doi.org/10.1371/journal.pone.0239572.t009
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effect on social distancing while HS has a negative effect on social distancing. The White vari-

able shows some differences from the previous analysis as it goes from significant and positive

in the early weeks but becomes significant and negative in the last two weeks. We will go into a

further analysis of the similarity of the estimates from different methods, different W, and the

two dependent variables in the following section.

Table 10. ‘stay-at-home’ SDM direct effects (with state fixed effects—Not shown).

Week Pop Child HS White Inc

1 −0.007 −0.017 −0.071 −0.010 −0.003

−5.778 −2.231 −2.464 −1.512 −0.355

2 −0.007 −0.005 −0.160 −0.005 0.009

−4.279 −0.524 −4.233 −0.681 0.762

3 −0.003 0.001 −0.139 −0.001 0.001

−2.077 0.117 −3.573 −0.112 0.108

4 −0.007 0.016 −0.168 0.016 0.013

−4.278 1.609 −4.570 1.998 1.090

5 −0.015 0.039 −0.349 0.054 0.013

−8.526 3.823 −8.993 6.395 1.002

6 0.017 0.019 −0.094 0.024 0.056

7.128 1.263 −1.681 1.879 2.974

7 0.032 0.065 −0.109 0.020 0.096

11.159 3.700 −1.637 1.355 4.368

8 0.030 0.117 −0.445 0.079 0.226

10.141 7.037 −6.882 5.290 10.434

9 0.040 0.125 −0.454 0.091 0.257

13.398 7.124 −6.664 5.980 11.750

10 0.027 0.096 −0.637 0.070 0.212

10.921 6.319 −11.227 5.538 11.186

11 0.025 0.096 −0.712 0.074 0.193

10.317 6.566 −12.970 6.136 10.730

12 0.025 0.092 −0.780 0.067 0.196

9.744 6.021 −13.620 5.380 10.066

13 0.029 0.090 −0.768 0.061 0.176

11.949 6.134 −14.089 4.985 9.629

14 0.027 0.083 −0.872 0.021 0.149

10.952 5.560 −16.662 1.724 8.490

15 0.026 0.062 −0.949 0.015 0.110

11.587 4.579 −17.700 1.318 6.331

16 0.025 0.071 −0.918 0.006 0.115

10.766 5.104 −16.626 0.500 6.295

17 0.026 0.067 −0.819 −0.016 0.099

11.337 4.864 −15.923 −1.376 5.552

18 0.028 0.066 −0.746 0.002 0.084

12.486 4.861 −14.450 0.185 5.086

19 0.026 0.076 −0.814 −0.013 0.056

11.390 5.534 −15.510 −1.170 3.380

20 0.027 0.046 −0.749 −0.005 0.049

11.594 3.359 −14.636 −0.453 2.861

https://doi.org/10.1371/journal.pone.0239572.t010
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Correlations of marginal effects across models

We now compare the base case SEM with fixed effects using 15 nearest neighbors, direct effects

from the SDM with fixed effects using 15 nearest neighbors, SEM without fixed effects (inter-

cept only) using 15 nearest neighbors, and the direct effects from SDEM with fixed effects

using 15 nearest neighbors, direct effects from SAR with fixed effects using 15 nearest

Table 11. ‘stay-at-home’ SDM indirect effects (with state fixed effects—Not shown).

Week Pop Child HS White Inc

1 −0.010 0.006 −0.042 0.019 0.008

−2.895 0.233 −0.370 1.151 0.273

2 −0.010 0.002 −0.058 0.087 −0.009

−2.134 0.055 −0.341 3.549 −0.215

3 −0.011 0.003 −0.155 0.014 −0.017

−2.956 0.108 −1.263 0.810 −0.587

4 −0.010 −0.015 −0.085 −0.022 −0.001

−2.438 −0.499 −0.653 −1.136 −0.034

5 0.003 −0.003 −0.040 0.013 −0.035

0.719 −0.112 −0.311 0.667 −1.053

6 −0.020 0.008 0.115 −0.061 0.007

−3.553 0.199 0.619 −2.181 0.161

7 −0.014 0.019 −0.199 −0.035 −0.051

−2.059 0.362 −0.897 −1.086 −0.925

8 0.011 0.046 −0.258 −0.071 −0.173

1.654 0.918 −1.185 −2.258 −3.218

9 0.017 0.017 −0.178 −0.052 −0.177

2.674 0.338 −0.828 −1.691 −3.308

10 0.011 0.019 −0.215 −0.038 −0.187

1.902 0.447 −1.143 −1.397 −3.961

11 0.010 0.050 −0.239 −0.014 −0.177

1.743 1.080 −1.272 −0.490 −3.917

12 0.003 0.036 −0.263 −0.029 −0.139

0.429 0.827 −1.442 −1.051 −3.073

13 0.012 0.039 −0.307 −0.014 −0.178

1.954 0.827 −1.562 −0.469 −3.750

14 0.006 −0.012 −0.204 −0.011 −0.102

1.149 −0.282 −1.100 −0.413 −2.252

15 0.001 0.014 −0.080 0.019 −0.049

0.172 0.344 −0.470 0.733 −1.138

16 0.002 −0.003 −0.050 −0.020 −0.029

0.475 −0.085 −0.309 −0.785 −0.720

17 −0.001 0.035 −0.456 0.045 −0.117

−0.189 0.872 −2.662 1.761 −2.700

18 0.007 −0.020 −0.185 −0.020 −0.079

1.322 −0.538 −1.135 −0.847 −2.044

19 −0.004 0.032 −0.340 −0.023 −0.068

−0.641 0.785 −1.948 −0.876 −1.570

20 −0.010 0.037 −0.228 −0.006 −0.043

−1.960 0.947 −1.359 −0.232 −1.032

https://doi.org/10.1371/journal.pone.0239572.t011
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neighbors, SEM with fixed effects using W based on 10 nearest neighbors, SEM with fixed

effects using W based on 20 nearest neighbors, and using the alternative dependent variable of

median home time estimated via SEM with fixed effects and 15 nearest neighbors. We do this

for four variables—Child, HS, White, and Income. To avoid a table, we did not do this with

Pop, but the results are similar.

We compute the correlations between the methods across weeks and the results appear in

Table 14. The upper triangle gives correlations among estimated coefficients across specifica-

tions for the Child variable and the lower triangle does the same for the HS variable. We see

that the various methods appear to substantially agree with each other, with the minimum cor-

relation across methods of 0.59 for the Child variable estimated by SAR with fixed effects using

log of percent home and SEM with fixed effects using log of median home time. The largest

correlations were 1.0000 for the HS variable estimated with SEM with fixed effects and SDM

with fixed effects.

We perform a similar exercise when examining the White and Income variables in

Table 15. The lowest correlation for White of 0.7436 is between SEM with fixed effects using

log of median home time as the dependent variable and SAR with fixed effects when using

log of percent home as the dependent variable. For income the lowest correlation is 0.9473

between SAR with fixed effects when using log of percent home as the dependent variable and

SEM with fixed effects when using log of median home time as the dependent variable. Over-

all, the correlations between the estimated coefficients are quite high.

The high correlations among the marginal effects across the models provides indirect sup-

port for the basic specification. Models that differ by specfications of the disturbances should

yield very similar estimates for large data sets under correct specification of the explanatory

variable part of the model. To formalize this intuition, [35] used this to propose a Hausman

Table 12. Percentiles of median home time by week.

Week Min 5th 10th 25th 50th 75th 90th 95th Max

1 18.00 65.45 67.74 70.34 72.46 74.77 77.29 79.20 97.57

2 27.71 65.43 67.56 69.49 71.49 73.51 76.01 78.19 98.29

3 6.29 67.89 69.48 71.62 74.13 76.79 79.37 81.34 99.00

4 21.00 63.21 65.86 68.50 70.64 72.91 75.30 76.97 97.71

5 15.86 62.78 65.58 68.16 70.36 72.62 74.97 76.92 97.86

6 29.71 62.51 65.69 68.70 70.94 73.18 75.70 77.48 100.00

7 12.00 50.38 55.53 60.68 64.50 67.24 69.52 71.13 96.43

8 9.57 50.00 56.87 63.37 67.38 70.41 72.96 74.78 98.00

9 1.14 59.87 65.92 72.74 77.35 80.92 84.53 86.85 99.14

10 10.19 61.63 68.83 76.03 80.96 85.41 88.95 91.14 99.14

11 17.71 76.79 80.17 84.38 87.75 90.80 93.44 95.11 99.14

12 23.71 79.49 82.94 86.68 89.69 92.48 94.95 96.28 99.93

13 7.14 77.38 81.17 85.36 88.86 91.97 94.55 96.04 100.00

14 9.71 73.23 77.42 81.64 85.36 89.05 92.21 94.15 99.71

15 28.57 74.87 77.57 80.96 84.36 88.03 91.56 93.51 99.18

16 26.14 75.54 78.13 81.40 85.23 89.22 92.52 94.43 99.43

17 23.36 72.77 75.45 78.97 82.66 86.43 90.59 93.01 99.57

18 3.57 69.71 72.73 76.09 79.87 83.91 88.37 91.18 99.57

19 22.67 69.02 72.38 76.00 79.28 82.82 87.25 89.88 98.57

20 9.43 68.15 70.77 73.93 76.83 80.62 85.85 88.62 98.43

21 35.46 70.34 72.70 75.32 78.29 82.17 86.79 89.21 99.36

https://doi.org/10.1371/journal.pone.0239572.t012
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test for the spatial error model relative to OLS. To the degree that the SDM and SEM models

showed relatively weak explanatory power of indirect effects, these models also come closer to

being error models, and thus the agreement between their results and those from other models

should not be surprising. In addition, [36] showed that small changes in W may have less effect

than commonly thought because a 20 nearest neighbor weight matrix and a 19 nearest neigh-

bor weight matrix have 95% of the same positive elements when basing the choice of neighbors

Table 13. Median home time SEM estimates (with state fixed effects—Not shown).

Week Pop Child HS White Inc λ(t)
1 −0.004 −0.012 −0.075 −0.001 −0.015 0.185

−5.711 −2.249 −3.827 −0.298 −2.524 3.680

2 −0.005 −0.019 −0.126 −0.016 −0.033 0.359

−3.982 −2.533 −4.362 −2.737 −3.709 7.667

3 −0.000 −0.004 −0.118 0.013 −0.031 0.131

−0.104 −0.525 −3.000 2.359 −3.572 2.528

4 −0.000 0.014 −0.091 0.012 −0.015 0.019

−0.321 1.757 −2.908 2.008 −1.630 0.355

5 −0.004 0.025 −0.183 0.034 −0.027 0.058

−3.409 3.090 −5.932 5.817 −2.979 1.101

6 0.024 −0.001 0.075 0.024 0.014 0.177

11.050 −0.055 1.394 2.315 0.870 3.587

7 0.026 0.057 0.127 0.034 0.025 0.187

10.530 3.556 2.056 2.838 1.352 3.742

8 0.026 0.028 0.072 0.027 0.080 −0.025

9.744 1.598 1.054 2.121 4.061 −0.457

9 0.021 0.054 0.074 0.050 0.099 0.086

9.056 3.524 1.251 4.465 5.681 1.651

10 0.006 0.004 −0.054 0.011 0.078 0.159

4.057 0.397 −1.405 1.461 6.808 3.102

11 0.001 0.004 −0.102 0.018 0.062 0.113

0.876 0.388 −2.655 2.379 5.478 2.119

12 0.002 0.008 −0.099 0.029 0.077 0.111

1.515 0.764 −2.533 3.858 6.670 2.129

13 0.004 0.035 −0.184 0.032 0.056 0.149

2.097 2.924 −3.999 3.593 4.162 2.804

14 0.006 0.013 −0.257 0.001 0.053 0.182

3.902 1.352 −7.130 0.080 4.976 3.535

15 0.005 0.014 −0.400 −0.002 0.024 0.242

3.704 1.558 −11.508 −0.308 2.320 4.926

16 0.008 0.017 −0.345 −0.003 0.038 0.219

5.664 1.764 −9.085 −0.411 3.342 4.344

17 0.012 0.013 −0.283 −0.021 0.046 0.373

6.823 1.180 −6.420 −2.334 3.421 7.873

18 0.015 0.025 −0.183 −0.004 0.040 0.259

9.860 2.437 −4.712 −0.489 3.401 5.263

19 0.012 0.046 −0.250 −0.025 0.020 0.164

6.867 4.006 −5.655 −2.907 1.541 3.149

20 0.008 0.012 −0.308 −0.024 0.011 0.164

5.659 1.269 −8.687 −3.541 1.078 3.222

https://doi.org/10.1371/journal.pone.0239572.t013
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on the same metric. For two weight matrices Wa with ma neighbors and Wb with mb neighbors

where ma�mb and v� N(0, In), corr(Wa v, Wb v) = (ma/mb)
1/2. This also appears to happen

here since we obtained virtually the same results from using 10, 15, and 20 nearest neighbors.

Explanatory variable choice and R2 decomposition

The base model employed used five variables on population density, age, education, race, and

income (all logged). Of course, many other specifications could have been used and this poses

the question of the robustness of the decomposition of the fixed effect and demographic pre-

dictions. In this subsection we provide an augmented model and examine the resulting decom-

position. In the alternative model we augment the base model with (logged) non-black (coded

this way to avoid 0), high school education (which differs from HS in the base model because

not having a college degree does not imply having a high school degree), household size, per-

cent on social security, percent with insurance, percent of children, and three variables mea-

suring the percent of individuals of age 60 and older. The augmented model provides some

alternative proxies for basic demographics. To keep the dimension of the model the same, we

took all of the augmented variables, extracted the first five principal components, and repeated

the R2(t) decomposition in Table 16. Relative to Table 7, the R2(t) for the principal components

model is usually higher by a small amount in the later periods and the relative variance of the

demographic to the fixed effect predictions is somewhat higher. The principal components

reach their highest relative variance in week 18 at 5.1758 versus 4.7717 for the base model in

week 14. As this illustrates, better models have the potential to show that demographic vari-

ables may have a greater influence on social distancing behavior relative to the base model. As

Table 14. Correlations among model effects: Child in upper triangle, HS in lower triangle.

Child!

HS #

SEM FE SDM Direct SEM Con. SDEM FE SAR FE SEM FE 10 NN SEM FE 20 NN SEM FE Home Time

SEM FE . 0.9987 0.9919 0.9991 0.9968 0.9998 0.9999 0.6041

SDM Direct 0.9994 . 0.9878 0.9999 0.9962 0.9983 0.9984 0.6133

SEM Constant 0.9988 0.9978 . 0.9891 0.9844 0.9921 0.9924 0.6123

SDEM FE 0.9995 1.0000 0.9980 . 0.9958 0.9986 0.9989 0.6140

SAR FE 0.9983 0.9977 0.9974 0.9978 . 0.9972 0.9958 0.5918

SEM FE 10 NN 0.9999 0.9992 0.9986 0.9993 0.9975 . 0.9996 0.5987

SEM FE 20 NN 1.0000 0.9995 0.9987 0.9996 0.9982 0.9998 . 0.6013

Home Time SEM 0.6938 0.6892 0.6896 0.6904 0.6567 0.7034 0.6934 .

https://doi.org/10.1371/journal.pone.0239572.t014

Table 15. Correlations among model effects: White in upper triangle, income in lower triangle.

White!

Income #

SEM FE SDM Direct SEM Con. SDEM FE SAR FE SEM FE 10 NN SEM FE 20 NN SEM FE Home Time

SEM FE . 0.9908 0.9849 0.9920 0.9929 0.9986 0.9997 0.8007

SDM Direct 0.9989 . 0.9904 0.9998 0.9737 0.9849 0.9893 0.8259

SEM Constant 0.9885 0.9848 . 0.9900 0.9695 0.9773 0.9836 0.8204

SDEM FE 0.9989 0.9999 0.9852 . 0.9764 0.9867 0.9903 0.8195

SAR FE 0.9898 0.9901 0.9629 0.9905 . 0.9957 0.9921 0.7436

SEM FE 10 NN 0.9998 0.9989 0.9862 0.9989 0.9909 . 0.9983 0.7843

SEM FE 20 NN 0.9999 0.9990 0.9871 0.9989 0.9903 0.9999 . 0.8045

Home Time SEM 0.9703 0.9685 0.9705 0.9688 0.9473 0.9698 0.9700 .

https://doi.org/10.1371/journal.pone.0239572.t015
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more demographic variables are added and more optimization of the model occurs, this sug-

gests that the importance of demographic variables will rise relative to fixed effects.

Conclusion

We employed cell phone tracking data to obtain a picture of how stay-at-home behavior

evolved during the initial spread of COVID-19 in the United States. Because of simultaneity

issues associated with stay-at-home behavior and the spread of the disease, and the problems

of decentralized disease measurement in the United States, we posited a reduced form model

that uses changes in stay-at-home behavior by county over time as a function of exogenous

demographic variables such as population density, households with children, education, race,

and income. Due to the contagious nature of COVID-19, we focused on possible spatial

aspects of the behavior. We modeled spatial aspects using: (1) changes in social distancing

behavior that reduce the influence of omitted variables, spatial or otherwise; (2) fixed effects

for each jurisdiction; (3) spatial spillovers as coming from the exogenous demographic vari-

ables from surrounding counties; and (4) spatial autoregressive behavior of disturbances from

surrounding counties.

Our research produced three main results. First, we found that as the crisis progressed the

demographic exogenous variables explained an increasing proportion of the overall variance

of behavior. By week 12, demographic exogenous variables explained over three times as much

variance as jurisdictional fixed effects; by week 18 demographic variables explained over four

times as much variance as jurisdictional fixed effects, before falling to 3.76 times in week 20.

Second, over the span of the data, the correlation between fixed effect predictions and demo-

graphic variable predictions went from significant and negative in weeks 1–5 to relatively low

Table 16. Variance of predictions of staying at home from state fixed effect, explanatory variables, relative variances, correlation between these, and R2(t).

Week Var. Rel. Var. Rel. Var. Ratio Correlation R2(t)
Stay at Home Fixed Effect Predictions Demo. Predictions Demo. to FE Var FE, Demo. Predictions

1 0.0050 0.1253 0.0445 0.3554 −0.0606 0.1608

2 0.0086 0.1210 0.0196 0.1622 −0.1196 0.1289

3 0.0078 0.1598 0.0150 0.0936 −0.1026 0.1648

4 0.0083 0.1792 0.0309 0.1727 −0.0832 0.1977

5 0.0084 0.1987 0.1419 0.7140 −0.4714 0.1823

6 0.0187 0.1782 0.0626 0.3516 −0.0484 0.2306

7 0.0277 0.1181 0.1797 1.5217 −0.0818 0.2740

8 0.0396 0.1759 0.3549 2.0175 −0.0938 0.4839

9 0.0474 0.1216 0.4141 3.4044 0.0374 0.5525

10 0.0315 0.1546 0.4388 2.8374 −0.1065 0.5379

11 0.0307 0.1711 0.4497 2.6276 −0.1322 0.5474

12 0.0333 0.1422 0.4368 3.0710 −0.0474 0.5553

13 0.0345 0.1170 0.4340 3.7090 0.0123 0.5565

14 0.0313 0.0950 0.4431 4.6636 0.1035 0.5806

15 0.0302 0.1153 0.4187 3.6303 0.1257 0.5892

16 0.0293 0.1060 0.4232 3.9928 0.1098 0.5756

17 0.0275 0.0927 0.3866 4.1730 0.2000 0.5550

18 0.0255 0.0754 0.3902 5.1758 0.2155 0.5396

19 0.0258 0.0878 0.3606 4.1082 0.2343 0.5318

20 0.0234 0.0750 0.3399 4.5340 0.2469 0.4936

https://doi.org/10.1371/journal.pone.0239572.t016
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magnitude correlations in periods 6–13, then finished with significant and positive correla-

tions in periods 14–20. A negative correlation signifies fixed effect predictions and demo-

graphic variable predictions partially cancel each other. A zero correlation signifies that the

fixed effect predictions and demographic variable predictions operate independently. A posi-

tive correlation signifies that fixed effects predictions and demographic variable predictions

reinforce or complement each other. In other words, states with positive fixed effects also had

larger amounts of social distancing based on demographic variables. Third, we found that

observed social distancing and the demographic variables showed high levels of spatial auto-

correlation or clustering which result in hotspots or peaks as well as coldspots or valleys in

social distances. In summary: (1) fixed effects explain less of the variance in social distancing

behavior relative to demographic variables; (2) correlations exist between fixed effect predic-

tions and demographic variable predictions that result in partial cancellation or reinforcement

in the overall predicted social distances; and (3) observed social distances and demographic

variables display high levels of spatial autocorrelation or clustering.

What are the implications of our results? First, the strong tendency of social distances to

cluster has a number of ramifications. Clustering of low social distance counties could show

increasing levels of disease while clusters or coldspots of high social distance counties could

show decreasing levels of disease. Even if this leads to an aggregate decrease over some period,

having clusters of low social distance counties with increasing incidence of disease may impede

economic recovery, even in clusters of high social distance counties, because of the potential

for contagion between low and high social distance county clusters. Second, although relatively

severe restrictions have worked in various places, in the absence of binding jurisdictional

restrictions, persuading individuals to increase their social distancing voluntarily may provide

a lower cost means to reducing disease incidence. Third, such persuasion may also improve

acceptance of restrictions and result in a positive correlation between individual and jurisdic-

tional actions that reinforces the amount of social distancing. This potentiation or reinforce-

ment provides additional returns to NPIs that raise actual or effective (e.g., masks) social

distancing.
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