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ABSTRACT Clonal outbreaks of fluconazole-resistant (FLZR) Candida parapsilosis
isolates have been reported in several countries. Despite its being the second
leading cause of candidemia, the azole resistance mechanisms and the clonal ex-
pansion of FLZR C. parapsilosis blood isolates have not been reported in Turkey.
In this study, we consecutively collected C. parapsilosis blood isolates (n = 225)
from the fifth largest hospital in Turkey (2007 to 2019), assessed their azole sus-
ceptibility pattern using CLSI M27-A3/S4, and sequenced ERGI11 for all and MRRI,
TACI1, and UPC2 for a selected number of C. parapsilosis isolates. The typing reso-
lution of two widely used techniques, amplified fragment length polymorphism
typing (AFLP) and microsatellite typing (MST), and the biofilm production of
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loodstream infections due to Candida species, i.e., candidemia, are associated with

high morbidity and mortality, resulting in significant health care costs of $1.4 billion
in the United States annually (1). Candida parapsilosis inhabits the gastrointestinal tract
of 35% of healthy individuals (2) and ranks as the first to third cause of candidemia
depending on geography, patients’ underlying condition, and age (3). The ability of C.
parapsilosis to produce tenacious biofilms accounts for its persistence in clinical settings
and poses the risk of future clonal outbreaks (3). The sibling species of C. parapsilosis,
Candida orthopsilosis and Candida metapsilosis, have also been implicated in candi-
demia (4). Candida parapsilosis blood isolates were once thought to be universally
fluconazole (FLZ) susceptible (FLZS), but a recent candidemia study conducted in South
Africa indicates that over half of C. parapsilosis isolates are FLZ resistant (FLZR), and 44%
of the latter are cross-resistant to voriconazole (VRZ) (5). Other studies performed in
India (6), South Korea (7), Kuwait, Brazil (8), and the United States (9, 10) and a recent
global study (11) confirmed the emergence of FLZR C. parapsilosis. Given that FLZ is the
main antifungal drug used in developing countries (5, 12), the emergence of FLZR
isolates undermines the efficacy of FLZ in the treatment of candidemia. Prolonged
previous exposure to FLZ in clinical settings is believed to be a factor related to FLZ
resistance (13), which is underlain by specific mutations in the ergosterol biosynthesis
gene, ERG11, yielding amino acid substitutions such as Y132F and K143R, which alter
the 3D conformation of Erg11 and reduce its affinity for FLZ (14). Moreover, gain-of-
function (GOF) mutations in MRR1, TACT1, and UPC2 genes that cause overexpression of
efflux pumps (Cdr1 and Mdr1) and Erg11 are also known to contribute to azole
resistance in Candida species (14).

Candida parapsilosis infections may be spread by health care workers (3), and
isolates from outbreaks can be more virulent than sporadic isolates (15). As C. parap-
silosis is among the most genetically homogenous Candida species (3), the use of highly
resolutive typing techniques is important to differentiate outbreak from nonoutbreak
isolates. Amplified fragment length polymorphism typing (AFLP) (16) and microsatellite
typing (MST) (6) have been used to explore the genotypic diversity of clinical C.
parapsilosis isolates, but there is no study comparing the performance of the two
techniques.

In this single-center study, we investigated the nature of an unusually high preva-
lence of C. parapsilosis blood isolates collected over 13 years (2007 to 2019) in Ege
University Hospital, Izmir, Turkey, in order to track the evolution of C. parapsilosis azole
resistance over time. We assessed the genetic relatedness of C. parapsilosis isolates
using AFLP and MST and explored a recent hypothesis that FLZR C. parapsilosis isolates
carrying the Y132F mutation may have a higher propensity to persist in clinical settings
(15).

RESULTS

Patients’ clinical profiles. In total, 225 C. parapsilosis and 2 C. orthopsilosis isolates
were recovered from 223 patients; 54.4% (n = 123) of the patients were men and 40.3%
(n = 91) were women (no data for 12 cases). Children (<18 years old) (n = 95; 42%) and
adults (=18 years old) (n = 107; 47.3%) almost equally developed candidemia due to C.
parapsilosis (no data for 24 cases). Prophylactic treatment with antifungals was not
performed for 133 patients (58.8%); when it was performed, the most frequent choice
was FLZ (n = 40; 17.7%) followed by VRZ (n = 9; 4%) (no data for 45 patients; 19.5%).
Since fluconazole treatment, both prophylactic and targeted, was heavily used from
2015 onward, our analysis focused on microbiological changes observed before and
after 2014. Accordingly, the use of FLZ for prophylaxis increased 2.4-fold (n =25
[26.3%] versus 15 [11.7%]; 95% confidence interval [Cl], 1.328 to 5.451; odds ratio
[OR] = 2.690; P = 0.006) and that of VRZ decreased 6-fold (n = 1 [1.1%] versus 8 [6.2%];
95% Cl, 0.02 to 1.298; OR = 0.160; P = 0.086) in the second phase (2015 to 2019)
compared to the first phase (2007 to 2014). Considering the targeted treatment, the
majority of the patients (n = 137; 60.6%) received a single antifungal drug, whereas 8%
of patients were treated by a combination of two drugs (n = 18; 8%), and 12.4%
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(n = 25) did not receive any antifungals (no data for 43 cases). FLZ was the most widely
used single drug (n = 51; 22.6%), followed by caspofungin (n = 26; 11.5%), amphoter-
icin B AMB (n = 25; 11.1%), anidulafungin (n = 16; 7.1%), micafungin (n = 11; 4.9%), and
VRZ (n = 8; 3.5%). The use of FLZ was tripled (n = 35 [36.8%] versus 16 [12.5%]) and that
of echinocandins doubled (n = 24 [25.2%] versus 16 [12.2%)]) in the second phase
compared to the first phase. The overall crude mortality rate was 38.1% (n = 86; no data
for 40 patients). As we did not have mortality data for 32.1% of patients (n = 42) in the
first phase, we could not compare the rates between the two phases. In terms of
treatment, patients who received AMB formulations had the highest mortality (n = 15;
60%), and those treated with echinocandins (n = 27; 50.9%) and FLZ (n = 21; 42%) had
similar mortality. The annual rate of C. parapsilosis isolation showed a sinusoidal trend,
with peaks in 2012 and 2018 (see Fig. S1 in the supplemental material).

Antifungal susceptibility. In total, 26.4% of the isolates were FLZR (n = 60); among
them, 31.6% (n = 19) were cross-resistant to VRZ (Table S3). The rate of FLZR isolates
doubled in the second phase (n = 34; 35.4%) compared to the first phase (n = 26;
19.6%) (Table 1). The number of VRZR isolates was comparable between the first and
second phases (n = 11 [8.3%] versus 8 [9.4%]), whereas that of isolates with interme-
diate susceptibility to VRZ tripled in the second phase (n = 33 [34.7%] versus 10
[7.5%]). Overall, the frequency of FLZR isolates increased and was the highest in
2018, constituting almost half of the total number of isolates collected in that year
(Table 1 and Fig. S2).

Sequencing of genes implicated in azole resistance. Most FLZR isolates (90%;
n = 54) carried Erg11 mutations known to cause FLZ resistance in C. parapsilosis (6) or
C. orthopsilosis (17); among them, isolates carrying Y132F alone or in combination with
other mutations constituted 90% (n = 54; 90%) (Table 1). Among FLZ resistance-related
mutations, Y132F was the most prevalent (n = 24; 44.4%) followed by Y132F+K143R
(n=19; 35.1%), G458S (n=6; 11.1%) (G458S alone, n =4; G4585+T519A, n=1;
Q250K+R398I+G458S, n = 1), Y132F+G307A (n = 3; 5.5%), and K143R (n = 2; 3.7%)
(Table 1; also Table S3). Heterozygosity was noted in five and six isolates carrying Y132F
and Y132F+K143R, respectively, and the rest of the isolates were homozygotic for the
mutations observed. Isolates with Y132F alone tripled in the second phase (n =18
[75%] versus 6 [25%]), whereas those with Y132F+K143R were more prevalent in the
first phase (n = 12 [63.1%] versus 7 [36.8%)]) (Fig. 1). Isolates carrying Y132F+G307A
(n = 3), G458S (n = 4), and G4585+T519A (n = 1) were detected only in the second
phase, whereas those harboring K143R (n = 2) and G4585+R3981+Q250K (n = 1) were
detected only in the first phase (Table 1; Table S3). Interestingly, 52% and 50% of FLZR
isolates with or without ERG11 mutations, respectively, were recovered from pediatric
wards. Thus, all isolates carrying K143R (n = 2), Y132F+G307A (n =3), and G458S
(n = 6), 63.1% of Y132F+K143R isolates (n = 12), and 20.8% of isolates carrying only
Y132F (n = 5) were detected in pediatric wards. Most VRZR isolates (n = 15; 78.94%)
carried Y132F+K143R mutations, followed by Y132F (n = 3; 15.7%) and G458S (n = 1;
5.2%) (Table 1; also Table S3). Of note, most patients infected with isolates carrying
Y132F (n = 17) died despite treatment with various antifungals; this rate was signifi-
cantly higher (95% CI, OR = 6.8; P = 0.005) than that for patients infected with
Y132F+K143R isolates (26.3%; n = 5). Among FLZR isolates carrying Erg11 mutations,
48.1% (n = 26), 16.6% (n =9), and 11.1% (n = 6) also harbored nonsynonymous mu-
tations in UPC2, TACI, and MRRI, respectively (Table 1; also Table S3). All Mrr1
mutations were found in FLZR isolates, except for one FLZS isolate carrying K606E in
Mrr1. Furthermore, P45H, Q371H, and Q372H in Upc2 and A21V, Q965K+M966V,
P150H, D603V+P803L, and S760R+A761G in Tacl were found exclusively in FLZR
isolates (Table 1; also Table S3). Among FLZ- and VRZ-cross-resistant isolates, one (5.2%)
harbored a unique Q965K+M966V (n = 1; 5.2%) mutation in Tacl, but none had
mutations in Mrr1 or Upc2 specific to this phenotype.

Genotyping C. parapsilosis isolates. Compared to MST, AFLP revealed a higher
degree of genetic similarity among the 225 isolates, and all isolates were clustered in
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ANTIFUNGALPROPHYLAXIS AND TREATMENT AND EMERGENCE OF MUTATIONS CONFERRING AZOLE
RESISTANCE

VRZ prophylaxis 6-fold increase

2016 2017

2011 2012 2013 2014

* FLZprophylaxis 2.4-fold increase
* FLZmain treatment 3-fold increase
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2
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FIG 1 Frequency of mutations in ERG11 responsible for resistance and azole use for prophylaxis or treatment in 2007 to 2019.

only two major genotypes, whereas several clusters were revealed by MST (Fig. S3 to
S6). Therefore, all interpretations regarding genetic relatedness of the isolates were
inferred from MST data. The first isolates carrying Y132F (108FS) and Y132F+K143R
(106FS and 107FS) were detected in 2011 in different patients and showed a high
degree of similarity (Fig. S3); among them, T06FS and 107FS were 100% identical (Table
1 and Fig. S3). Surprisingly, 63% of the FLZR isolates carrying either Y132F or
Y132F+K143R (n = 34) were clustered into two main clades located close to one
another (Table 1, Fig. 2, and Fig. S3). Approximately 95% of the isolates carrying
Y132F+K143R (n =18) and 16.6% of those harboring Y132F (n = 4) belonged to the
same cluster and were recovered in 2011 to 2019. About 58% of the isolates carrying
Y132F (n = 14) belonged to two distinct clusters (n = 11 [45.8%] and n = 3 [12.5%)])
(Table 1, Fig. 2, and Fig. S3). As for their treatments, 48.8% of the patients infected with
strains harboring Y132F alone and/or Y132F+K143R in Erg11 (n = 21) did not receive
any azoles during their hospitalization periods. Among the FLZR isolates lacking ERGT1
mutations responsible for resistance, 50% (n = 3; 34R, 37R, and 38R) were clustered
together and were recovered in 2013 from different wards, whereas the remaining
isolates were scattered among different genotypic clusters. Azole-cross-resistant iso-
lates were grouped in clusters A (84.2%; n = 16), C (10.5%; n = 2), and E (5.25%; n = 1)
(Table 1 and Fig. S3). Clonality was also detected among FLZS isolates; the largest
cluster contained 63 isolates, followed by other clusters containing 20, 19, and 13
isolates (Fig. S5).

Biofilm formation. Although the isolates significantly differed in biofilm-forming
capacity, there was linear correlation between the results obtained with crystal
violet and resazurin staining (r? = 0.66, P < 0.001). Isolates carrying the Y132F
mutation in Erg11p produced significantly less biofilm than the other FLZR isolates
(P = 0.02) (Fig. 57).
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FIG 2 Minimum spanning tree obtained by MST of 91 isolates with azole resistance (A) and all study isolates (B). Isolates carrying Y132F and Y132F+K143R

formed distinct clusters. SDD, susceptible (dose dependent).

DISCUSSION

A recent global study indicated that C. parapsilosis has the highest rate of FLZ
resistance among Candida species, which has become a matter of growing concern,
including in Europe (11). FLZ resistance rates significantly differ among countries and
individual health care centers (11), emphasizing the need for active surveillance to
prevent further expansion of FLZR C. parapsilosis in clinical settings. Interestingly, FLZR
C. parapsilosis isolates are prevalent in three countries with the highest rate of FLZR C.
auris (18), i.e., South Africa (5), India (6), and South Korea (7), further limiting the
application of FLZ as first-line therapy. In this study, we report a clonal outbreak of FLZR
C. parapsilosis in 2007 to 2019 in Ege University Hospital (Izmir, Turkey), which was
especially characteristic of pediatric wards.

Overall, 26.5% and 8.3% of isolates were FLZR and VRZR, respectively; all of the latter
were also cross-resistant to FLZ. Most FLZR isolates (90%) carried previously reported
Erg11p mutations, and 5% of them carried a new one (G307A). Among the reported
mutations, Y132 F and K143R have been detected in FLZR C. parapsilosis (6) and G458SS
in FLZR C. orthopsilosis, a sibling species to C. parapsilosis (17). Although previous
studies indicate that the Mrr1p mutations G583R and K873N (19) and L986P (20) are
associated with FLZ and/or VRZ resistance, none of our isolates harbored them. Similar
to Candida albicans (21), residues located near the C terminus of Mrr1 (926 and 1027)
and Tac1 (760, 761, 803, 956, and 966) might contribute to azole resistance (21). Azole
resistance mechanisms in C. parapsilosis, unlike those in C. albicans, are not well
characterized, and we hope that the repertoire of mutations found in our study inspire
heterologous expression studies in the future to broaden our knowledge on this
growing problem.

The observed overall mortality rate in our study (38.1%) is similar to those reported
in Brazil (22, 23), the United States (24), Portugal (25), and Italy (26) (30 to 46%) and 2.7
times higher than that reported in Taiwan (14%) (27). Importantly, we observed a link
between mutations in genes implicated in azole resistance and mortality. Surprisingly,
the mortality rate due to isolates with Y132F was 3 times higher than that caused by
isolates with Y132F+K143R (OR = 6.8; P = 0.005). Experiments involving Galleria
mellonella larvae infected with wild-type (WT) and C. parapsilosis isolates with Y132F
showed a higher virulence when fluconazole was used for treatment (28). However, the
impact of various ERGT1 mutations on virulence of mutated and WT isolates has not
been tested when Galleria infected with respective isolates is not treated with azoles.
Although it has been shown that GOF mutation in Upc2 decreases the virulence of C.
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albicans (29), considering the increasing number of reported isolates with Y132F and
considering that association of Tac1, Mrr1, and Upc2 with virulence is relatively un-
known in C. parapsilosis, our findings may deserve detailed investigation in vivo.

C. parapsilosis can acquire azole resistance either by selective pressure due to azole
use or by horizontal acquisition of azole-resistant C. parapsilosis isolates in antifungal-
naive patients (7). Therefore, we analyzed patients’ treatment regimens and clonality of
the isolates. Interestingly, the increasing FLZ use from 2015 onward paralleled an
increasing frequency of isolation of C. parapsilosis isolates carrying Y132F. This finding
is consistent with a study in Brazil showing that patients with clonal FLZR C. parapsilosis
isolates carrying Y132F in Erg11p were previously exposed to FLZ (30). Moreover,
significant positive correlation between nonsusceptibility of Candida species to azoles
and FLZ use has been documented previously (31). Therefore, we speculate that the
selective pressure exerted by azole use has partly resulted in emergence of FLZR C.
parapsilosis in our hospital. To test the second idea, we assessed the genetic relatedness
of FLZR isolates in relation to their treatment with azoles. Assessment of FLZR isolates
by lineage using AFLP revealed two major clades with a high degree of similarity at the
genome level. MST showed higher resolution and separated isolates into seven clusters,
demonstrating that FLZR and FLZS isolates grouped in distinct clusters and accumu-
lated over time. These observations suggest that AFLP does not have sufficient reso-
lution to separate C. parapsilosis isolates and that MST should be the preferred method
for clonal analysis of strains responsible for infection outbreaks. The overall high
Simpson index value of the MST assay used here was demonstrated previously (32), and
the fact that MST is being increasingly used for the genotyping assessment of clinically
important fungi (33, 34), including C. parapsilosis (6), further suggests the reliability of
this technique when dealing with outbreak scenarios. Moreover, the conspicuous
grouping of FLZR and FLZS isolates into separate clusters and the finding that almost
50% of patients infected with FLZR isolates with Y132F/Y132F+K143R never received
azoles may suggest an ongoing clonal outbreak of C. parapsilosis in our hospital that
requires strict infection control and active environmental screening to identify and
eradicate the source of infection.

It has been speculated that FLZR C. parapsilosis isolates with Y132F tend to be more
clonal compared to other FLZR isolates and are more persistent in clinical settings (7).
MST analysis found that both FLZR and FLZS isolates formed clonal clusters containing
isolates recovered from 2007 to 2019. Moreover, biofilm formation, an index of persis-
tence in hospital settings, was lower for isolates harboring Y132F than those without it,
which is consistent with a study in Brazil showing that FLZR C. parapsilosis isolates with
Y132F produced less biofilm than FLZS C. parapsilosis, C. orthopsilosis, and C. metapsi-
losis (30). Collectively, these observations argue against the notion that isolates with
Y132F are more persistent than the other FLZR or FLZS C. parapsilosis isolates. Although
it is tempting to attribute this phenomenon to a fitness cost posed by Y132F, isolates
with the double mutation Y132F+K143R had a higher biofilm production. Therefore,
dedicated studies are required to verify this finding in vivo and to identify the subcel-
lular mechanisms involved.

Candida parapsilosis has been reported to respond to high concentrations of
echinocandins when tested in vitro, which is attributed to a natural polymorphism in
the FKST gene (35). However, in agreement with clinical studies conducted in the
United States (36) and Spain (37), we did not observe a significant difference in the
outcome for patients treated with FLZ or echinocandins. Of note, the comparative
efficacy of azoles and echinocandins was not the focus of this study; such a study
should take into account the severity of the disease and the underlying conditions. The
alarming increase in the number of fatalities due to azole-resistant C. parapsilosis
carrying the Y132F mutation, which could be further aggravated by clonal expansion in
our hospital, together with the overall low resistance of C. parapsilosis to echinocandins
(3, 11) reinforces the suitability of echinocandins for treatment of C. parapsilosis
bloodstream infections. However, one should consider the possibility that the high in
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vitro MICs of anidulafungin for C. parapsilosis may hamper its efficacy in the clinical
setting.

In conclusion, the observed clonal outbreak of fatal infections due to FLZR C.
parapsilosis in our hospital, especially in pediatric wards, is worrisome and may be the
consequence of inappropriate application of antifungal drugs and the lack of strict
infection control measures, including hand hygiene. Therefore, active environmental
surveillance followed by establishing strict infection control strategies and rigid sani-
tation standards are necessary to confine the spread of this pathogen. Moreover,
implementation of appropriate antifungal therapy limiting the emergence of FLZR
isolates is of paramount importance.

The retrospective nature of our study was one of its main limitations; as a result, we
could not obtain clinical data for some patients. Also, the contribution of GOF muta-
tions in TACT, MRR1, and UPC2 to azole resistance, which has mainly been studied in C.
albicans, is not fully recapitulated in C. parapsilosis (10); therefore, future studies in this
direction are warranted.

MATERIALS AND METHODS

Study design, definitions, and identification. The study included all patients with candidemia due
to C. parapsilosis admitted to Ege University Hospital, Izmir, Turkey, from 2007 to 2019. Being among the
five largest hospitals in Turkey with 1,816 beds, Ege University Hospital admits 67,000 inpatients and
1,200,000 outpatients annually. Although species identity was considered, neutropenic patients with
fever and sepsis were treated with caspofungin or amphotericin B (AMB). Positive blood cultures (100 wl)
were streaked on Sabouraud dextrose agar and incubated at 37°C for 24 to 48 h, and the single colonies
obtained were stored at -80°C. All isolates were primarily identified using the APl 20C AUX system
(bioMérieux, Marcy I'Etoile, France) and further characterized using the MALDI Biotyper system (Bruker
Daltonik, Bremen, Germany) with a full extraction method (38). This study was approved by the ethics
committee of Ege University Hospital (approval number 20-2T/30).

Antifungal susceptibility testing. Susceptibility to FLZ (Sigma-Aldrich, St. Louis, MO, USA) and VRZ
(Sigma) was tested by the broth microdilution method according to CLSI document M27-A3 (39). Plates
were incubated at 35°C for 24 h and MICs were determined by visual examination. MICs of =8 mg/liter
and =1 mg/liter were considered to indicate resistance to FLZ and VRZ, respectively (40), while isolates
for which FLZ and VRZ MICs were 4 mg/liter and 0.25 to 0.5 mg/liter were considered susceptible (dose
dependent) and intermediate, respectively (40). Isolates with FLZ and VRZ MICs of =2 mg/liter
and =0.12 mg/liter, respectively, were considered susceptible (40). Candida parapsilosis ATCC 22019 and
Candida krusei ATCC 6258 were used for quality control.

DNA extraction, sequencing, and genotyping. DNA extraction followed a cetyltrimethylammo-
nium bromide (CTAB) protocol (38). Primers for ERG11, TAC1, UPC2, and MRR1 genes are shown in Table
S1. Sequences were assembled using SegMan Pro software (DNASTAR, Madison, WI, USA) and after
curation were aligned to WT (41) ERGT1 (GQ302972), MRR1 (HE605205), TACT (HE605204), and UPC2
(HE605206).

The genotypic diversity and genetic relatedness of the isolates were assessed by AFLP (42) and MST
(32) as previously described.

Biofilm formation and quantification. In vitro biofilm formation was assessed for 11 strains
harboring Y132F and 9 strains lacking this mutation but resistant to FLZ (Table S2) (7, 43, 44). Biofilms
were formed in 96-well microtiter plates for 24 h and stained with crystal violet or resazurin (CellTiter-
Blue; Promega, Madison, WI, USA) as previously described (45). Absorbance (crystal violet) and fluores-
cence (resazurin) were measured using an Envision microtiter plate reader (Perkin Elmer, Waltham, MA,
USA).

Statistical analysis. Clinical and microbiological data were evaluated using SPSS v24 (SPSS Inc,,
Chicago, IL, USA). Biofilm formation was compared using an independent-samples t test. The association
between two nominal variables of mutations and survival was assessed using Phi and Cramer’s V.

Data availability. The sequences determined in this study for ERGT1 (MK924157 to MK924381),
MRR1 (MT429530 to MT429618), TACT (MK940393 to MK940481), and UPC2 (MT429619 to MT429707)
were deposited in GenBank.

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
SUPPLEMENTAL FILE 1, PDF file, 9.5 MB.
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