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Abstract

Background.—Microbiologists are valued for their time-honed skills in image analysis 

including identification of pathogens and inflammatory context in Gram stains, ova and parasite 

preparations, blood smears, and histopathological slides. They also must classify colonial growth 

on a variety of agar plates for triage and workup. Recent advances in image analysis, in particular 

application of artificial intelligence (AI), have the potential to automate these processes and 

support more timely and accurate diagnoses.

Objectives.—To review current artificial intelligence-based image analysis as applied to clinical 

microbiology and discuss future trends in the field.

Sources.—Material sourced for this review included peer-reviewed literature annotated in the 

PubMed or Google Scholar databases and preprint articles from bioRxiv. Articles describing use 

of AI for analysis of images used in infectious disease diagnostics were reviewed.

Content.—We describe application of machine learning towards analysis of different types of 

microbiological image data. Specifically, we outline progress in smear and plate interpretation and 

potential for AI diagnostic applications in the clinical microbiology laboratory.

Implications.—Combined with automation, we predict that AI algorithms will be used in the 

future to pre-screen and pre-classify image data, thereby increasing productivity and enabling 

more accurate diagnoses through collaboration between the AI and microbiologist. Once 

developed, image-based AI analysis is inexpensive and amenable to local and remote diagnostic 

use.

Introduction

Image interpretation is fundamental to clinical microbiology laboratory diagnostics. For 

example, Gram stains, fecal and blood smears, and histopathological slides all need to be 
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interpreted by highly trained microbiologists and/or pathologists. These specimens provide 

critical diagnostic information including the presence and categories of microbes, the host 

inflammatory response, and specimen quality. Taken in clinical context, this information 

helps establish whether an infection is present and often suggests a differential diagnosis that 

can direct therapy.

Microbiologists also classify growth of colonies on agar plates. Expertise is required to 

distinguish potential pathogens from one another and from normal flora. Multiple 

differential media including chromogenic agar must be correctly interpreted. These 

discriminatory observations are the basis for the type and extent of microbial workup.

A chronic shortage of medical laboratory scientists provides an additional challenge in the 

clinical microbiology laboratory [1]. Therefore, automation of the experientially demanding, 

visual interpretative tasks underlying workflow in the clinical microbiology laboratory has 

appeal. Until recently, options for automating image-based interpretative tasks were 

unsatisfactory. However, new artificial intelligence (AI) algorithms that excel in image 

discrimination now open up the potential for automated clinical microbiology interpretation 

with associated gains in efficiency and diagnostic accuracy.

AI general concepts

For the purposes of this review, AI is a set of rules or algorithms that allow computers (the 

artifice) to make decisions with features that simulate human intelligence. Intelligence 

implies an ability to learn: that is to alter underlying computer code to enhance future task 

performance. A significant advance in the AI field was the development of complex, multi-

layered AI architectures known as deep learning algorithms. A subset of these algorithms, so 

called convolutional neural networks (CNNs), are highly interconnected networks modeled 

after the human optical cortex and excel at image classification [2]. For example, these 

algorithms have been used as aids in diagnostic interpretation of image data to detect 

markers of cancer in histologcal sections of breast biopsies [3], interpret echocardiograms 

[4] and identify metastases in brain magnetic resonance imaging datasets (MRI) [5].

By analogy to human learning, interconnected nodes are variably stimulated based on input, 

for example, images. During learning, connections associated with an enhanced accuracy of 

image classification are reinforced, while connections that lead to erroneous categorization 

are weakened [6]. In essence, the wiring of our brains and by analogy computer code in 

CNNs is optimized based on experience.

During supervised training of CNNs for diagnostic interpretation, a training set, a large 

number of human classified images, is provided as input. The algorithm classifies each 

image and compares its accuracy with the human classification. Through a process of trial-

and-error, the CNN adjusts its neural network (i.e., its programming) thousands or even 

millions of times, to optimize its accuracy. At some point, improvements in accuracy level 

off and the algorithm is said to be trained.

The quality of training material is critical to development of robust interpretative algorithms. 

Without optimized training material, learning can go off track with surprising results. As an 
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example, if we were to train a CNN to recognize a coffee mug, we would train it on a large 

number of images of coffee mugs. However, a subset of coffee cups in the training set may 

be sitting on countertops. The algorithm may then inappropriately associate features of a 

countertop with a coffee mug classification. This misdirected learning is termed overfitting 

and is indicative of training with inadequate numbers of images sufficient to allow relevant 

features in a classified image to be ascertained. Overfitting is diagnosed using a test set, 

which is an independent set of images not used during training and which should be 

representative of the type and variety of images likely to be observed in the real world.

Overfitting can be addressed in a variety of ways, one of which is provision of more data 

during training. In our example, we could supplement our training set with images of coffee 

mugs in sinks, in a hand, or on a bookshelf. We would also provide many examples of 

objects that are not coffee mugs including countertops without coffee mugs. Through these 

strategies, we train the algorithm to focus on the defining features of the classified objects.

Search strategy

With this general introduction, we now turn to practical applications in the clinical 

microbiology laboratory. We reviewed the literature available in PubMed and Google 

Scholar through search terms including “artificial intelligence” and “clinical microbiology” 

on September 21, 2019. Seven articles were identified, only two of which pertained to image 

analysis (one review and our own publication on use of AI to interpret Gram stains). 

Therefore, we expanded our search and found that “Machine-learning and bacterial 

vaginosis,” and “Malaria and machine learning” identified several other AI-based smear 

analysis citations. We therefore start by discussing smear interpretation and follow with 

discussion of use of AI for microbial agar plate analysis, where introduction in clinical 

systems has largely preceded exploration in the literature.

Smear interpretation

In 2018, Smith, Kang and Kirby published a proof of principle study on use of a 

convolutional neural network (CNN) for automated interpretation of blood culture Gram 

stains [7]. Several key aspects of future use of AI in clinical microbiology can be abstracted 

from this study. Here, the authors used a CNN, which, as mentioned previously, excels at 

image categorization. However, training such a complex network is very computationally 

intensive, typically requiring specialized infrastructure (https://arxiv.org/abs/1512.00567). 

By analogy, we liken it to educating a child from primary school through college. However, 

if this young adult was originally trained to be an economist but needed to change careers, it 

would not have to start with pre-school again. Instead, its existing education would be used 

as a basis for training in a new discipline, let’s say as a clinical microbiologist.

Therefore, Smith et al. started with a CNN called Inception 3.0, previously trained by 

Google to recognize everyday objects (https://arxiv.org/abs/1512.00567), and retrained only 

the final layers to recognize several common Gram stain morphologies (Gram-negative rods, 

Gram-positive cocci in clusters and Gram-positive cocci in chains) in positive blood culture 

smears. In essence, the “college education” was kept intact and used as a foundation for 

microbiology specialty training. This re-education is referred to in the field as transfer 
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learning and is orders of magnitude less computationally intensive than complete end-to-end 

training of the CNN. In total, 100,000 classified image crops were fed into the CNN for 

training and across all Gram stain categories yielded a ~95% crop classification accuracy 

and a composite 92.5% whole slide classification accuracy.

However, the ultimate goal is to perform interpretation with an accuracy equal to a skilled 

microbiologist (i.e. >99%) [8]. An important feature of CNNs is that accuracy increases with 

the size of training sets, which may be comprised of millions of images[9]. It may be 

difficult or impossible to collect and classify such immense image datasets. Therefore, 

alternative strategies must be pursued. One of these strategies is data augmentation, a 

method by which a computer program transforms training images by rotation, inversion, 

displacement, or distortion to increase the variety of images in a dataset. However, data 

augmentation itself is computationally intensive, as each image must be transformed 

individually. With a more powerful computer containing a dedicated graphics processing 

unit (GPU), Smith and Kirby performed data augmentation, converting 100,000 images 

crops into 40 million transformed image crops. Training on this augmented data set 

increased crop accuracy calls to >99% (Smith and Kirby, unpublished data).

We envision that other types of microscope-based clinical microbiology diagnostics would 

also benefit from application of machine learning. For example, diagnosis of bacterial 

vaginosis is one potential high volume activity that could be performed inexpensively by 

training on smears classified by Nugent rules [10, 11]. Song et. al. used segmentation and 

morphological analysis of individual bacterial cells to classify them based on the Nugent 

criteria. Using 10 images per slide, they achieved a 79.1% accuracy compared to 90.7% for 

experienced technologists interpreting the same images. Although not yet equal to a trained 

technologist, this work provides a proof-of-concept for diagnosis of bacterial vaginosis 

leveraging CNN capabilities.

In addition to observation of bacterial smears, there is significant potential for use of AI in 

parasite diagnostics, with almost all published effort thus far devoted to malaria. The gold 

standard for Plasmodium detection and speciation is microscopic observation of stained 

thick and thin blood smears. Due to a paucity of trained individuals in endemic areas, several 

studies have explored alternative AI models to automate image interpretation. Such models 

routinely achieved sensitivity and specificities of >95% on a per-image basis when data are 

collected and interpreted in a research setting [12–17]. However, to our knowledge, none 

have yet been thoroughly evaluated clinically, and therefore, it is unclear how well these 

methods will perform during diagnostic implementation, especially in resource-limited 

settings. Nevertheless, these studies provide proof-of-concept that AI can be used for 

identification of Plasmodium spp.

It is important to note that automated slide interpretation depends on availability of 

automated microscopy to support high quality, efficient, and targeted acquisition of images. 

Unfortunately, current automated slide scanners used in anatomic pathology are inadequate 

to capture the narrow focal plane of microbiology images. Introduction of automated 

microscopy capabilities in clinical microbiology practice will likely occur in the context of 
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microbiology laboratory automation (MLA), and we expect AI-based slide interpretation to 

co-evolve with these technologies.

Plate interpretation

The second major type of image-based AI interpretation relevant to clinical microbiology 

involves analysis of microbial growth on agar plates. In contrast to automated slide imaging, 

automation of plate inoculation, handling, and imaging has already been incorporated into 

existing MLA systems. Yet several challenges remain in AI-based interpretation of microbial 

growth and incorporation within total laboratory automation workflow [18].

For example, individual colonies must be accurately demarcated and different colony types 

must be distinguished and quantified. This poses a computational challenge because colony 

morphology varies based on bacterial density and media type [19]. Furthermore, colonies are 

not always well separated, making it difficult to determine exactly how many morphotypes 

are present. However, it is technically much simpler to detect presence or absence of 

colonies, as segmentation and enumeration is not required. Given that many plates in the 

microbiology laboratory have no growth, reliable AI-based decisions on growth versus no 

growth would be very useful in limiting the number of negative cultures that need 

technologist attention.

As such, the first iteration of plate reading AI technology has been applied in two areas: 

detection of presence or absence of growth in urine cultures and determining the presence of 

specific target organisms of clinical or epidemiological importance on chromogenic agar 

plates based on indicator color. Examples of the latter include AI-based screening of specific 

chromogenic medium for group-A Streptococcus, vancomycin-resistant Enterococcus, and 

methicillin-resistant Staphylococcus aureus [20–22].

Urine culture workup, including plate interpretation, is likely the first culture type to be 

nearly or completely automated for several reasons. First, urine can be received in 

standardized containers, which can be easily processed by MLA systems. Second, pathogens 

in urine cultures are largely predictable so this limits the need to recognize all possible 

organisms, and chromogenic agar methods may provide additional cues that improve the 

ability of the AI to differentiate among these pathogens [23]. Third, mixed, polymicrobial 

cultures are typically not worked up, meaning that the AI needs to recognize the presence of 

mixed cultures but not necessarily to distinguish and categorize multiple admixed colonial 

morphologies.

The future of AI in clinical microbiology

We envision that implementation of AI in the clinical microbiology laboratory will follow 

from the aforementioned proof-of-concept studies. For example, respiratory Gram stains 

could be interpreted through automated quantification and discrimination of inflammatory, 

epithelial, and bacterial cell morphologies. Further, AI may also find a niche in other 

experientially demanding processes such as readout of fluorescent acid fast bacillus smears, 

morphological diagnosis of fungal adhesive tape preparations, or stool trichrome smears.
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Importantly, AI is capable of generating quantitative and nuanced information in the form of 

relative probabilities for each potential classification. For example, an image could be 

interpreted as 90% probability of Gram-positive cocci in clusters and 10% probability of 

Gram-positive cocci in chains. It is evident from a two-dimensional representation of their 

classified Gram stain dataset that an even more nuanced readout is possible (Smith and 

Kirby, Fig. 1, unpublished data). Specifically, subtle distinctions in organism shape and size 

can be differentiated. This suggests that with further training therapeutically important 

diagnostic distinctions could likely be made between organisms with similar Gram stain 

morphologies: for instance, identification of Gram-positive diplococcci suggestive of 

pneumococci; short Gram-positive rods suggestive of Listeria; or minute Gram-negative 

coccobacilli suggestive of Brucella or Francisella.

To incorporate this probabilistic output into clinical practice, Smith and Kirby conceived a 

platform called Technologist Assist (TA) in which a selection of AI-classified image crops 

are displayed on a computer screen for review along with probabilistic interpretations (See 

Figs. 2 and 3) [7, 24].

Can we afford it?

We close with a final word about cost-effectiveness. Classification of relevant pathogens in 

Gram stain or other smears by AI could potentially be supplanted by emerging molecular 

platforms. However, these technologies are expensive on a per assay basis and currently 

provide only qualitative detection of select pathogens. Direct analysis still provides an 

immediate understanding of the complexity and context of infection, which may not be 

otherwise amenable to molecular diagnostic interpretation.

It should be noted that training of AI is labor and computationally intensive.. Training in 

image-based infectious disease diagnostics relies on image data sets curated with great effort 

through manual interpretation of images by skilled clinical microbiologists. After training, 

accuracy and robustness must be extensively verified under real world conditions in 

comparison again to diagnostic interpretation by trained microbiologists. Acceptable 

accuracy thresholds for implementation will need to be established based on intended use 

and risks associated with false positive and false negative results. For example, replacement 

of human interpretation would require very high diagnostic sensitivity and specificity, 

whereas implementations that provide diagnostic assistance (for example, prescreening for 

potential pathogens) with an ultimate skilled human interpretation of curated image data 

prior to diagnosis would require a high sensitivity with tolerance for a more relaxed 

specificity.

However, after this resource intensive training, validation, and implementation, AI-based 

diagnosis is essentially free and image analysis can be performed on lower end computers 

that already exist in most microbiology laboratories. However, an intrinsic property of AI 

algorithms is that they can provide predictions only for data sets similar to those used in 

training. For example, a model trained to interpret colonies on plate media, chromogenic 

media or slides stained with reagents from a specific manufacturer may fail to function if an 

alternative manufacturer of media or stain were used. Therefore, it is important to consider 

the training dataset for any given model and retrain as necessary if new conditions are used.
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It is also evident that AI-assisted image analysis can be performed at a distance, only 

requiring that the remote site have a microscope and a way to transmit images to the AI 

using the internet or cellular service, i.e., telemicrobiology. Therefore, AI-based image 

analysis in infectious disease diagnostics will likely find its niche by providing answers in 

health care systems both large and small where other techniques are not cost effective, 

immediate, or comprehensive.
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Figure 1. Two-dimensional representation of Gram-stain classifications highlights ability to 
further subcategorize data.
Here, a t-statistic nearest neighbor embedding (tSNE) algorithm was used to visualize Gram-

stain crop classification data in two-dimensions. Clusters of Gram-positive cocci in long 

(left, lower) or short chains (left, upper) are readily recognizable. Similarly, Gram-negative 

rods (right, lower) can be distinguished from coccobacilli (right, upper). This information 

could later be used to provide additional probabilistic subclassification of organisms.
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Figure 2. Technologist Assist.
This platform is envisioned as a way for AI and clinical laboratory scientists to collaborate. 

After analysis of a smear by a trained AI, diagnostic image crops are displayed for 

technologist review along with a probabilistic differential Gram stain diagnosis. The 

technologist can then review images and select one or more diagnoses, which would then 

cross over from the laboratory information system to the patient report. The microbiologist 

also has the option of reviewing the smear directly in the presumptively rare instances where 

there is discordance between their assessment of the image crops and the offered AI 

interpretations or if there were diagnostic uncertainty.
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Figure 3. Example of probabilistic AI-assisted Gram stain reports.
The probabilistic report provides a weighted differential diagnosis that can draw attention to 

infections that require special therapeutic intervention.
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