Skip to main content
. 2020 Aug 3;52(9):391–400. doi: 10.1152/physiolgenomics.00063.2020

Table 2.

Performance measures of different machine learning algorithms for classifications of different types of cardiomyopathies and subtype recognition using the top 1,000 high-variance gene features

Accuracy AUC Sensitivity Specificity Precision F1
NF vs. DCM
DT 0.84 ± 0.06 0.83 ± 0.08 0.76 ± 0.13 0.92 ± 0.07 0.90 ± 0.08 0.81 ± 0.08
ENet 0.92 ± 0.05 0.96 ± 0.06 0.93 ± 0.07 0.91 ± 0.09 0.91 ± 0.09 0.91 ± 0.05
pcaNNet 0.92 ± 0.07 0.96 ± 0.04 0.91 ± 0.15 0.92 ± 0.08 0.92 ± 0.08 0.92 ± 0.05
RF 0.87 ± 0.05 0.95 ± 0.05 0.87 ± 0.09 0.87 ± 0.08 0.86 ± 0.07 0.86 ± 0.05
svmRadial 0.93 ± 0.05 0.96 ± 0.03 0.87 ± 0.10 0.98 ± 0.04 0.98 ± 0.05 0.92 ± 0.07
NF vs. ICM
DT 0.75 ± 0.07 0.79 ± 0.09 0.76 ± 0.18 0.74 ± 0.13 0.76 ± 0.10 0.74 ± 0.11
ENet 0.80 ± 0.05 0.88 ± 0.07 0.79 ± 0.13 0.81 ± 0.13 0.83 ± 0.10 0.80 ± 0.06
pcaNNet 0.81 ± 0.08 0.88 ± 0.07 0.83 ± 0.11 0.78 ± 0.14 0.81 ± 0.10 0.81 ± 0.08
RF 0.82 ± 0.08 0.89 ± 0.07 0.78 ± 0.14 0.87 ± 0.09 0.86 ± 0.09 0.81 ± 0.10
svmRadial 0.69 ± 0.07 0.76 ± 0.08 0.61 ± 0.19 0.78 ± 0.17 0.76 ± 0.11 0.65 ± 0.11
DCM vs. ICM
DT 0.77 ± 0.07 0.79 ± 0.08 0.75 ± 0.14 0.78 ± 0.13 0.76 ± 0.11 0.75 ± 0.08
ENet 0.80 ± 0.06 0.85 ± 0.07 0.85 ± 0.12 0.76 ± 0.11 0.76 ± 0.07 0.80 ± 0.06
pcaNNet 0.78 ± 0.08 0.85 ± 0.07 0.80 ± 0.18 0.76 ± 0.13 0.76 ± 0.10 0.76 ± 0.10
RF 0.79 ± 0.08 0.89 ± 0.06 0.88 ± 0.11 0.72 ± 0.12 0.74 ± 0.09 0.80 ± 0.08
svmRadial 0.80 ± 0.07 0.90 ± 0.05 0.82 ± 0.11 0.78 ± 0.10 0.77 ± 0.09 0.79 ± 0.08

Values are presented as means ± standard deviation (total 50 iterations). AUC, area under the receiver operating characteristic curve; DCM, dilated cardiomyopathy; ICM, ischemic cardiomyopathy; NF, nonfailure controls; DT, decision tree; ENet, elastic net; pcaNNet, neural networks with principal component analysis; RF, random forest; svmRadial, support vector machine with radial kernel.