Table 4.
Accuracy | AUC | Sensitivity | Specificity | Precision | F1 | |
---|---|---|---|---|---|---|
NF vs. DCM | ||||||
DT | 0.85 ± 0.06 | 0.85 ± 0.06 | 0.77 ± 0.10 | 0.92 ± 0.06 | 0.90 ± 0.08 | 0.82 ± 0.07 |
ENet | 0.86 ± 0.06 | 0.93 ± 0.05 | 0.83 ± 0.10 | 0.88 ± 0.07 | 0.86 ± 0.08 | 0.84 ± 0.07 |
pcaNNet | 0.83 ± 0.05 | 0.90 ± 0.05 | 0.83 ± 0.09 | 0.83 ± 0.09 | 0.82 ± 0.08 | 0.82 ± 0.05 |
RF | 0.90 ± 0.06 | 0.96 ± 0.03 | 0.87 ± 0.08 | 0.93 ± 0.08 | 0.92 ± 0.08 | 0.89 ± 0.06 |
svmRadial | 0.84 ± 0.05 | 0.93 ± 0.04 | 0.78 ± 0.09 | 0.89 ± 0.07 | 0.87 ± 0.07 | 0.82 ± 0.06 |
NF vs. ICM | ||||||
DT | 0.77 ± 0.08 | 0.79 ± 0.08 | 0.78 ± 0.17 | 0.76 ± 0.13 | 0.78 ± 0.10 | 0.76 ± 0.11 |
ENet | 0.85 ± 0.06 | 0.95 ± 0.05 | 0.80 ± 0.11 | 0.91 ± 0.07 | 0.91 ± 0.07 | 0.84 ± 0.07 |
pcaNNet | 0.90 ± 0.06 | 0.97 ± 0.04 | 0.89 ± 0.10 | 0.90 ± 0.09 | 0.91 ± 0.08 | 0.89 ± 0.06 |
RF | 0.84 ± 0.06 | 0.92 ± 0.06 | 0.82 ± 0.11 | 0.86 ± 0.09 | 0.86 ± 0.08 | 0.84 ± 0.07 |
svmRadial | 0.74 ± 0.09 | 0.85 ± 0.06 | 0.65 ± 0.18 | 0.84 ± 0.14 | 0.82 ± 0.12 | 0.71 ± 0.12 |
DCM vs. ICM | ||||||
DT | 0.78 ± 0.07 | 0.78 ± 0.10 | 0.75 ± 0.15 | 0.81 ± 0.13 | 0.79 ± 0.11 | 0.75 ± 0.09 |
ENet | 0.82 ± 0.06 | 0.88 ± 0.07 | 0.86 ± 0.11 | 0.79 ± 0.12 | 0.79 ± 0.09 | 0.82 ± 0.07 |
pcaNNet | 0.85 ± 0.06 | 0.90 ± 0.07 | 0.84 ± 0.10 | 0.85 ± 0.09 | 0.84 ± 0.09 | 0.83 ± 0.07 |
RF | 0.85 ± 0.07 | 0.94 ± 0.04 | 0.91 ± 0.10 | 0.79 ± 0.14 | 0.80 ± 0.10 | 0.85 ± 0.07 |
svmRadial | 0.81 ± 0.08 | 0.91 ± 0.06 | 0.79 ± 0.13 | 0.82 ± 0.10 | 0.79 ± 0.10 | 0.79 ± 0.09 |
Values are presented as means ± standard deviation (total 50 iterations). HCG, highly contributing gene; ML, machine learning; DCM, dilated cardiomyopathy; ICM, ischemic cardiomyopathy; NF, nonfailure controls; DT, decision tree; ENet, elastic net; pcaNNet, neural networks with principal component analysis; RF, random forest; svmRadial, support vector machine with radial kernel.