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m In pediatric acute myeloid leukemia (AML), intensive chemotherapy and allogeneic
hematopoietic stem cell transplantation are the cornerstones of treatment in high-risk cases,
* TDZ treatment modifies
cytoskeleton dynamics
triggering Ca2™ over-
load and toxic reactive

with severe late effects and a still high risk of disease recurrence as the main drawbacks. The
identification of targeted, more effective, safer drugs is thus desirable. We performed a high-
throughput drug-screening assay of 1280 compounds and identified thioridazine (TDZ),

. a drug that was highly selective for the t(6;11)(q27;q23) MLL-AF6 (6;11)AML rearrangement,
oxygen species accu- . . . . .

. ) which mediates a dramatica oor (below 20%) survival rate. induced cell death an
mulation for t(6:11) hich mediat d tically p (below 20%) 1 rate. TDZ induced cell death and
AML ' irreversible progress toward the loss of leukemia cell clonogenic capacity in vitro. Thus, we
explored its mechanism of action and found a profound cytoskeletal remodeling of blast

VIR snplegies e cells that led to Ca®" influx, triggering apoptosis through mitochondrial depolarization,

toxicity in t(6;11)-rear-
ranged AML without
neurological involve-

ment in vivo, indicating
a clinical therapeutic safety by developing novel TDZ analogues that exerted the same effect on leukemia

use. reduction, but with lowered neuroleptic effects in vivo. Overall, these results refine the
MLL-AF6 AML leukemogenic mechanism and suggest that the benefits of targeting it be
corroborated in further clinical trials.

confirming that this latter phenomenon occurs selectively in t(6;11)AML, for which AF6 does
not work as a cytoskeletal regulator, because it is sequestered into the nucleus by the fusion
gene. We confirmed TDZ-mediated t(6;11)AML toxicity in vivo and enhanced the drug’s

Introduction

In childhood acute myeloid leukemia (AML), recurrent chromosomal abnormalities are well-known
prognostic markers that are used to stratify patients in different risk groups and to tailor risk-adapted
therapies." The prospective clinical trials, currently conducted by pediatric AML international cooperative
groups, still include 4 to 5 courses of intensive, myelosuppressive chemotherapy in standard-to-
intermediate-risk patients, reserving allogeneic hematopoietic stem cell transplantation for use in high-risk
or relapsed patients.>* Despite the extensive improvements achieved in both treatment-related mortality
and outcome, there is room to revisit current therapeutic programs by including new drug approaches,
such as those targeting oncogenic driver mutations, to ameliorate treatment response.®>”

A notable move forward is expected to result from new therapeutic approaches aimed at targeting

chimeric or mutated genes that have been found to occur particularly in diverse genetic subgroups.”
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Nevertheless, novel drug-targeting approaches used for some
adult cancers® are still far from being used in children with life-
threatening AML.®'° High-throughput drug screening (HTDS)
approaches are currently used to test whether novel compounds
or drugs known to be active in other malignancies may be effective
in acute leukemia, with the goal of introducing them rapidly into
pediatric clinical trials.”'"'> We considered this strategy to
prioritize the identification of drugs with therapeutic benefits against
the childhood AML variant harboring the t(6;11)(q27;9283) chro-
mosomal rearrangement, which defines a peculiar biological and
clinical subset of AML, where the genes lysine methyltransferase 2A
(KMT2A, MLL) and afadin (AFDN, AF6) are fused, generating
the chimeric protein MLL-AF6."®'* We and other international
groups previously identified MLL-AF6-rearranged AML as the
most aggressive among the pediatric AMLs with MLL rearrange-
ments, with a low probability of event-free survival, reported to
range from 11% to 23% at 5 years.'® Indeed, several efforts have
been made to understand the main characteristics of this chimera,
demonstrating the crucial role played by the rare MLL partner
gene AF6, which is physiologically localized in the cytoplasm,
but is completely delocalized from the nucleus by the chimera
heterodimerization property,'* enhancing the activation of
RAS and its downstream pathway in the AML blasts.'® Today,
most patients with t(6;11) rearrangement still succumb within
1 year of diagnosis because of resistance to conventional
cytotoxic therapy. In this study, we identified that thioridazine
(TDZ), primarily used for schizophrenia, induces death in cells
harboring the MLL-AF6 chimera, thus serving as a newly
discovered mechanism of action for triggering leukemia cell
death. Furthermore, we had encouraging results with novel TDZ
analogues that showed therapeutic efficacy without neuroleptic
effects in vivo and could be considered for improving survival in
these patients.

Materials and methods

Patient selection and cell culture

We used primary cells from stored samples obtained from patients
for diagnostic analyses. These patients had t(6;11)(q27;q23)
MLL/AF6 and AML with other recurrent genetic aberrations;
those without genetic abnormalities were recorded as non-t(6;11)
AML. For apoptosis tests we used AML with t(9;11)(p21;923)
MLL/AF9, t(10;11)(p12;923) MLL/AF10, or inv(16)(p13;q22)
CBFB/MYH11 or without a genetic marker. AML primary blasts
were obtained from patients with AML in compliance with the
Declaration of Helsinki; informed consent was obtained from the
parents or legal guardians of the patients.* SHI-1, ML-2, HL60,
THP-1, NOMO-1, and SKNO-1 cell lines were purchased from
DSMZ (Braunschweig, Germany) and cultured as indicated by
the manufacturer’s guidelines.

Cell treatments

For HTDS, we used 1280 compounds from the LOPAC library
(Sigma-Aldrich-Merck, Darmstadt, Germany). Drug treatment
was performed through an Automated Pipetting Workstation
(epMotion 5070; Eppendorf, Hamburg, Germany) to standard-
ize the method (see supplemental Information for the pipeline).
Hit compounds, such as TDZ, fluspirilene (FLUS), and Ara-C,
were obtained from Sigma-Aldrich-Merck for further experiments
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in vitro and in vivo. In vitro treatment with TDZ and analo-
gues was performed at 10 pM concentration, as previously
suggested.'®

Apoptosis assay

Apoptosis was evaluated by double staining with annexin-V/propidium
iodide (Pl) (Roche Biochemicals, Indianapolis, IN) and analyzed with
the FC500 cytometer (Beckman Coulter, Brea, CA). Increased
apoptosis was calculated and expressed as the percentage of
annexin-V" and PI" cells compared with those exposed to dimethyl
sulfoxide (DMSO).

Immunofluorescence

For cytoskeletal rearrangements, images were acquired with the
Axio Imager M1 epifluorescence microscope (Zeiss, Oberkochen,
Germany). Elongated cells were counted for morphology, evaluat-
ing elements with or without prominent, organized, and filamentous
actin/elongated cytoskeletons (TDZ treatment: n = 46-146 cells;
silencing [si] MAF6: n = 114-225 cells). F-actin aggregates were
counted, and F-actin fluorescence was measured by Image-J software
(n = 152-408 cells; supplemental Information).

Measurements of intracellular Ca®*. Intracellular Ca®"
levels were monitored by Fluo-4 AM (Thermo Fisher Scientific),
fluorescence, according to the manufacturer's instructions. Results
were evaluated with the FC500 cytometer and a Thorlabs 2-photon
microscope. In both experiments, the mean fluorescence intensity
(MFI) was detected in the basal condition and up to 5 minutes after
treatment.

Xenograft experiments by bioluminescence imaging in
NSG mice. Procedures involving animals and their care were in
accordance with institutional guidelines that comply with national
and international laws and policies (EEC Council Directive 86/609;
OJ L 358; 12 December 1987) and with “ARRIVE" guidelines
(Animals in Research Reporting In Vivo Experiments). NSG mice
were injected in the tail vein with 2 X 10° SHI-1-LUC (transduced
with the luciferase gene) cells. Mice were intraperitoneally injected
with XenoLight firefly p-luciferin (15 mg/mL in phosphate-buffered
saline; Perkin Elmer, Waltham, MA) 10 minutes before measure-
ment (Xenogen IVIS Lumina Il bioluminescence/optical imaging
system; Xenogen Corporation, Alameda, CA) and imaged at 5, 8,
15, and 21 days to verify tumor engraftment and growth. When cell
engraftment was verified, the mice were randomly allocated to 4
groups (control, TDZ, Ara-C, and a combination of TDZ and Ara-C),
and treated daily with TDZ (8 mg/kg, intraperitoneally [IP]), Ara-C
6.25 mg/kg (IP), or a combination of the 2 drugs. The combination
index was calculated using the response-additivity approach. See the
description of flank-injection xenograft experiments in the supplemental
Methods.

TDZ analogue synthesis and SILAC and affinity enrichment.
Six azido thioridazine derivatives (TDZ1-6), were prepared by
heterocyclic N-piperidine substitution, according to a concise 3-
step synthetic procedure reported in the supplemental Data.”
For the SILAC and affinity enrichment methods and silencing
validation see the supplemental Information. Results were
obtained by assessing proteins collected in 2 independent
experiments with at least 2 peptides from lysis buffer 1 and
then were confirmed by using the more stringent lysis buffer
2 (in 2 independent experiments and with 2 peptides per
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protein). Straightforward candidate targets predicted to be
localized in cytoplasm or membrane were considered.

Data analysis. Statistical analyses were performed using the
Mann-Whitney U or unpaired 2-tailed Student ¢ test. Statistically
significant P values are denoted in the figure legends.

Results

TDZ targets MLL-AF6-ANL cytoskeleton dynamics

By HTDS of 1280 compounds on the MLL-AF6-rearranged
ML-2 cell line, we initially identified 104 active molecules. All of
them were then screened using the SHI-1 cell line, another cell
line harboring the 1(6;11) rearrangement, confirming the activity
of 98 of the 104 compounds (Figure 1A). To reduce the number of
compounds, we tested these 93 compounds on the non-t(6;11)
AML cell line HL60, excluding 73 active molecules. Finally, the
20 remaining compounds were used to treat 2 t(9;11)MLL-
AF9-rearranged cell lines, THP-1 and NOMO-1, identifying 10
compounds as toxic for both of them (supplemental Table 1) and
finally identifying those that acted exclusively on the t(6;11)-
rearranged cells (supplemental Figure 1; supplemental Table 2).
These 10 selected compounds were active at micromolar doses
(Glso from 1 to 10 uM [drug dosage giving a 50% reduction in
the net increase in cell proliferation]) on the t(6;11)-rearranged
AML cells (supplemental Table 3). We focused on 2 antipsy-
chotic agents, FLUS and TDZ, to be investigated for their
repositioning as anti-MLL-AF6 drugs. t(6;11)AML cell apoptosis
was documented (Figure 1B), with almost no effects on other
AML cell lines (supplemental Figure 2A). The self-renewal ability
of cancer cells was also observed to be severely compromised
after TDZ preincubation, exclusively in the t(6;11)AML rear-
rangement (Figure 1C; supplemental Figure 2B), and the cell
cycle was disrupted (supplemental Figure 3). Altogether, these
data showed that TDZ was strongly effective in inducing the
death of the t(6;11)AML cell lines. To investigate the relationship
between TDZ sensitivity and the presence of t(6;11) translocation,
we calculated Glsq values for a panel of different leukemia cell
lines and primary AML samples harboring various genetic
lesions (supplemental Figure 4A-B), confirming that t(6;11)-
rearranged AML cell lines were the most sensitive to TDZ
treatment (supplemental Table 4) and that the drug abrogated
colony formation in t(6;11)AML without toxic effects on healthy
bone marrow (supplemental Figure 4C). In addition, we trans-
fected a non-t(6;11)-AML cell line (HL60) with a pMIG vector
that was empty or modified to express the MLL-AF6 or MLL-AF9
chimera and checked the effect of TDZ on their expression. We
documented an increase in TDZ sensitivity specifically when
MLL-AF6 was induced, which as expected led to a partial AF6
translocation into the nucleus after MLL-AF6 induction (sup-
plemental Figure 5A-C), without any significant change in HL60
viability when pMIG-MLL-AF9 was expressed. We thus con-
firmed the selectivity of TDZ in the presence of the MLL-AF6
chimera and moved forward to in vivo experiments. We injected
the t(6;11)-SHI-1, t(5;17)-HL60, or t(9;11)-THP-1 cell line into
the flank of NOD/scid IL-2Rgnull (NSG) mice and monitored
leukemia growth after treatment. Monitoring of tumor size
revealed that only in SHI-1 xenografted mice did the treatment
significantly reduce the progression of tumor growth, not in the
control (Figure 2A). We tested the combination of TDZ with
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a very low dose of cytosine-arabinoside, which is not toxic (AraC
6 mg/kg vs standard 50 mg/kg) in vivo, in both the flank-injection
and IV models, confirming that TDZ significantly improved
leukemia reduction in the bone marrow and spleen (P < .05;
supplemental Figure 6 A-C). To further confirm the selectivity of
TDZ for t(6;11)AML, we silenced the MLL-AF6 fusion (supple-
mental Figure 7) and treated cells when the chimera was
severely compromised (16 hours after silencing), showing that
cell apoptosis was significantly rescued at 8, 24, and 30 hours
after treatment (n = 2; Figure 2B), supporting that TDZ's
efficacy is dependent on expression of the chimera and thus that
the drug is highly selective for this AML subtype. To repurpose
TDZ as a novel targeted therapy for this high-risk AML, we
explored its mechanism of action in this leukemia context. We
first evaluated the expression of dopamine receptors (DRs),
which represent the main TDZ target for neuroleptic effects, but
we found that all 5 DRs, including DR2,'®'® were almost
negative in both the t(6;11)AML cell lines and primary blasts
(supplemental Figure 8A-B), suggesting that TDZ triggers
t(6;11) cell death trough a different mechanism. Thus, we
reasoned that this AML variant is without cytoplasmic AF6
protein, because it was aberrantly sequestered in the nucleus
by the MLL-AF6 chimera, as previously demonstrated.'® AF6
exerts many physiological functions in cytoplasm, one of which is
PARKIN recruitment to mitochondria to trigger mitophagy, a rescue
mechanism that occurs after cell injury.'® Thus, we hypothesized
that cells without AF6 lose the capability of activating mitophagy in
response to TDZ treatment, thus inducing the observed cell death.
However, the latter hypothesis was discarded because we
confirmed that AF6 was necessary in non-t(6;11)AML cells for
PARKIN-induced mitophagy (supplemental Figure 9A); how-
ever, in SHI-1 cells, mitophagy was still active in a PARKIN-
independent way (supplemental Figure 9B) and TDZ did not
induce mitophagy?® (supplemental Figure 9C-D). In light of
these data, we excluded the most straightforward mechanisms
of action of TDZ and explored its targets by using a large-scale
method that combines quantitative proteomics (exploiting stable
isotope labeling with amino acids in cell culture [SILAC]) with
affinity enrichment, the best way to provide an unbiased, robust,
comprehensive identification of compound-binding proteins.2! To
perform the experiment, we synthesized a TDZ analogue modified
with a linker in the piperidine ring for binding to solid-phase (SP)
TDZ3 (supplemental Figure 10A). We confirmed in vitro that TDZ3
produced cell death, with the same effects as TDZ, as described
before (supplemental Figure 10B), and we performed SILAC. Mass
spectrometry of the peptides identified with lysis buffer 1 revealed
88 proteins (log, heavy/light ratio > 0) that were then filtered with
the stringent lysis buffer 2, resulting in the identification of 3 proteins
as TDZ targets: S100A8, S100A9, and ANXAG6 (Figure 3A).
S100A8 and S100A9 are of the same family of S100 calcium-
binding proteins and are predominantly found as heterodimers that
form S100A8/A9 (calprotectin), which is widely described to
promote microtubule polymerization and F-actin cross-linking.>2
ANXAG is a component of the annexin family, another class of Ca?"
-regulated proteins that bind to the negatively charged plasma
membrane surface, modulating membrane transport and ion fluxes
and influencing actin dynamics.?® Interestingly, these 3 proteins are
well known to form a complex associated with cytoskeletal filaments.>*
We validated that S100A8, S100A9, and ANXAG6 were recov-
ered after overnight hybridization of SHI-1 cell lysate with SP TDZ3
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Figure 1. Drug screening pipeline and selected compounds. (A) The pipeline used to select compounds for t(6;11) cell lines: 1280 compounds were tested in ML-2

cells; 104 active drugs were tested in SHI-1; 93 active drugs were screened in the t(5;17) cell line HL60; and 20 nonactive drugs were tested in the t(9;11) cell lines THP-1

and NOMO-1. The 10 resulting compounds were considered selective for t(6;11)AML. Drug treatment was performed in triplicate, and compounds were considered active
when cell viability was reduced to at least 60%. (B) Cell death (annexin V*, PI*, and annexin V*/PI™) induced by FLUS and TDZ in SHI-1 cells 24 and 48 hours after
treatment (n = 3), relative to the DMSO value. (C) Colony-forming assay performed on viable SHI-1 cells seeded 24 hours after FLUS or TDZ treatment (n = 3). Data are the

mean = SEM. *P < .05; **P < .01; **P < .001; ****P < .0001.

(Figure 3A). Then, we silenced S7100A8, ST00A9, and ANXA6 as
single genes or in combination, showing that during a severe
reduction of gene expression, we had the rescue of TDZ cell death
effects (Figure 3B; supplemental Figure 11), confirming that this
complex is the TDZ target. The fact that the S100A8, S100A9,
and ANXAB complex is crucial in the cytoskeletal organization
suggests that the mechanism of action of TDZ could involve the
cytoskeleton. We thus investigated SHI-1 and primary AML cell
morphology before and after a brief TDZ treatment (4 hours, a time
insufficient for inducing cell death). With F-actin staining, un-
treated cells displayed elongated and stretched organized actin
filaments, whereas after TDZ, they assumed a round shape (n = 46-
146 cells; Figure 3C). We also observed that all the non-t(6;
11)-rearranged AML (cell lines and primary AML) cells exhibited
a small, round cytoskeleton before and after treatment, in-
dependent of genetic asset, which was different from the more
stretched, t(6;11)-rearranged cells (supplemental Figure 12A-B).
This finding supports the interpretation that TDZ binds its target
complex, S100A8/A9-ANXAS6, triggering severe cytoskeletal
modification of the t(6,11)-rearranged blasts, probably related
to the preexisting condition of the absence of the cytoplasmic
AF6.2°25 To definitively sustain this hypothesis, we silenced MLL-AF6
fusion, which led to the restoration of AF6 in the cytoplasm
(supplemental Figure 13),'® observing the rescue of the cytoskel-
eton, returning it toward a round-shaped morphology similar to non-
t(6;11)AML cells (n = 114-225 cells; Figure 3D). Furthermore, in
addition to the morphologic changes, we observed exclusively in
t(6;11)AML cells the accumulation of large F-actin aggregates

4420 TREGNAGO et al

starting from 2 hours after TDZ treatment and increasing over
time (centrifuged cells; n = 152-333; Figure 3E). These F-actin
aggregates have been described to correlate with the oxidative
stress and apoptosis?” that we largely documented in the t(6;11)
cells later during TDZ treatment.

TDZ unbalances Ca2* homeostasis, triggering t(6;11)
AML cell death

F-actin aggregates were observed to activate reactive oxygen
species (ROS) and cell death; thus, we measured ROS levels of
t(6;11)SHI-1 cells during treatment and found that they continu-
ously increased, whereas TDZ induced light ROS production in
non-t(6;11) cells that rapidly resolved in 24 hours (in 6, 16, and
24 hours of treatment; n = 2; Figure 4A). Concomitantly, potential
polarization of the mitochondria changed with an increased
depolarization in t(6;11), whereas it remained completely un-
affected in non-t(6;11)AML (at 6-24 hours of treatment; n = 5;
Figure 4B).

Indeed, we explored Ca®* and observed a rapid influx within
1 minute of TDZ treatment in SHI-1 cells, and in HL60 cells to
a lesser extent (SHI-1: DMSO MFI of 61, 59, 55, and 55; and
TDZ MFI of 69, 92, 86, and 85 at 0, 1, 3, and 5 minutes after
treatment, respectively; n = 5; HL60: DMSO MFI of 45, 44, 44,
and 45; and TDZ MFI of 46, 62, 58, and 59 at 0, 1, 3 and
5 minutes after treatment, respectively; n = 3; Figure 4C-D).
The latter observations were confirmed in primary t(6;11) and
non-t(6;11)AML and in healthy bone marrow (Figure 4E and F,
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Figure 2. TDZ antagonizes MLL-AF6-mediated leukemia progression. (A) Tumor growth in mice that received flank injections of SHI-1, HL60, or THP1 cells and were
treated daily with TDZ at 8 mg/kg, compared with the control group treated with DMSO (n = 6). The gray area indicates the treatment interval. (B) Cell death (annexin V*, PI",
and annexin V*/PI*) of SHI-1-injected mice treated with TDZ 16 hours after MLL-AF6 chimera silencing (sir), evaluated 8, 24, and 30 hours after treatment, compared with
DMSO (n = 2). Data are the mean = SEM. *P < .05; *P < .01; **P < .001; ****P < .0001.

respectively; supplemental Figure 14A-B). We then confirmed by 2-
photon microscope a Ca®* influx in t(6;11)AML (SHI-1 and primary
cells; Figure 4G-H; supplemental Videos 1 and 2, respectively). Of
note, TDZ triggered a rise in intracellular Ca®" concentration when
CaCl, was present in the medium, whereas if absent no Ca?" influx
was detected, suggesting a selective increase of external Ca®*
entry over internal release (w/o; Figure 4C-E). To corroborate this
TDZ-mediated abnormal Ca®" influx, we pretreated SHI-1 cells with
2 mM EGTA, an exiracellular Ca2* chelator, and showed a long-
lasting lack of Ca?" intake when treated with TDZ (n = 3; Figure BA;
supplemental Figure 15). Moreover, we observed a partially rescued
mitochondrial depolarization and significantly reduced apoptosis of
the SHI-1 cells at 6 and 24 hours (n = 3; Figure 5B-C). However,
neither cytoskeletal rearrangements nor F-actin aggregate formation
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was rescued by blocking Ca®* influx by EGTA (n = 2; Figure 5D),
because they depend on TDZ binding to its target proteins, which
triggers the cytoskeletal modification. In line with this hypothesis, we
exacerbated Ca®" cytoplasmic levels by cotreating cells with TDZ
and KB-R7943 (10 wM), a drug that inhibits both the mitochondrial
calcium uniporter and plasma membrane Na*-Ca®* exchanger.®
The result of this Ca®" overload (supplemental Figure 16) revealed
a stronger and more rapid SHI-1 mitochondrial depolarization and
cell death, with no effects on HL60 cells (n = 5; Figure 5E-F).
Finally, we used thapsigargin (Thapsi; 2 pM), a specific inhibitor
of endoplasmic reticulum (ER) ATPase that depletes Ca®" ER
storage, pouring its cargo into the cytosol, and definitively
established that Ca®?* homeostasis was pivotal for t(6;11) blast
survival (supplemental Figure 17A-B). In light of this novel

TDZ INDUCES A TOXIC Ca®* OVERLOAD IN t(6;11)AML 4421
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Figure 3. TDZ induces cytoskeletal rearrange-
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ANXAB, S100A8, and S100A9 silencing (sir), used
alone or combined (sirBOMB). (C-D) Representa-
tive confocal immunofluorescence images of SHI-1
cells seeded onto fibronectin-coated slides 4 hours
after TDZ treatment (C), or 60 hours after silencing
(sir) of MLL-AF®6 fusion gene (D), stained with
F-actin antibody (red) and diamidino-2-phenylindole
(DAPI; blue) as the nuclear counterstain. Histo-
grams represent the percentage of elongated cells
(panel C; n = 46-146 cells and n = 114-225 cells).
Original magnification X63. Bars represent 10 pum.
(E) Immunofluorescence of centrifuged SHI-1 and
HL60 cells 4 hours after TDZ treatment, stained
with F-actin antibody (red) and with DAPI (blue) as

the nuclear counterstain. Arrows indicate F-actin

DMSO TDZ sirneg sir MAF6
aggregates. Histogram represents the percentage
of SHI-1 cells containing F-actin aggregates 2, 4, 6,
E 16, or 24 hours after TDZ treatment (n = 152-333
DMSO TDZ . o

a cells). Original magnification X63. Bar represents
I S 5 907 - 10 um. Data are the mean + SEM. *P < .05;
% g = **P < .01; **P < .001; ****P < .0001. Original
g < 2 40 4
s = 2 magnification X40. Bar represents 10 um. AU,
- =
< = é 30 A arbitrary unit.

<08

E =
3 E 8 20-
i' ©2 2

@ (=]
= S = 101
— 1=}
© =
: oo
< DMSO 2h 4h 16h 24h

F-ACTIN/DAPI TDZ treatment

TDZ-induced phenomenon, we first identified that Ca®>" homeo-
stasis is a crucial feature, especially when coupled to expression of
the MLL-AF6 chimera.

New TDZ analogues for treating t(6;11)AML

TDZ has been recently proposed to treat several cancers, including
adult AML, as suggested in a recent phase 1 trial, in which TDZ still
showed low therapeutic efficacy with mostly neuroleptic toxicity."®
Seeking to extend the potential clinical use of TDZ as a targeted
therapy for treating those patients with AML who specifically carry
the t(6;11) rearrangement, we decided to improve its safety profile
of neuroleptic effects on the central nervous system. To tackle
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this problem, we designed, synthesized, and tested 6 new TDZ
analogues (TDZ1, TDZ2, TDZ4, TDZ5, TDZ6, as well as the TDZ3
previously used for SP linking; supplemental Figure 18), obtained
by heterocyclic N-piperidine substitution, for their effect on t(6;11)
blasts. We found that 3 of them (TDZ2, TDZ3, and TDZ6) induced
apoptosis to an extent similar to that of the lead compound TDZ
(n = 3; Figure 6A) and demonstrated that they exerted the same
TDZ mechanism of action by reorganizing the cytoskeleton (n = 2;
Figure 6B). In particular, TDZ2 and TDZ6 promoted Ca®" uptake
similar to TDZ, whereas TDZ3 resulted in a significantly higher
Ca®" influx than its lead compound (n = 3; Figure 6C). Conversely,
those TDZ analogues with no effects on apoptosis did not induce
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Figure 4. TDZ induces ROS production and mitochondrial depolarization in t(6;11) AML cell through calcium influx. (A) ROS levels detected 6, 16, and 24 hours
after TDZ treatment compared with DMSO, in SHI-1 and HL60 cells (n = 2). (B) Mitochondrial depolarization evaluated by tetramethylrhodamine ethyl (TMRE) fluorescence
measurement, 6 and 24 hours after TDZ treatment compared with DMSO, in SHI-1 and HL60 cells (n = 5). (C-D) Live intracellular Ca®* in t(6;11) SHI-1 (C) and in non-t(6;
11) HL60 (D) cell lines, loaded with Fluo-4 AM Ca?" indicator, measured by flow cytometry, in Ca2+-containing or -free buffer (n = 5). Values are the mean = SEM. *P < .05;
**p < 01. (E-F) Live intracellular Ca2* in t(6;11) (E) and non-t(6;11) primary (F) cells, loaded with Fluo-4 AM Ca?" indicator, measured by flow cytometry. (G-H) Intracellular
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fluorescence of a representative cell. Bars represent 20 pm.
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cytoskeletal modification or Ca®" influx, confirming that both these
effects are determinants that trigger TDZ- or analogue-induced
t(6;11)AML cell death. In light of these results, we prioritized
TDZ2 and TDZ6 for in vivo testing. We evaluated neuroleptic
effects by a stepped-dose test>® in NSG mice treated with
increasing doses of drug (1, 5, 8, 10, 12, and 15 mg/kg), and
found that both the analogues TDZ2 and TDZ6 did not provoke
akinesia, either at the dose where TDZ was efficient (at least
8 mg/kg), or at higher doses (n = 3; Figure 6D). We finally
selected TDZ6 as the analogue with the efficacy to prevent AML
progression in vivo and found that it counteracted tumor growth
at a dosage equivalent to TDZ, 8 mg/kg (n = 5; Figure 6E), with
the great possibility of potentiating the standard chemotherapy
effect. This result of a novel TDZ formulation that targets t(6;11)
AML blasts by determining a severe F-actin aggregation and
Ca®" influx is a novel strategy for selectively clearing blasts
(Figure 7).

Discussion

Childhood AML biological heterogeneity is mainly explained by
the presence of recurrent cytogenetic and molecular markers in
almost 95% of cases that, correlating with the response to
therapy and outcome, play a crucial role not only in diagnostic
definition, but also in risk stratification.* However, few genetic
features are targetable with drugs®® and cytotoxic chemother-
apy still represents the mainstay of leukemia treatment.® In
this study, we sought to identify novel agents that act on the
MLL-AF6-specific'®®" leukemia subtype, in view of the consid-
eration that current therapies almost invariably fail in children
with this AML variant.®? We used high-throughput screening of
chemical compounds, partly approved by the U. S. Food and Drug
Administration or in clinical development, to be rapidly advanced
into pediatric clinical trials in AML.%3

To reach our goal, we used a very restrictive pipeline that allowed
for a process of high refinement, which unexpectedly revealed that
the dopamine receptor antagonist TDZ was a selective anti-t(6;11)
AML drug in vitro and in vivo.'®

In recent years, TDZ has been proposed as an antileukemia
stem cell agent,'® and, more in general, phenothiazines have
been shown to display anticancer activity over a broad array
of cancer types.®*®® Nevertheless, there are controversial
reports on DR expression on cancer cells,'® because the concen-
tration necessary to induce cytotoxicity is many orders of magnitude
higher than would be expected for a DR-based mechanism, as
determined from dopamine receptor affinity.®” In that regard,
TDZ antitumoral activity on various cancer cell lines is exerted
with an in vitro dosage that ranges from 5 to 20 uM,3*3841 far
from the dissociation constant of TDZ for its putative DR2
targeting,®” suggesting that other mechanisms are activated by
this drug in cancer,*? especially because of the multiple targets
that high concentrations of antipsychotic drugs may engage.
Thus, we decided to use a blind analytical target-identification
strategy for dissecting the targeted mechanism of TDZ in t(6;11)
blast cells.?’ We identified the S100A8-A9-ANXA6 complex bound
to TDZ molecules. Of note, it has been reported that S100A4,
a member of the same S100 family, is a target of the phenothiazines
trifluoperazine and prochlorperazine, an observation that supports
our results.*® This discovery guided the identification of the
downstream signaling, showing that the main TDZ effect in myeloid

€ blood advances 22 sepTEMBER 2020 - vOLUME 4, NUMBER 18

cells was on cytoskeletal remodeling. In fact, ST0O0A8-A9-
ANXAG6 plays a role in microtubule organization and F-actin
cross-linking,22"2* with main consequences for the cytoskeletal
reorganization that induces apoptosis.?”** We obtained evidence
of a profound rearrangement of F-actin fibers on AML cells, but cell
death was observed exclusively in those harboring the t(6;11) MLL-
AF6 rearrangement, where TDZ treatment induced the condensa-
tion of F-actin into large intracellular aggregates, similar to those
observed in actin-regulatory mutants and for other drugs affecting
actin turnover.?”® This phenomenon is known to provoke cell
intoxication from F-actin bundles, loss of the regulation of actin
dynamics, and an increase in oxidative stress.?” It appeared that
ROS accumulation was detrimental exclusively in t(6;11)AML cells
that, unable to restore their basal levels of ROS, died. ROS can be
generated by various sources, and many of these systems can be
modulated by calcium.*® We observed that, during TDZ treatment,
a massive influx of external Ca®* was generated, most likely
through cytoskeletal rearrangement. Intracellular cytosolic Ca2*
is maintained at a very low level, and minimal fluctuation of Ca®*
levels can generate aberrant signaling.*” We thus monitored
cytosolic Ca®™, showing that TDZ treatment triggered an increase
in intracellular Ca®" concentration in the presence, but not in
the absence, of external Ca®*, suggesting a selective increase
in Ca2* entry over internal release. We demonstrated that this
Ca?* overload in t(6;11)AML cells is the main cause of ROS
overproduction, mitochondrial depolarization, and leukemia cell
apoptosis, with reduced or augmented cell death when combined
with the Ca®* chelator EGTA and the mitochondrial calcium
uniporter and Na™-Ca®" exchanger blocker drugs. These findings
revealed the role of Ca®" levels in MLL-AF6-rearranged cells,
confirmed also by using Thapsi, a drug that moves Ca®" from ER
storage into the cytosol and phenocopies the effects of TDZ in
triggering apoptosis. We then linked this TDZ extreme specificity
and selectivity toward the presence of the chimera MLL-AF6'®
and its known ability to sequester AF6 into the nucleus.'® AF6 is
a multidomain protein that comprises 2 RAS/RAP1- and actin-
binding domains, with activity on cell adhesion through the
regulation of the actin cytoskeleton.?®2648 |n this study, the
cytoplasmic absence of AF6 resulted in a different cytoskeletal
reorganization, leading to a stretched AML cell morphology,
with more prominent and organized actin filaments, when
compared with the round cell morphology of the rest of the
AML genetic subtypes. As confirmed in the context of MLL-AF6
silencing, the treatment effects of TDZ were abolished when
AF6 cytoplasmic expression was restored, confirming that
the MLL-AF6-mediated cytoskeletal abnormality amplified
treatment effects, resulting in severe consequences for cell
survival.

We thus identified a targeted therapy for MLL-AF6 AML. However,
TDZ is a neuroleptic compound, and that led to the unsolved
question of whether there is an adequate therapeutic window
including sufficient degree of efficacy if applied to clinical use.*?

To overcome these limitations and in particular to extend this
proposal in pediatrics, we developed novel TDZ analogues, where
the heterocyclic N-piperidine was modified, adding a lateral chain
that prevents blood-brain barrier crossing while maintaining
cytotoxicity in t(6;11)AML cells. We demonstrated that these
new compounds displayed their effects with the same mechanism
of action as the lead compound TDZ. Thus, we indicate herein novel
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formulations with an improved safety profile to be pursued in future
AML trials.

Finally, we identified for the first time high susceptibility to Ca®*
overload as a feature peculiar to t(6;11)AML cells, deconvoluting a cancer
mechanism that can be exploited to treat patients with MLL-AF6
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rearrangement and in light of the observation that DOT1L inhibitors
and other epigenetic modulators were found to be ineffective.*?>°
Overall, our results confirm the complex and unique nature of the
oncogenic mechanisms sustained by the MLL-AF6 fusion gene and
provide the rationale for testing TDZ analogues in the clinical arena.
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Figure 7. TDZ-induced effects. In t(6;11)AML
cells, where AF6 is sequestered in the nucleus,
TDZ binds S100A8-A9-ANXAB, impairing actin
turnover, promoting F-actin aggregates, and ulti-

t(6;11) AML

mately leading to massive Ca®" influx, which in
turn promotes ROS overproduction and mitochon-
drial depolarization, triggering cell death. Con-
versely, in non-t(6;11)AML cells, TDZ still binds
S100A8-A9-ANXAB, but the functional cytoplas-
mic AF6 counteracts its action, inducing milder
cytoskeletal rearrangement and Ca* influx,

eliciting reversible effects.
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