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The surge of human genetic information, enabled by increasingly facile and economically
feasible genomic technologies, has accelerated discoveries on the relationship of germline
genetic variation to hematologic diseases. For example, germline variation in GATAZ,
encoding a vital transcriptional regulator of multilineage hematopoiesis, creates

a predisposition to bone marrow failure and acute myeloid leukemia termed GATA2
deficiency syndrome. More than 300 GATAZ2 variants representing missense, truncating, and
noncoding enhancer mutations have been documented. Although these variants can
diminish GATA2 expression and/or function, the functional ramifications of many variants
are unknown. Studies using genetic rescue and knockin mouse systems have established
that GATA2 mutations differentially affect molecular processes in distinct target genes and
within a single target cell. Considering that target genes for a transcription factor can differ
in sensitivity to altered levels of the factor, and transcriptional mechanisms are often cell
type specific, the context-dependent consequences of GATA2 mutations in experimental
systems portend the complex phenotypes and interindividual variation of GATA2 deficiency
syndrome. This review documents GATA2 human genetics and the state of efforts to traverse
from physiological insights to pathogenic mechanisms.

Linking GATA2 dysregulation to human hematologic disease

The discoveries of master regulatory transcription factors that control hematopoiesis have been rapidly
followed, or even preceded, by evidence for causative roles in human blood diseases. Transcrip-
tional circuitry governing hematopoietic system development and function generates almost infinite
opportunities for hematopoiesis to go awry. This is exemplified by GATA1,"* Runx1,%® Etv6,”® and
Scl/TAL1,2'° as their dysregulation causes human diseases, including anemia, thrombocytopenia, bone
marrow failure, and leukemia. After more than a decade of intensive study, strong evidence has emerged
from human genetic analyses that GATAZ2 alterations also cause hematologic disease.

After discovery of the founding member of the GATA transcription factor family GATA1,"? GATA2 was
shown by Orkin and colleagues in 1994 to be a vital determinant of multiineage hematopoiesis."’
Although high GATA2 expression correlates with disease severity in pediatric and adult acute myeloid
leukemia (AML),'>'® analyses of GATA2 germline mutations definitively established its role in causing
a complex disorder termed GATAZ2 deficiency syndrome.'*'” This syndrome involves immunodeficiency
with monocytopenia; B cell, natural killer cell, and dendritic cell deficiencies; and common Mycobacterium,
fungal, and viral infections. Patients with GATA2 deficiency syndrome may also exhibit lymphedema or
monosomy 7.'72° GATA2 mutations create an myelodysplastic syndrome/AML predisposition, and
physiological GATA2 levels suppress bone marrow failure and leukemogenesis.'®?" The only potentially
curative therapy is bone marrow transplantation.?>?® Chronic myelogenous leukemia and AML patients
with somatic GATA2 mutations reportedly share select phenotypes with germline GATA2 deficiency
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syndrome,?*?°, albeit the differences between GATA2 deficiency

syndrome and these leukemias are considerable.

GATAZ2 deficiency syndrome has a highly variable penetrance, with
unpredictable presentations in children and adults.'®'92%27 The
enigmatic penetrance has profound therapeutic implications. GATA2
mutations in children and adults can be asymptomatic, despite having
family members with GATA2 deficiency syndrome. Somatic mutations
in a host of genes (RUNX1, ETV6, CEBPA, ASXL1, SETBP1,
and STAG2) occur commonly with germline GATA2 mutations
and may constitute pathogenic triggers.?"?63” However, whether
different constellations of somatic mutations, in concert with the
GATA2 germline mutation, qualitatively or quantitatively influence
pathogenesis is unknown. Infection or environmental stresses may
establish or influence epigenetic mechanisms to trigger pathogenesis
and dictate penetrance.®”3° Epigenetic plasticity is a double-edged
sword, as it may promote disease progression*° or mitigate disease
phenotypes.*’

Mechanistic basis of
GATA2-instigated pathogenesis

Understanding GATA2 deficiency syndrome requires knowledge of
GATA2-dependent mechanisms that sustain hematopoiesis and
permit the hematopoietic system to adapt to diverse stresses.
GATA2 promotes hematopoietic stem and progenitor cell (HSPC)
generation and function''"*2*8 and regulates erythroid and mega-
karyocytic precursors.'3#95° |n human embryonic stem cell systems,
GATAZ2 overexpression promotes the conversion of hemogenic
endothelium to hematopoietic precursors®' and maintains multi-
potent precursors.®? In addition to HSPCs, GATAZ2 is expressed in
select differentiated cell types, including macrophages, endothelial,
neuronal, and endocrine cells.**®'%%57 Importantly, GATA2 regulation
can vary greatly in different biological systems. For example, targeted
ablation of the murine Gata2 +9.5 intronic enhancer strongly reduces
Gata2 expression in HSPCs without affecting expression in brain.>®
Targeted ablation of the far upstream Gata2 —77 enhancer abrogates
the multilineage differentiation potential of fetal liver progenitor
cells without affecting hematopoietic stem cell emergence,**
which is abrogated by the +9.5 enhancer deletion.***® Targeted
ablation of the Gata2 —1.8 “GATA switch site” disrupts the
mechanism that maintains Gata2 repression during erythroid
differentiation, without affecting the initiation of Gata2 repression
and Gata2 expression before repression.”® GATAZ2-instigated
genetic networks vary in different cellular contexts and in the steady
state vs stress.3%44 4680 |n progenitor cells, GATA2 activates
expression of a cadre of mechanistically linked and diverse
genes, including those encoding c-Kit receptor tyrosine kinase,
c-Kit signaling facilitator Samd14, erythroid and megakaryocytic
differentiation inducer GATA1, and histidine decarboxylase
mediating histamine biosynthesis."®5'®* During mouse embryo-
genesis, GATA2 suppresses expression of innate immune genes,
endowing progenitors with multiineage differentiation potential.*®
During erythrocyte development, a subset of GATAZ2-activated
genes, including Gata2 itself, are repressed as GATA1 replaces
GATA2 on chromatin, a process termed a GATA switch, 93666
Thus, in certain contexts, GATA1 and GATAZ2 function distinctly.

The foundation described here raises the question of whether
GATA2 germline mutations uniformly disrupt GATA2 expression
and function in all cellular contexts, or if the mutations compromise
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processes in select cellular contexts and/or a subset of GATA2-
regulated processes within a single cell. In addition, does the
phenotypic complexity of GATA2 deficiency syndrome reflect an
amalgamation of hematopoietic cell-intrinsic and non—cell-autonomous
defects arising solely from insufficient GATA2, or do certain
GATA2 mutants exert ectopic activities? GATA2 germline and
acquired mutations include coding and noncoding sequence
deletions, frameshifts, and missense mutations. Of 343 GATA2
coding mutations designated “pathogenic,” “likely pathogenic,”
and “uncertain significance” by ClinGen/ClinVar (Figure 1), 148
are deemed pathogenic, with 61% (90) altering sequences
within the zinc finger domain. Although GATA2 N-finger function
is unresolved, the C-finger mediates GATA motif binding.49 In
GATAT1, the N-finger mediates binding to the coregulator Friend
of GATA1%7®8 and modulates DNA binding at complex sites
containing composite GATA motifs.®® Pathogenic mutations external
to the GATA2 zinc fingers (41) are predominantly frameshift or
nonsense (28% of pathogenic mutations; 41 of 148). GATA2 zinc-
finger domain mutations and external frameshift and nonsense
mutations amount to 88% of the pathogenic mutations (131 of 148).
Apart from nonsynonymous coding mutations, synonymous GATA2
coding mutations have also been described in a small number
of patients. Despite unaltered protein composition, nucleotide
changes in coding regions induced selective loss of messenger
RNA expression and/or splicing errors.”® Phenotypic consequen-
ces resembled that of nonsynonymous mutations, and a single
variant of synonymous germline mutation generated intrafamilial
phenotypic variability.”*

To develop principles underlying GATA2-dependent pathogene-
sis, it is instructive to consider the relationship between human
mutations and posttranslational modifications that regulate GATA2
function. The MAPKs p38a and extracellular signal-regulated
kinase can phosphorylate murine GATA2 at multiple sites (S73,
S119, S192, S290, and S340), which are conserved between
mouse and man (Figure 2A).52 The Ras-MAPK pathway mediates
GATA2 multisite phosphorylation in a mechanism requiring S192
and promoted by amino acids 171-174,”% which conform to an
extracellular signal-regulated kinase docking sequence termed
a “DEF motif" (FXFP) (Figure 2).”®7* GATA2 multisite phosphor-
ylation amplifies its activity to regulate select target genes. In
Kasumi-1 AML cells, these genes include /L 78 and CXCL2, which
generate positive-feedback regulation of the RAS/MAPK-GATA2-
IL1B/CXCL2 axis.”> CXCL2 promotes Kasumi-1 cell proliferation,
and high CXCL2 expression correlates with poor prognosis of
patients with AML. The DEF motif is also implicated in GATA2-
mediated megakaryocyte generation from murine hemogenic
endothelial cells ex vivo.”® In HEK293 and 3T3-F442A preadipo-
cyte cells, insulin-dependent activation of the Akt kinase induces
phosphorylation of GATA2 S401,7® and GRB10, a receptor tyrosine
kinase—binding adapter protein, interferes with Akt-mediated GATA2
phosphorylation.”” Whether this signal-dependent mechanism oper-
ates in hematopoietic cells is unclear. CDK1 phosphorylates GATA2 at
T176 and promotes GATA2 degradation by Fow?7.7® In vitro studies
revealed that p800 and GCN5 acetylate GATA2 at K102, K281,
K285, K334, K336, K389, K390, K399, K403, K405, K406, K408,
and K409 residues (Figure 2B),”® and GATA1 was known to be
acetylated.®° Functional analyses revealed that these residues
enhance DNA binding in vitro and transactivation activity, and
studies in Xenopus eggs implicated GATA2 acetylation in regulating
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Figure 1. Human GATA2 coding mutations. GATA2 mutations that are designated “pathogenic,” “likely pathogenic,” and “uncertain significance” and their corresponding

protein sequences. Top, GATA2 protein sequence depicting mutations external to the zinc finger domain. Bottom, enlargement of GATA2 zinc finger domain illustrating amino

acids affected by mutations. Reported mutations are indicated in pink. N-ZF, N-finger; INT-ZF, inter-zinc finger spacer; C-ZF, C-finger. N- and C-fingers are also referred to as

Zf1 and Zf2, respectively.
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Figure 2. Relationship of human clinical genetic
mutations and GATA2 posttranslational modifi-
cation sites. (A) Multisite GATA2 phosphorylation
model. Extracellular signal-regulated kinase (ERK)/
p38a docks on the GATA2 DEF motif, S192 is
phosphorylated, and other serine residues (S73,
S119, 290, and S340) are phosphorylated sub-
sequently. (B) Top, GATA2 protein structure. N- and
C-zinc fingers, DEF motif, phosphorylated residues,

A Gse/eRK)
AN AN

DEF motif-dependent S192 phosphorylation
p38/ERK docking

Multi-site
phosphorylation

and acetylated residues are indicated. Bottom, amino B
acid sequence from 165 aa to 200 aa of GATA2
protein. Phosphorylated residues, DEF motif, and
mutations reported by ClinVar/ClinGen are indicated.

DEF

N-finger C-finger

/

73 102 \ 1192 281/5\
119176 290

480

(A9 403/5/6/8/9
/1 N\

389/90 399 401

334/6 340

E180ter Al98fs G199fs
DEF E180A V18IM  T187S Tissfs A194fs A198T/V G199V
EAaaes P4 ~ 4 9
S.G, S H/I F,G,F,P P, P K S,P,.D S G P S.S,S
maze /N N | /1N |
H165L/Q S168A P175S T176P P178S P185fs A190S/T A191T S192F G200ter
G200fs
G200D

| pathogenic, likely pathogenic, uncertain significance |

primitive erythropoiesis.8! Two missense mutations reported in
ClinGen/ClinVar occur at phosphorylation sites (T176P and S192F),
one missense mutation is immediately at the 3'-side of the DEF
motif (P175S), and 2 deletion mutations and 2 missense mutations
occur at acetylation sites (K389_K390del, K390del, K390E, and
K406M).

Among the essential GATA2 noncoding sequences, GATAZ2 intron
5 (+9.5) enhancer can be mutated in GATA2 deficiency syndrome.
These mutations disrupt +9.5 enhancer function, thus reducing
GATA2 expression,'®38398882 The 19 5 enhancer,®*® which is
highly homologous to the human enhancer, is essential for hemato-
poiesis, HSPC generation/function, and hematopoietic regeneration
upon myeloablative stress.3%434%%® The most commonly reported
germline aberration in the +9.5 enhancer is a ¢.1017+572C>T
transition mutation®®®2 that destroys a motif binding members of
the ETS transcription factor family.2”®® Although mice harboring
this mutation develop into adults with largely normal steady-state
hematopoiesis, the mutants are hypersensitive to 5-fluorouracil-mediated
myeloablation.3® This phenotype reflects a hematopoietic cell-
intrinsic defect in HSPC regeneration.®®

In aggregate, the frameshift, nonsense, and +9.5 enhancer mutations
suggest a haploinsufficiency mechanism of pathogenesis. Certain
missense mutations can generate proteins defective in naked
DNA binding, transfection-based transactivation, and/or chroma-
tin occupancy, also consistent with haploinsufficiency. However,
transcription factor mutations can generate ectopic activities,®®
which may not be revealed without comprehensive multi-omic
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analyses. Taken together with the granulopoiesis-inducing activity
of GATA2 R307W®%°®' and the many unanswered questions
regarding GATA2 function at the genomic level, it is attractive to
consider a model in which mutations inhibit certain, but not all,
GATA2 activities, and mutation-induced ectopic activities further
corrupt GATA2 mechanisms and cellular physiology. However,
much more research is required to elucidate the molecular and
cellular consequences of GATA2 disease mutations and, impor-
tantly, to determine if firm genotype—phenotype correlations can be
established.

Experimental strategies to elucidate
GATA2-dependent pathogenic mechanisms

What are the most insightful assays to inform how human GATA2
mutations compromise GATA2 mechanisms to yield pathogenesis?
Naked DNA binding has limitations, as affinities may or may
not extrapolate to chromatin binding, based on influences from
protein—protein interactions and protein posttranslational mod-
ifications. GATA factors assemble and integrate into multiprotein
complexes on chromatin that may enable tethering of a DNA
binding—defective mutant into the complex. Chromatin immuno-
precipitation assays reveal whether a mutant loses capacity to
occupy all or a subset of sites or acquires nonphysiological sites.
Human GATAT mutations can impair friend of GATA1 (FOG1)
binding,* and FOG1 facilitates chromatin occupancy in a locus-
specific manner.**92 Genome-wide analysis indicates that GATA1
mutations can impair occupancy at certain sites, concomitant

GATA2 GENETICS AND DISEASE 4587



with ectopic site acquisition.”® Some GATA2 disease mutants
retain chromatin occupancy at certain sites.’® No evidence exists
to suggest that transfection-based transactivation assays predict
GATA factor-mediated activation or repression of target genes.

To surmount these complexities and limitations, a genetic rescue
assay was developed in Gata2 —77 enhancer-mutant murine
progenitor cells, in which GATA2 levels are ~80% lower than
wild-type progenitor cells.?®®! The —77 enhancer confers GATA2
expression in progenitors,***® and a 3921q26 inversion in
AML allows the —77 to induce MECOM1 as a leukemogenic
mechanism.'®94%% Using a retroviral-based expression strategy,
GATA2 or a GATA2 disease mutant can be replaced at a near-
physiological level, and the impact on target genes, differentiation,
or any process of interest can be quantified. It is essential to
compare wild-type and mutant proteins at normal expression
levels, as transcription factor target genes can differ in sensitivity
to reduced levels of the factor.®® In addition, in humans, there are
multiple examples of disease phenotypes resulting from transcrip-
tion factor haploinsufficiency.’” The C-finger germline T354M
mutant can be stably expressed in cells, retains measurable naked
DNA binding capacity'®® and activity to regulate select target
genes and to promote granulocytic differentiation in the rescue
assay, albeit at reduced levels.*>®' An R307W N-finger mutation
from patients with AML also can be stably expressed in cells and retains
activity to regulate certain, but not all, GATA2 target genes. Although
this mutant does not support erythroid progenitor function in the rescue
assay, it retains the capacity to promote granulocytic differentiation at
least as effectively as wild-type GATA2. A familial nine amino acid
insertion between the zinc fingers abrogates target gene regulation and
differentiation.®" The differential impact of GATA2 mutations on target
gene expression is consistent with the existing paradigm that GATA
factors function through multiple regulatory modes.*®® Based on this
mechanistic diversity, in which a cohort of GATA factor target genes
may be regulated differently from another target gene cohort,
a molecular aberration would not be expected to disrupt all mechanisms
equivalently. This epitomizes the problem: how can a single assay inform
pathogenic mechanisms that involve multiple genes controlled by
distinct mechanisms? The differential functional consequences of
GATAZ2 mutations illustrate the need to rigorously analyze relation-
ships between GATA2 function in vivo with ex vivo and in vitro assay
readouts; the most instructive assay readouts are unknown, and it is
certainly possible that multiple assays will be required.

Although in vivo approaches are intrinsically low-throughput, they
have considerable potential for modeling human GATAZ2-linked
disease phenotypes, unveiling disease mechanisms, and potentially
providing screening systems to achieve clinical/translational out-
comes. The first Gata2 knockin mouse disease model was reported
recently. This strain harbors a G320D mutant allele and biallelic
Cebpa mutation, which recapitulates that detected in patients with
acute erythroid leukemia, albeit the human mutations were somatic
and not germline.'®® Approximately 40% of the mice developed
acute erythroid leukemia, illustrating the power of combining mutations
to model disease phenotypes.

GATA2 disease mutations: one or more
paths to pathogenesis?

The aggregate data raise the question as to whether GATA2 disease
mutations cause pathogenesis by attenuation of all GATA2-dependent
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processes, a subset of processes, acquisition of ectopic GATA2
activities, or a combination of these mechanisms. A mutation-
sensitive process may be inextricably linked to a process not
affected directly by the mutation, thus generating composite
defects that can be difficult to deconvolute experimentally and
therefore to fully understand. It will be crucial to systematically
analyze a cohort of disease mutants with different assays and
systems, including rescue assays ex vivo*®®" and knockin mice,'®’
to unveil GATA2 deficiency syndrome mechanisms. Furthermore, as
mutations analogous to GATAZ2 disease mutations have been reported
in genes encoding other GATA factors, and these mutations can be
associated with human disease, insights from GATA2 mutations will
almost certainly inform biology and pathology linked to other GATA
factors.*® For example, the GATA1 R216Q mutation, detected in
a patient with congenital erythropoietic porphyria, is analogous to the
GATA2 R307W mutation.'®?

Considering the thousands of GATA2 chromatin occupancy sites,
cell type—specific GATA2 target genes, and context-dependent
transcriptional regulatory modes, abrogating function at certain,
but not all, target genes destroys stoichiometric relationships within
the delicately balanced, GATA2-regulated genetic and protein net-
works. The aberrant networks may generate ectopic mechanisms that
are deleterious to cellular physiology and not characteristic of normal
hematopoiesis. Networks can be corrupted via multiple means, and
the quantitative and qualitative impact of distinct lesions in network
components may differ, creating phenotypic diversity. Alternatively,
any aberration that creates a network imbalance might yield dominant
phenotypes that are largely invariant across distinct molecular lesions.
The impact of this problem extends beyond mechanism, as this may
guide therapies.

From a therapeutic perspective, the objective to restore inade-
quate levels of GATA2 may be exceedingly challenging, without
exacerbating pathological phenotypes. As noted earlier, high
GATA2 correlates with poor-prognosis leukemia,'>'°® and elevat-
ing GATA2 in murine bone marrow suppressed hematopoiesis in
a transplant model.'®* As an alternative or complement to bone
marrow transplantation, it may be necessary to destroy the GATA2
mutant, repair the GATA2 mutation, supplant ectopically elevated
mechanisms, or reinstate attenuated mechanisms. These promising
approaches need to be intensively evaluated, yet each presents
unique challenges that may or may not be surmountable.

Conclusions

While the depth of knowledge of GATA2 mechanisms and biological
functions continues to increase, the phenotypic complexity and
highly variable penetrance of GATA2 deficiency syndrome remains
enigmatic. A simple explanation for this complexity is different
GATA2 disease-linked mutations may create diverse molecular and
cellular aberrations through quantitative differences in the severity
of aberrations and/or qualitative differences. For example, certain
aberrations may generate ectopic activity, whereas others diminish
physiological activity, and there may be cases in which a given
aberration elicits both consequences. Thus, multiple molecular
paths to pathogenesis may exist. A common thread of distinct
aberrations is their contribution to deconstruction of a finely
balanced network, which reinforces the vital need to elucidate how
such networks are established and maintained. Ascertaining whether
GATAZ2 deficiency syndrome involves a predominant path or multiple
paths to pathogenesis is an exceptionally high priority, as this
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mechanistic framework will guide the development of the most
appropriate therapeutic options, and the outcomes will guide
patient-specific precision medicine strategies.
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