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Abstract
BACKGROUND 
Guanine nucleotide-binding protein, alpha stimulating (GNAS) mutations are 
characteristic of intraductal papillary mucinous neoplasms (IPMNs). Pancreatic 
ductal adenocarcinomas (PDACs) harboring GNAS mutations originate in IPMNs. 
GNAS is a complex imprinted locus that produces five transcripts regulated by 
differential methylated regions, NESP55, GNASAS, GNASXL, GNAS1A, and 
GNAS.

AIM 
To evaluate if methylation changes in the differential methylated regions of 
GNAS locus contributed to malignant progression of pancreatic cysts.

METHODS 
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GNAS locus methylation was analyzed in archival pancreatic cyst fluid (PCF) 
obtained by endoscopic ultrasound with fine-needle aspiration by methylation 
specific–multiplex ligation dependent probe amplification. Results were 
normalized and analyzed using Coffalyser.Net software.

RESULTS 
Fifty-two PCF samples obtained by endoscopic ultrasound with fine-needle 
aspiration and previously characterized for KRAS and GNAS mutations were 
studied. The final diagnoses were surgical (11) and clinicopathological (41), 
including 30 benign cysts, 14 pre-malignant cyst, and eight malignant cysts. 
Methylation changes at NESP55, GNASAS, GNAS1A, and especially GNASXL 
were more frequent in malignant cysts, and NESP55 and GNASAS were useful for 
diagnosis. A combined variable defined as “GNAS locus methylation changes” 
was significantly associated with malignancy (6/8 malignant cysts and only 2/20 
benign cysts) and improved classification. Hypermethylation in both maternally (
NESP55) and paternally (GNASXL) derived promoters was found in 3/3 PDACs.

CONCLUSION 
This is the first study to identify methylation changes in the GNAS locus, 
improving the diagnosis of malignant pancreatic cysts and suggesting a role in 
progression to PDAC.

Key Words: Intraductal papillary mucinous neoplasms; Pancreas cyst; Methylation; 
Biomarker; GNAS locus; Pancreatic neoplasm
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Core Tip: Pancreatic cystic lesions are a clinical dilemma due to risk of malignancy. 
Somatic mutations of guanine nucleotide-binding protein, alpha stimulating (GNAS) are 
characteristic of intraductal papillary mucinous neoplasms. We found methylation changes 
in differential methylated regions at the GNAS locus in pancreatic cyst fluid predominantly 
of malignant cysts. Methylation changes in GNAS locus may improve the diagnosis of 
malignant cysts and shed light on the development of novel therapeutic approaches for 
pancreatic cancer.
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INTRODUCTION
Pancreatic cystic lesions (PCLs) constitute a clinical dilemma due to indeterminate risk 
of malignancy, including benign cysts (BCs), pre-malignant cysts (PMCs), and 
malignant cysts (MCs)[1]. Intraductal papillary mucinous neoplasms (IPMNs) and 
mucinous cystic neoplasms (MCNs) are cystic precursors of pancreatic ductal 
adenocarcinoma (PDAC), allowing early diagnosis[2].

Somatic mutations in guanine nucleotide-binding protein, alpha stimulating (
GNAS) are characteristic of IPMNs[3,4], but their role in carcinogenesis is unclear, with 
early occurrence precluding prediction of dysplasia[5,6]. However, if detected in 
PDACs, somatic mutations in GNAS are specific for an IPMN origin[3].

GNAS is a complex imprinted locus in the long arm of chromosome 20 (20q13.32)[7], 
which encodes the α-subunit of the stimulatory heterotrimeric G protein (Gsα), a 
ubiquitous signaling protein translated from GNAS exons 1-13. This locus encodes 
four monoallelic (NESP55, AS, XL, 1A) and one biallelic (Gsα) transcript, due to 
differentially methylated regions (DMRs) in paternal and maternal alleles, 
denominated imprinting[8,9]. Paternal methylation of NESP55  and maternal 
methylation of AS, XL, and 1A lead, respectively, to maternal and paternal allele 
expressions, with Gsα biallelically expressed in most tissues, due to absent 
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methylation[10].
Epigenetic alterations in the GNAS locus have not been previously evaluated in 

PCLs. Methylation of DMRs may occur at the somatic level and modulate Gsα 
expression[10,11], leading us to hypothesize that methylation changes in DMRs at the 
GNAS locus could contribute to tumor progression of PCLs. To test our hypothesis, we 
performed a longitudinal cohort pilot study of PCLs and analyzed GNAS locus 
methylation in pancreatic cyst fluid (PCF) samples.

MATERIALS AND METHODS
Case selection
All patients gave informed consent, and the study was approved by the Ethics 
Committee and Institutional Scientific Board (UIC/1143).

For this study we performed molecular analysis in samples of 52 patients with more 
than 1 mL of PCF stored in the biorepository of our hospital, with sample processing 
and storage described in a previous publication[12]. Clinical data, including 
demographics, cyst characteristics, and treatment decision, have been prospectively 
registered.

After undergoing endoscopic ultrasound with fine needle aspiration, patients were 
evaluated in clinics, and referred for surgery (surgical cohort, surgical pathology 
diagnosis) or imaging surveillance, palliation, or endoscopic drainage (clinical cohort, 
clinico-cytological diagnosis) when surgery was not clinically indicated and a surgical 
pathology specimen was not available for diagnosis. The diagnostic criteria for the 
clinical cohort were determined a priori by one of the investigators (SF) after reviewing 
imaging features, PCF levels of CEA, and cytology analysis of PCLs, all with a 
prolonged imaging and clinical follow-up (of at least 24 mo). To evaluate GNAS locus 
methylation distribution and the performance of methylation analysis for cyst 
diagnosis, PCLs were further classified into one of three groups: Group 1) Benign cysts 
(BCs), including neoplastic benign and inflammatory cysts (serous cystadenomas 
(SCAs), pseudocysts, and lymphangiomas); Group 2) Mucinous pre-malignant cysts 
(PMCs), including IPMNs and MCNs with low grade atypia (LG); Group 3) High-
risk/malignant cysts (MCs), including cystic PDACs, IPMNs with adenocarcinoma 
(ADC) or high grade atypia (HG), MCN-HG, and neuroendocrine cystic tumors 
(NETs).

Patients and specimens
The samples studied were predominantly from female patients (35/52, 67%) with a 
mean age of 59 ± 15 years (29-91); 22 PCLs were in the head, 20 in the body, nine in the 
tail, and one case of multiple pancreatic locations. The mean cyst size was 3.9 ± 2.3 cm 
(1-10), CEA level in PCF was > 192 ng/mL in 17/52 (33%), and malignant/atypical 
cytology was present in 11/52 (21%) PCF samples, as shown in Table 1.

These 52 PCF samples obtained by endoscopic ultrasound with fine-needle 
aspiration (EUS-FNA) have been previously characterized for KRAS and GNAS 
mutations[12], which were present in nine and two samples, respectively.

The final diagnoses, 11 surgical and 41 clinicopathological, encompassed 30 BCs 
(SCAs, pseudocysts, and lymphangiomas), 14 PMCs (IPMNs and MCNs), and eight 
MCs (one cystic PDAC, one IPMN-ADC, one NET, and five mucinous-malignant).

Methylation analysis and categorization
For this study, DNA was extracted from 0.250 mL of archival PCF. Methylation 
analysis of the GNAS locus was performed by methylation specific–multiplex ligation 
dependent probe amplification (MS-MLPA) (SALSA MS-MLPA ME031-B1, MRC-
Holland®, Amsterdam, The Netherlands), according with the manufacturer’s 
instructions. MS-MLPA fragments were analyzed on the Applied Biosystems® 3130 
Genetic Analyzer (ThermoFisher Scientific, Waltham, MA, United States) using the 
GeneMapper® software. Results were normalized and analyzed using Coffalyser.Net 
software (MRC-Holland®).

We studied methylation in four DMRs, NESP55, GNASAS, GNASXL, and GNAS1A, 
and in the biallelic expressed Gsα, including two exonic regions. DMRs were classified 
as hypermethylated or hypomethylated, according to the percentage of methylation 
obtained using the Coffalyser.net software recommended by the manufacturer, if 
methylation percentage was, respectively, above or below the reference values plus or 
minus twice the standard deviation (SD). The normal methylation of NESP55 is 
approximately 50%, as only the paternal allele is methylated, similarly to the 
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Table 1 Demographics and clinical characteristics of the study population

Characteristics Value

Female gender, n (%) (n = 52) 35 (67.3)

Mean age at EUS-FNA, y, mean ± SD (interval) 59.1 ± 14.8 (29-91)

Cyst location, n (%) (n = 52)

    Head 22 (42.3)

    Body 20 (38.5)

    Tail 9 (17.3)

    Multiple cyst locations 1 (1.9)

Cyst size, cm, mean ± SD (interval) 3.9 ± 2.3 (1-10)

Cyst size > 3 cm, n (%) 29 (55.8)

Cyst with nodule/mass, n (%) 18 (34.6)

EUS imaging, n (%) (n = 52)1

    No high risk features 13 (25)

    1 high risk feature 29 (55.8)

    ≥ 2 risk features 10 (19.2)

PCF CEA, n (%) (n = 52)

    CEA < 192 ng/mL 31 (59.6)

    CEA ≥ 192 ng/mL 17 (32.7)

    No result available 4 (7.7)

PCF cytology, n (%) (n = 52)

    Non-diagnostic 27 (51.9)

    Negative for malignancy 14 (26.9)

    Suspicious/malignant 10 (19.2)

    NET 1 (2)

Treatment decision, n (%) (n = 52)

    Follow up 34 (65.4)

    Surgery 11 (21.2)

    Endoscopic drainage 1 (1.9)

Palliation (symptomatic or chemotherapy) 6 (11.5)

1High-risk features: cyst size ≥ 3 and solid component or thick wall or dilated Wirsung (> 10 mm). CEA: Carcinoembryonic antigen; EUS-FNA: Endoscopic 
ultrasound with fine needle aspiration; NET: Neuroendocrine tumor; PCF: Pancreatic cyst fluid; SD: standard deviation.

percentage of methylation in GNASXL, GNASAS, and GNAS1A, as only the maternal 
alleles are expected to be methylated. The methylation of Gsα exon 1 is usually absent, 
as neither maternal nor paternal allele is methylated. Methylation of Gsα exonic 
regions (exons 9 and 13) is usually near 100%, as both maternal and paternal alleles are 
methylated. The MS-MLPA kit comprised three methylation sensitive probes for 
NESP55, three for GNASAS, five for GNASXL, two for GNAS1A, and four for Gsα 
methylation evaluation.

Statistical analysis
The methylation levels obtained for each of the individual DMRs and for each 
individual MS-MLPA probe were calculated and converted into a categorical variable 
defined as: (1) Hypomethylated if methylation level obtained was below the cut-off 
level minus twice the SD; (2) Hypermethylated if the methylation level obtained was 
above the cut-off level plus twice the SD; and (3) Normally methylated if neither 
criteria (1) or (2) were met. A combined variable, including hypermethylation at 
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upstream DMRs or intragenic hypomethylation of GNAS locus, defining “GNAS locus 
methylation changes” pattern was created. For (epi)genotype-phenotype associations, 
Fisher’s exact test and chi-square test were performed as well as Kendall’s rank 
correlation adjusted for age and gender, using partial correlation. Methylation analysis 
in mucinous and malignant cysts was also represented by boxplot, and Mann-Whitney 
was used to assess the difference of median methylation values. The diagnostic 
accuracy of PCF biomarkers was assessed by receiver operating characteristics curve 
analysis. Statistics were performed using SPSS Statistical software, version 23 
(Armonk, NY, United States), with a P value < 0.05 considered as statistically 
significant.

RESULTS
GNAS locus methylation was informative in 38/52 (73%) PCF samples, with the 
remaining (14/52) non-informative due to inadequate quality/quantity of DNA and 
rarely, to copy-number variation (probe ratios below 0.7 or above 1.3, regarded as 
indicative of heterozygous deletion or duplication, respectively, according with the 
manufacturer (Coffalyser.Net software, MRC-Holland®). Methylation changes at 
NESP55, GNASAS, GNAS1A, and especially GNASXL were more frequent in MCs 
(Table 2), presenting wider methylation levels of these DMRs compared to non-
malignant cysts, which showed methylation levels around 50% in imprinted alleles 
(Figure 1).

Based on the influence of methylation changes at DMRs in the modulation of GNAS 
transcription[10,11] and on the suggested role for hypomethylated exons in transcription 
regulation and its overlap with predicted enhancers[13], we defined a combined 
variable documenting “GNAS locus methylation changes”: (1) Presence of 
hypermethylation in at least two DMRs or in one DMR for all MLPA probes; or (2) 
Presence of intragenic hypomethylation of GNAS in at least two exonic regions. 
Notably, “GNAS locus methylation changes” was significantly associated with 
malignancy (6/8 MCs and only 2/20 BCs) (Table 2), and it is of note that one of these 
two BCs was later diagnosed as pancreatic cancer.

We further analyzed the correlation between methylation changes and malignancy, 
while controlling for gender and age. We found a strong significant positive rank 
correlation between malignancy and GNAS methylation changes (r = 0.837, P < 0.001) 
and a moderate rank correlation with GNASAS hypermethylation (r = 0.431, P = 0.015), 
GNASXL hypermethylation (r = 0.434, P = 0.011), and NESP55 hypermethylation (r = 
0.539, P = 0.003), which was sustained after controlling for gender and age using 
partial correlation analysis (Table 3).

Moreover, the “GNAS locus methylation changes” variable improved MCs 
classification in samples with clinicopathological diagnosis (possible diagnostic 
uncertainty) as well as surgical diagnosis (definitive diagnosis but limited number of 
cases), further supporting our results.

Interestingly, simultaneous hypermethylation in NESP55 and GNASXL DMRs was 
detected exclusively in 3/3 PDACs. Hypomethylation in two exonic GNAS regions 
(exons 9 and 13) was detected in the only NET in this series.

Additionally, “GNAS locus methylation changes” was associated with symptoms, 
KRAS/GNAS mutations, and malignant/atypical cytology but not with patient gender, 
age, or CEA level in PCF (Table 4), with the area under the curve analysis revealing 
better performance than cytology for diagnosis of MCs (Table 5).

DISCUSSION
Aberrant DNA methylation in PCF of IPMNs progressing to high-grade dysplasia and 
carcinoma has been described[14], but GNAS locus methylation was not studied therein. 
We report for the first time methylation changes in the GNAS locus, namely 
hypermethylation of GNASXL, NESP55, GNASAS, and GNAS1A in PCLs. Notably, 
hypermethylation of GNASXL, and especially the combined variable “GNAS locus 
methylation changes”, was associated with malignancy, suggesting the potential to be 
used for diagnosis of MCs and for monitoring cancer progression, if confirmed in 
larger series. Indeed, hypermethylation of GNASXL has been associated to GNAS locus 
gain of function[10], and although its possible association with malignant progression 
remains poorly understood, GNAS  oncogenic potential appears to be 
unquestionable[3-5,10,15]. Moreover, somatic DNA methylation has been shown to drive 
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Table 2 Frequency of GNAS locus methylation changes in malignant, mucinous, and benign cysts, n (%)

Informative cyst fluid methylation analysis, 38 
samples Malignant, n = 8 Mucinous pre-malignant, n = 10 Benign, n = 20 P value

NESP55 hypermethylation 3 (37.5) 0 (0.0 ) 1 (5.0) 0.053

GNASAS hypermethylation 3 (37.5) 1 (10.0) 3 (15.0) 0.065

GNASXL hypermethylation 4 (50) 0 (0.0) 2 (10.0) 0.004

GNAS1A hypermethylation 1 (12.5) 0 (0.0) 0 (0) 0.0355

GNAS locus methylation changes 6 (75.0) 0 (0.0) 2 (6.7) 0.000

GNAS locus methylation changes: DMR hypermethylation or GNAS intragenic hypomethylation. GNAS: Guanine nucleotide-binding protein, alpha 
stimulating.

Table 3 Correlation between methylation status and malignancy with partial correlation controlling for patients’ gender and age

Rank correlation Partial

Possible confounders
Kendall

Gender Age

Malignant cysts Correlation P value Correlation Correlation

NESP55 hypermethylation 0.539 0.003 0.545 0.519

GNASAS hypermethylation 0.431 0.015 0.459 0.584

GNASXL hypermethylation 0.434 0.011 0.461 0.356

GNAS1A hypermethylation 0.160 0.361 0.191 0.147

GNAS locus methylation changes 0.837 <0.001 0.870 0.825

GNAS: Guanine nucleotide-binding protein, alpha stimulating.

Table 4 Frequencies of distinct clinical features and pancreatic cystic fluid analysis in the two groups, with or without GNAS locus 
methylation changes

Cyst fluid samples GNAS locus methylation changes No GNAS locus methylation changes P value

Female 63% 75% 0.486

Age > 65 yr 50% 40% 0.216

Symptoms 63% 17% 0.008

CEA > 192 ng/mL 63% 25% 0.133

KRAS/GNAS mutation 63% 11% 0.008

Cytology, malignant/atypical 63% 7% 0.003

GNAS locus methylation changes: DMR hypermethylation or GNAS intragenic hypomethylation. CEA: Carcinoembryonic antigen; GNAS: Guanine 
nucleotide-binding protein, alpha stimulating.

transcription within the imprinted GNAS cluster[11], further supporting our results. 
NESP55 also appears to regulate imprinting at the GNAS complex locus, and its 
hypermethylation in the maternal allele may lead, similarly to maternal deletion, as 
previously described, to subsequent modulation of GNAS[10].

Herein, hypermethylation in both maternally (NESP55) and paternally (GNASXL) 
derived promoters, and therefore overall increase of methylation in these two DMRs, 
was detected exclusively in PDAC, further suggesting a role of GNAS in malignant 
progression of PCL. Interestingly, the detection of exonic GNAS hypomethylation in 
the pancreatic NET is in agreement with the recent findings showing that pancreatic 
NETs are genetically and phenotypically related to pancreatic ductal adenocarcinoma, 
having a closer relationship to ductal adenocarcinomas than to neuroendocrine tumors 
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Table 5 Area under the curve for diagnosis of mucinous and malignant cysts

Mucinous cysts Malignant cysts

Confidence interval Confidence intervalVariables
AUC P value

Lower limit Upper limit
AUC P value

Lower limit Upper limit

CEA in mg/dL 0.889 0.002 0.720 1.000 0.812 0.038 0.579 1.000

Cytology 0.598 0.443 0.349 0.847 0.771 0.072 0.571 0.970

Mutation (KRAS/GNAS) 0.833 0.009 0.634 1.000 0.841 0.023 0.615 1.000

Met_NESP55 0.620 0.35 0.370 0.869 0.759 0.085 0.481 1.000

Met_AS 0.590 0.483 0.339 0.841 0.741 0.108 0.461 1.000

Met_XL 0.474 0.841 0.228 0.721 0.629 0.389 0.357 0.902

Met_1A 0.513 0.92 0.262 0.764 0.565 0.667 0.261 0.868

GNAS locus methylation changes 0.645 0.256 0.400 0.891 0.971 0.002 0.901 1.000

AUC: Area under the curve; CEA: Carcinoembryonic antigen; GNAS: Guanine nucleotide-binding protein, alpha stimulating; Met: Methylation changes.

Figure 1  Methylation analysis of non-malignant and malignant cysts. GNAS: Guanine nucleotide-binding protein, alpha stimulating.

G3[16]. In agreement with the role of GNAS in the progression to PDAC is also the 
recent finding that overexpression of mutant GNAS, resulting in constitutive activation 
of Gsα, in a mouse model of KrasG12D-driven pancreatic cancer, led to the formation of 
moderately differentiated PDAC that were locally invasive and increased mitogen-
activated protein kinase activation[17].

Although copy-number alterations, which could in part explain some of the 
methylation changes found, were detected in only one case, we cannot exclude the 
presence of uniparental disomy (UPD) associated copy-neutral loss of heterozygosity 
(LOH), as previously described by Bastepe et al[18] to explain GNAS methylation 
changes. An analysis of LOH in the GNAS locus would be needed to evaluate 
uniparental disomy (UPD) associated copy-neutral LOH (which can often be 
segmental) and investigate if some of these methylation alterations may indeed reflect 
epigenetic alterations or could instead be explained (at least in part) by acquired UPD. 
Nevertheless, independent of their cause (epigenetic or acquired UPD), the resulting 
methylation alterations detected in the GNAS locus DMRs appear to be related to 
malignant progression and may improve MCs diagnosis. Our study may contribute to 
the current epigenetic landscape of PCs, similar to recent studies documenting a role 
for methylation markers in discriminating pancreatic neoplasia[19,20], possibly offering 
an opportunity for early diagnosis for pancreatic cancer.

Ultimately, the significant association of GNAS locus methylation changes to 
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malignant behavior suggests a role for modulation of GNAS expression in the 
malignant progression of PCs, which may be relevant for the development of novel 
therapeutic approaches for pancreatic cancer. Due to small sample size and poor DNA 
yield, the final analysis was based on eight samples with HGD/cancer. Although the 
small sample size and lack of validation in an independent sample are significant 
limits regarding the present study, our pilot data may be the basis for exploring GNAS 
methylation in larger, well-characterized sets of samples that may represent future 
validation studies. Finally, as gene methylation may affect gene expression, additional 
evaluation of GNAS transcripts in PCF may elucidate their function in PCLs.

ARTICLE HIGHLIGHTS
Research background
Pancreatic cystic lesions (PCLs) constitute a clinical dilemma due to indeterminate risk 
of malignancy. Intraductal papillary mucinous neoplasms (IPMNs) and mucinous 
cystic neoplasms are cystic precursors of pancreatic ductal adenocarcinoma (PDAC), 
possibly allowing early diagnosis. Somatic mutations in GNAS are characteristic of 
IPMNs, but their role in carcinogenesis is unclear. GNAS is a complex imprinted locus 
that encodes the α-subunit of the stimulatory heterotrimeric G protein (Gsα), an 
ubiquitous signaling protein. This locus encodes four monoallelic (NESP55, AS, XL, 
1A) and one biallelic (Gsα) transcript(s), due to differentially methylated regions 
(DMRs) in paternal and maternal alleles, denominated imprinting. Paternal 
methylation of NESP55 and maternal methylation of AS, XL, and 1A lead, respectively, 
to maternal and paternal allele expressions, with Gsα biallelically expressed in most 
tissues, due to absent methylation.

Research motivation
GNAS somatic mutations are characteristic of IPMNs, although epigenetic alterations 
in the GNAS locus have not been previously evaluated in PCLs. Methylation of DMRs 
at the GNAS locus may occur at the somatic level and modulate Gsα expression.

Research objectives
In this study, we evaluate if methylation changes in DMRs at the GNAS locus could 
contribute to tumor progression of PCLs.

Research methods
We performed a longitudinal cohort study of PCLs with GNAS locus methylation 
analysis performed in PCF samples obtained by endoscopic ultrasound with fine 
needle aspiration.

Research results
Fifty-two PCF samples obtained by endoscopic ultrasound with fine needle aspiration 
and previously characterized for KRAS and GNAS mutations were studied. The final 
diagnoses were surgical (11) and clinicopathological (41), including 30 benign cysts, 14 
pre-malignant cyst, and eight malignant cysts. Methylation changes at NESP55, 
GNASAS, GNAS1A, and especially GNASXL were more frequent in malignant cysts 
and were useful for their diagnosis. A combined variable defined as “GNAS locus 
methylation changes” was significantly associated with malignancy (6/8 malignant 
cysts and only 2/20 benign cysts) and improved classification. Hypermethylation in 
both maternally (NESP55) and paternally (GNASXL) derived promoters was found in 
3/3 PDACs.

Research conclusions
This is the first study to identify methylation changes in the GNAS locus that 
improved the diagnosis of malignant PCs and suggest a role in progression to PDAC.

Research perspectives
Although the small sample size and lack of validation in an independent sample are 
significant limits regarding the present study, our pilot data may be the basis for 
exploring GNAS methylation in larger, well-characterized sets of samples. As 
methylation status may impact gene expression, additional evaluation of GNAS 
transcripts in PCF may elucidate their function in pancreatic cystic neoplasms.
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