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Abstract
5-flurouracil (5-FU)-based chemotherapy is the main pharmacological therapy for 
advanced colorectal cancer (CRC). Despite significant progress in the treatment of 
CRC during the last decades, 5-FU drug resistance remains the most important 
cause of failure in CRC therapy. Resistance to 5-FU is a complex and multistep 
process. Different mechanisms including microsatellite instability, increased 
expression level of key enzyme thymidylate synthase and its polymorphism, 
increased level of 5-FU-activating enzymes and mutation of TP53 are proposed as 
the main determinants of resistance to 5-FU in CRC cells. Recently, micro-
ribonucleic acids (miRNA) and their alterations were found to have a crucial role 
in 5-FU resistance. In this regard, the miRNA-mediated mechanisms of 5-FU drug 
resistance reside among the new fields of pharmacogenetics of CRC drug 
response that has not been completely discovered. Identification of the biological 
markers that are related to response to 5-FU-based chemotherapy is an emerging 
field of precision medicine. This approach will have an important role in defining 
those patients who are most likely to benefit from 5-FU-based chemotherapy in 
the future. Thereby, the identification of 5-FU drug resistance mechanisms is an 
essential step to predict and eventually overcome resistance. In the present 
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comprehensive review, we will summarize the latest knowledge regarding the 
molecular determinants of response to 5-FU-based chemotherapy in CRC by 
emphasizing the role of miRNAs.
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Core Tip: Resistance to the main chemotherapy drug, 5-flurouracil (5-FU), is an important 
cause of failure in clinical colorectal cancer therapy. Microsatellite instability, increased 
activity and expression level of thymidylate synthase and dihydropyridine dehydrogenase, 
mutation of TP53 as well as micro-ribonucleic acids alterations are among the main 
molecular determinants of response to 5-FU-based chemotherapy in colorectal cancer. The 
identification of potential molecular determinants of response to 5-FU could be an 
important clinical tool for developing treatment strategies and selecting colorectal cancer 
patients who are most likely to benefit from 5-FU chemotherapy.
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INTRODUCTION
Colorectal cancer (CRC) is the third most common malignancy and the second leading 
cause of cancer related-death globally[1,2]. Surgical procedures are the primary 
treatment choice for CRC, and other strategies such as chemotherapy are also used as 
complementary therapy to decrease the risk of local recurrences and to increase 
quality of life for patients afflicted with metastatic CRC (mCRC). 5-fluorouracil (5-FU), 
leucovorin, capecitabine, oxaliplatin and irinotecan chemotherapy drugs are the 
standard neoadjuvant and adjunctive therapeutic options[3]. 5-FU is the main 
component in most of the gastrointestinal malignancies chemotherapy regimens[4,5]. 
Although combined treatment approaches have contributed to the current 
improvements in response rates, drug resistance and tumor recurrence occur in most 
colon cancer patients[6,7].

A great proportion of clinical data highlights the need for addressing the 
interindividual differences in 5-FU-based chemotherapy responses. Different 
mechanisms including increased expression of the target thymidylate synthase (TS) 
and a decreased level of 5-FU-activating enzymes are the cause for resistance of CRC 
cells to the cytotoxic effect of 5-FU[8,9]. On the other hand, micro RNAs (miRNAs) and 
their alterations play a crucial role in cancer initiation, progression and drug 
resistance[10,11]. The miRNA-mediated mechanisms of drug resistance reside among the 
new fields of pharmacogenetics of cancer, yet they have not been discovered 
thoroughly[10]. Therefore, investigating the involvement of miRNAs in anticancer drug 
resistance is important in overcoming the barriers in human cancer therapy 
applications. In this review, we summarized the latest knowledge regarding the 
molecular determinants of response to 5-FU-based chemotherapy in CRC with more 
emphasis on the role of miRNAs.

FLUOROURACIL-BASED CHEMOTHERAPY AND CRC
Cytotoxic chemotherapy has long been used as the backbone of treatment for CRC 
patients and evolved significantly over the last decades. 5-FU-based chemotherapy is a 
primary chemotherapeutic option for advanced CRC. Although the response rate to 5-
FU as a single antitumor medicine is typically below 20%, there are interindividual 
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differences regarding the clinical effectiveness of 5-FU-based chemotherapy[12,13]. 5-FU 
is a synthetic pyrimidine antagonist (uracil analog) and belongs to the group of 
anticancer medicine known as antimetabolites[14,15].

Adequate 5-FU transformation to 5-fluorouridine-5’-monophosphate fluorouridine 
monophosphate is necessary for its function[16]. Nevertheless, 5-FU is converted 
intracellularly to several other active metabolites. Each of them has a distinctive role in 
cytotoxic effects. These metabolites include (1) 5-fluorodeoxyuridine-5’- 
monophosphate fluorodeoxyuridine monophosphate, which interferes with TS, a key 
enzyme in the creation of the DNA nucleotide deoxythymidine-5 monophosphate 
deoxythymidine monophosphate, in the ternary complex; (2) 5-fluorodeoxyuridine-5’-
triphosphate fluorodeoxyuridine triphosphate, which acts as a substrate for DNA 
polymerases and is incorporated into DNA in place of deoxythymidine-5 triphosphate 
deoxythymidine triphosphate and inhibits DNA elongation thus leading to DNA 
fragmentation; and (3) 5-fluorouridine-5 triphosphate fluorouridine triphosphate, an 
eligible substrate for RNA polymerases, which is integrated into RNA instead of 
uridine triphosphate. These active metabolites disrupt RNA synthesis, making single 
and double-strand DNA breaks and inhibit TS action, resulting in cellular apoptosis 
(Figures 1-3)[16-19].

RESISTANCE TO 5-FU
Malignant tumors may show either intrinsic or acquired resistance that requires 
special lines of treatment. Innate resistance is generally attributed to the capacity of 
tumoral cells to escape from drug effects spontaneously during the early phase of drug 
administration[23]. Acquired resistance has different mechanisms dedicated to specific 
cytotoxic and targeted therapy. However, different mechanisms of drug resistance 
interact with each other, and acquired resistance to one drug may result in resistance 
to other drugs. This phenomenon is known as multidrug resistance[23,24]. Different 
molecular mechanisms are involved in drug resistance. Decreased drug delivery rates 
to the cancerous cells through excessive efflux, reduced influx, the increment of drug 
inactivation, mutation of the drug target genes, defective drug transportation and 
overexpression of p170 (protein of multidrug resistance) are the main mechanisms for 
drug resistance. Moreover, alterations in the enzyme activity involved in the 
metabolism of drugs are considered the other main pathways of drug resistance 
during cancer management[23,24].

One of the greatest challenges for CRC management is drug resistance to 5-FU that 
can be intrinsic or acquired during treatment and is believed to occur in nearly half of 
patients with metastatic cancer[25]. Identification of the biological rules that are related 
to 5-FU-based chemotherapy response is an emerging field of precision medicine. This 
approach will have an important role in defining those patients who are most likely to 
benefit from 5-FU-based chemotherapy in the future. Thereby, comprehending the 
mechanisms by which tumors become resistant to 5-FU is a prerequisite for predicting 
or overcoming resistance.

MIRNAS FUNCTION IN CANCER PROGRESSION AND 5-FU DRUG 
RESISTANCE IN CRC
miRNAs are short RNA molecules with various regulatory effects. These small RNA 
molecules are transcribed from DNA sequences within exons or introns. miRNA genes 
transcribed by RNA polymerase undergo a maturation process by different enzymes 
before gaining their ability to perform their action[25,26].

During cancer, miRNAs may become dysregulated[25-27]. In some cancers including 
leukemia, some DNA chromosomal regions become deleted, and therefore specific 
miRNAs in these locations may be lost. A decrease or complete loss of specific miRNA 
expression in cancers may upregulate the expression of oncogenes[25]. Also, the 
upregulation of specific transcription factors may result in the upregulation of 
oncogenic miRNAs and therefore dysregulate further cellular pathways[25]. Despite the 
role of miRNAs in the development and progression of cancers, these small RNA 
molecules are also important in the development of chemotherapy resistance. Each 
chemotherapy drug performs its action from a specific cellular pathway. For example, 
5-FU induces apoptosis and cell cycle arrest as the main antitumor action[28]. However, 
overexpressing miR-21 can induce 5-FU chemoresistance through inhibition of 
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Figure 1  Different mechanisms of 5-fluorouracil action. 5-Fluorouracil (5_FU) and its derivative active metabolites exert their antitumor function at the 
levels of enzyme thymidylate synthase, DNA and RNA, leading to DNA and RNA damage and cell death. TS: Thymidylate synthase; FdUMP: Fluorodeoxyuridine’ 
monophosphate; FdUDP: Fluorodeoxyuridine diphosphate; FdUTP: Fluorodeoxyuridine triphosphate; FUMP: Fluorouridine monophosphate; FUDP: Fluorouridine 
diphosphate; FUTP: Fluorouridine triphosphate; CH2THF: 5,10-methylenetetrahydrofolate; dTTP: Deoxythymidine triphosphate; dUMP: Deoxyuridine 
monophosphate.

apoptosis and cell cycle arrest in CRC cells[28,29]. miR-10b can also induce 5-FU 
resistance by downregulating proapoptotic proteins[28-30].

Various studies evaluated the expression of different miRNAs in CRC tissue and 
discussed their effect on 5-FU response. Each of these miRNAs summarized in Table 1 
has their unique targets that affect specific cellular functions in CRC cells including 
apoptosis, proliferation, colony formation or metastasis as well as resistance to 5-
FU[31-35].

In the following sections, we reviewed the latest and most important molecular 
mechanisms in 5-FU resistance including microsatellite instability (MSI), altered 
expression of TS and dihydropyrimidine dehydrogenase (DPD) enzymes and loss of 
p53, along with the roles of related miRNAs.

MICROSATELLITE INSTABILITY AND RESISTANCE TO 5-FU
MSI is an inherent mechanism of resistance to 5-FU. Microsatellites or simple sequence 
repeats are tracts of 15-30 repeated DNA units composed of 1-6 nucleotides distributed 
among all DNA regions (coding and noncoding). Instability of microsatellites result 
from sporadic or germline mutations in DNA mismatch repair (MMR) machinery 
genes including PMS1, PMS6, MSH2, MSH6, MGMT and MLH1, which are responsible 
for correcting errors occurring during DNA replication[36-38].

About 10%-15% of all CRCs and more than 90% of cases of hereditary nonpolyposis 
colon cancer show levels of DNA MMR deficiencies (dMMR). MMR mutant genes are 
responsible for aberrant scanning and recognizing errors during DNA replication that 
lead to aberrant insertion or deletion of repeated units in microsatellites[24]. Loss of 
detection of mismatched and unpaired bases in cancerous cells make DNA damage 
and apoptosis caused by 5-FU tolerable, leading to 5-FU resistance[23]. Meyers et al[39] 
demonstrated that restoring MMR efficiency through inserting a corrected clone of the 
hMLH1 gene in MMR deficient cell lines, gave rise to an increased response to 5-FU 
treatment, suggesting that MMR-deficient cells are more resistant to 5-FU. 
Nonetheless, some conflicting results indicated that the MSI phenotype correlated with 
considerable survival of patients who benefit from adjuvant 5-FU-based 
chemotherapy. The finding can be explained by the fact that MSI-positive tumors may 
have intrinsic biological characteristics such as wild-type tumor suppressor p53, which 
aids 5-FU-mediated cytotoxicity in contrast to MSI-negative tumors. When wild-type 
p53 in MSI-positive tumors is compared to MSI-negative (TP53-mutant) tumors, it 
highlights the MSI phenotype influence[20].

The role of different miRNAs targeting the MMR system is summarized in Table 1. 
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Table 1 Summary of studies evaluating the association of different micro-ribonucleic acids with 5-fluorouracil sensitivity or resistance in colorectal cancer

Ref. miRNA CRC source miRNA target miRNA effect on 5-FU 
treatment miRNA-related pathways (KEGG Identifier)[89] Other findings

Zhang et al[82] miR-24 HCT116, RKO, 
SW480, and 
SW48 cell lines

Downregulation of RNA 
binding protein DND1 
expression

Overexpression enhanced the 
chemosensitivity of SW48 cell 
lines

Fatty acid biosynthesis (00061). Proteoglycans in cancer (05205). Cell cycle 
(04110). Glycosaminoglycan biosynthesis-keratan sulfate (00533). Pancreatic 
cancer (05212)

miR-24 acted as a tumor suppressor

Zhang et al[83] miR-361 HCT116 and 
HT29

Forkhead box M1 (FOXM1) Overexpression increased 
chemosensitivity via 
modulation of FOXM1-
ABCC5/10

Adherens junction (04520). Proteoglycans in cancer (05205). Protein 
processing in the endoplasmic reticulum (04141). miRNAs in cancer (05206). 
ECM-receptor interaction (04512)

ATP binding cassette subfamily C members 5 
and 10 (ABCC5/10) were the downstream 
effectors of miR-361

Xu et al[84] miR-375-
3p

Tissue and cells YAP1 and SP1 Overexpression enhanced the 
chemosensitivity

Hippo signaling pathway (04390). Lysine degradation (00310). Protein 
processing in the endoplasmic reticulum (04141). Proteoglycans in cancer 
(05205). Viral carcinogenesis (05203)

Low miR-375 expression was strongly 
correlated with poor overall survival in CRC 
patients

Lv et al[85] miR-133b Tissue and cells H3K79me2 Overexpression enhanced the 
chemosensitivity and reduced 
CRC stemness

Sulfur relay system (04122). ECM-receptor interaction (04512) miR-133b overexpression suppressed DOT1L-
mediated H3K79me2 modification of stem cell 
genes

Zhao et al[41] miR-552 5-FU-resistant 
tissues and cells

SMAD2 cascade Overexpression decreased 
chemoresistance and miR-552 
inhibition led to increased 
chemoresistance

Fatty acid degradation (00071). Fatty acid metabolism (01212). Fatty acid 
elongation (00062). Biosynthesis of unsaturated fatty acids (01040). TGF-
beta signaling pathway (04350)

Expression of miR-552 downregulated in 5-
FU-resistant tissues and cells that were 
regulated by dMMR

Liu et al[88] miR-543 HCT8/FU Phosphatase and tensin 
homolog/ PI3K/ protein 
kinase B (PTEN/PI3K/AKT)

Downregulation enhanced 
chemosensitivity

TGF-beta signaling pathway (04350). Signaling pathways regulating 
pluripotency of stem cells (04550). FoxO signaling pathway (04068). 
Transcriptional misregulation in cancer (05202). Hippo signaling pathway 
(04390)

miR-543 enhanced chemoresistance by 
downregulating expression of PTEN, which 
negatively regulated AKT activation

Zhao et al[89] miR-1260b HCT116 Cell death 4 was a direct 
target of miR-1260b inhibitor

Inhibition of miR-1260b 
enhanced chemosensitivity

Wnt signaling pathway (04310). Hippo signaling pathway (04390). Central 
carbon metabolism in cancer (05230). Adherens junction (04520).Lysine 
degradation (00310)

miR-1260b inhibitor reduced proliferation and 
increased apoptosis while downregulating cell 
death 4, phosphorylated-Akt, and 
phosphorylated-extracellular-signal-regulated 
kinase (p-ERK) expression

Guo et al[90] miR-191 Beta-elemene on 
colorectal 
carcinoma 
HCT116 and 
HT29

Expression of kinases, 
including Wnt3a and β-
catenin

Downregulation of miR-191 
improved chemoresistance

Colorectal cancer (05210). Lysine degradation (00310). Steroid biosynthesis 
(00100). Hippo signaling pathway (04390). Transcriptional misregulation in 
cancer (05202)

Beta-elemene downregulated miR-191 and 
thereby inhibited the Wnt/β-catenin pathway

Cao et al[31] miR-761 HT29 FOXM1 Overexpression increased 
chemosensitivity

Glycosphingolipid biosynthesis. Lacto and neolacto series (00601). Mucin 
Type O-Glycan biosynthesis (00512). Biosynthesis of unsaturated fatty acids 
(01040)

MiR-761 expression negatively associated with 
FOXM1 expression and elevated FOXM1 
expression suppressed cell proliferation, 
colony formation and invasion

Kong et al[91] miR-195 5-FU-resistant 
HCT116 and 
SW480

PI3K/AKT and NF-κB 
pathways

Overexpression enhanced 
chemosensitivity

Viral carcinogenesis (05203). Hippo signaling pathway (04390). 
Proteoglycans in cancer (05205). Adherens junction (04520). Pathways in 
cancer (05200). Fatty acid degradation (00071)

Schizandrin A (SchA) sensitized 5-FU-resistant 
cells by upregulating miR-195, which inhibited 
PI3K/AKT and NF-κB pathways
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Que et al[92] miR-874-
3p

Tissue and cells Transcriptional co-activators 
YAP and TAZ of the Hippo 
signaling pathway

Overexpression enhanced 
chemosensitivity

miR-874-3p indirectly inactivated TEAD 
transcription

Liu et al[79] miR-135b 
and miR-
182

5-FU resistant 
Cell lines

ST6GALNAC2 via 
PI3K/AKT pathway

Overexpression of these two 
miRNAs increased drug 
resistance

miR-135b: Hippo signaling pathway (04390). Thyroid hormone signaling 
pathway (04919). Steroid hormone biosynthesis (00140). Signaling pathways 
regulating pluripotency of stem cells (04550) cGMP-PKG signaling pathway 
(04022) miR-182. Fatty acid biosynthesis (00061). Viral carcinogenesis 
(05203). Adherens junction (04520). Cell cycle (04110). Pancreatic cancer 
(05212)

miR-135b and miR-182 overexpression were 
seen in 5-FU resistance cell lines

Zhao et al[32] miR-15b-
5p

Tissue and cells NF-κB pathway and XIAP Overexpression decreased 
chemoresistance

Fatty acid biosynthesis (00061). Fatty acid metabolism (01212). Viral 
carcinogenesis (05203). Hippo signaling pathway (04390). Adherens 
junction (04520)

miR-15b mediated apoptosis regulation by 
negative regulation of NF-κB1 and kinase 
complexes IKK-α and also targeting anti-
apoptosis protein XIAP

Ye et al[40] miR-1290 Tissue and cells hMSH2 Inhibition decreased 
chemoresistance

Proteoglycans in cancer (05205). Fatty acid degradation (00071). ErbB 
signaling pathway (04012). Signaling pathways regulating pluripotency of 
stem cells (04550). Estrogen signaling pathway (04915)

miR-1290 was positively correlated with 
dMMR status and predicted poor prognosis in 
stage II and III colon cancer patients who 
received 5-FU

Ren et al[34] miR-196b-
5p

Tissue and cells SOCS1 and SOCS3 of STAT3 
signaling pathway

Downregulation increased 
chemosensitivity and ectopic 
expression yielded the 
opposite effect

Adherens junction (04520). TGF-beta signaling pathway (04350). 
Proteoglycans in cancer (05205). Hippo signaling pathway (04390). 
Glycosaminoglycan biosynthesis. Keratan sulfate (00533)

Silencing miR-196b-5p suppressed spheroids 
formation ability and expression of stem cell 
factors and enhanced the apoptosis induced by 
5-FU. Overexpression of this microRNA 
correlated with poor survival

Xu et al[60] miR-330 Tissues and cell TYMS Ectopic expression decreased 
cell proliferation and 
enhanced chemosensitivity

Adherens junction (hsa04520). ECM-receptor interaction (04512). Thyroid 
hormone signaling pathway (04919). Proteoglycans in cancer (05205). Hippo 
signaling pathway (04390)

miR-330 affected thymidylate synthase 
(TYMS) in the cell apoptosis pathway

Yu et al[34] miR-125b Tissues and cell CXCL12/CXCR4 and 
Wnt/β-catenin signaling

Expression interfered with 
chemoresistance

Fatty acid biosynthesis (00061). Fatty acid metabolism (01212). Hippo 
signaling pathway (04390). Other types of O-glycan biosynthesis (00514). 
Lysine degradation (00310)

Overexpression of miR-125b triggered 
epidermal mesenchymal transition and 
invasion

Jiang et al[93] miR-577 5-FU resistant 
SW480 cells

Heat shock protein 27 
(HSP27)

Ectopic expression enhanced 
chemosensitivity

Lysine degradation (00310). Mucin Type O-Glycan biosynthesis (00512). 
Viral carcinogenesis (05203). p53 signaling pathway (04115). Colorectal 
cancer (05210)

Restoration of miR-577 suppressed 
proliferation and induced a G0/G1 cell cycle 
arrest

Fu et al[94] miR-20b 5-FU-sensitive 
(HCT116) and -
resistant 
(HCT116-R)

ADAM9/EGFR Expression reduced 
chemoresistance and induced 
apoptosis

Prolactin signaling pathway (04917). TGF-beta signaling pathway (04350). 
FoxO signaling pathway (04068). Pancreatic cancer (05212). Bladder cancer 
(05219)

miR-20b expressed at lower levels in the 5-FU 
resistant tissues

Liu et al[95] miR302a HCT116 and 
HT29

Insulin-like growth factor1 
receptor (IGF1R)

Expression induced 
chemosensitivity

Lysine degradation (00310). Wnt signaling pathway (04310). Proteoglycans 
in cancer (05205). Signaling pathways regulating pluripotency of stem cells 
(04550). Transcriptional misregulation in cancer (05202)

miR302a enhanced 5FUinduced cell death

Dong et al[96] miR-429 Tissues and cells - Decreased expression 
correlated with better 
response

Fatty acid elongation (00062). Fatty acid degradation (00071). Adherens 
junction (04520). Fatty acid metabolism (01212). Ras signaling pathway 
(04014)

An increase in miR-429 level was associated 
with tumor size, metastasis, lymph node 
invasion and TNM stage

5-FU-resistant 
CRC cells (HCT-

Liu et al[35] miR-149 FOXM1 Re-expression enhanced 
chemosensitivity

RNA transport (03013). Spliceosome (03040). Gap junction (04540). Sulfur 
relay system (04122). Thyroid hormone synthesis (04918)

miR-149 enhanced 5-FU sensitivity by 
increasing apoptosis
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8/5-FU and 
LoVo/5-FU)

Han et al[97] miR-874 Tissues and cell 
line

XIAP Re-expression enhanced 
chemosensitivity, inhibited 
proliferation and enhanced 
apoptosis

Tyrosine metabolism (00350). Thyroid hormone signaling pathway (04919). 
Glycosphingolipid biosynthesis. Globo series (00603). Thyroid cancer 
(05216). Glycosphingolipid biosynthesis. ganglio series (00604)

miR-874 expression negatively correlated with 
TNM stage and lymph node metastasis

Liu et al[98] miR-139-
5p

HCT-8/5-FU and 
HCT-116/5-FU

NOTCH-1 and MDR-
associated genes

Ectopic expression enhanced 
chemosensitivity and induced 
apoptosis

Hippo signaling pathway (04390). Neurotrophin signaling pathway (04722). 
Glioma (05214). Prostate cancer (05215). Estrogen signaling pathway (04915)

Upregulation of NOTCH-1 repealed miR-139-
5p-mediated sensitization to 5-FU

Wu et al[99] miR-204 HCT116 and 
SW480

High mobility group protein 
A2

Overexpression decreased 
chemoresistance

Steroid biosynthesis (00100). Estrogen signaling pathway (04915). ECM-
receptor interaction (04512). Metabolism of xenobiotics by cytochrome P450 
(00980). Apoptosis (04210)

miR-204 took action by activation of high 
mobility group protein A2 and the PI3K/AKT 
pathway

Li et al[61] miR-218 HCT116 and 
HT29 cells

Thymidylate synthase (TS) Overexpression increased 
chemosensitivity

Fatty acid biosynthesis (00061). Proteoglycans in cancer (05205). Viral 
carcinogenesis (05203). Pathways in cancer (05200). p53 signaling pathway 
(04115)

miR-218 suppressed BIRC5 and TS and 
promoted apoptosis

Zhang et al[81] miR-587 Tissues and cell PPP2R1B Inhibition decreased 
chemoresistance

GABAergic synapse (04727). Valine, leucine and isoleucine degradation 
(00280). TGF-beta signaling pathway (04350). Lysine degradation (00310). 
Signaling pathways regulating pluripotency of stem cells (04550)

miR-587 inhibited AKT activation

Amankwatia 
et al[80]

miR-224 isogenic KRAS 
WT and mutant 
HCT116 cells

ERK and AKT Decreased expression 
increased chemosensitivity

Lysine degradation (hsa00310). Fatty acid metabolism (01212). Glioma 
(05214). Biosynthesis of unsaturated fatty acids (01040). Fatty acid 
elongation (00062)

miR-224 target genes altered cell proliferation 
and invasion as well as epithelial-
mesenchymal transition

Zhang et al[75] miR-520g-
3p

Tissues and cell p21 Inhibition of miR-520g in p53 
negative cells increased 
chemosensitivity.

TGF-beta signaling pathway (04350). Folate biosynthesis (00790). 
Transcriptional misregulation in cancer (05202). Signaling pathways 
regulating pluripotency of stem cells (04550)

p53 suppressed the miR-520g expression

Kim et al[74] miR-96 Tissues and cell XIAP and UBE2N Expression modulated 
chemosensitivity and 
promoted apoptosis

Adherens junction (04520). ECM-receptor interaction (04512). Prostate 
cancer (05215). Viral carcinogenesis (05203). Protein processing in the 
endoplasmic reticulum (04141)

Following 5-FU exposure, the expression of 
the antiapoptotic regulator (XIAP) and p53 
stability regulator (UBE2N) decreased

Li et al[59] miR-203 5-FU-resistant 
cell line LoVo/5-
Fu

Thymidylate synthase 
(TYMS)

Inhibition of expression 
increased chemoresistance and 
the overexpression increased 
chemosensitivity

Sulfur metabolism (00920). MAPK signaling pathway (04010). Thyroid 
hormone signaling pathway (04919)

miR-203 increased the inhibitory effect of 5-FU 
on tumor growth and suppressed TYMS 
protein levels

Boni et al[58] miR-192 
and miR-
215

Tissue and cells TYMS The expression did not affect 
chemoresistance but 
overexpression reduced cell 
proliferation

miR-192: Folate biosynthesis (00790). Wnt signaling pathway (04310). 
Steroid biosynthesis (00100). Lysine degradation (00310). Signaling 
pathways regulating pluripotency of stem cells (04550). miR-215: Folate 
biosynthesis (00790). Estrogen signaling pathway (04915). One carbon pool 
by folate (00670)

Ectopic expression of these miRNAs was a 
strong predictor of 5-FU response. The 
expression did not affect chemoresistance but 
overexpression reduced cell proliferation

miRNA: Micro-ribonucleic acid; 5-FU: 5-fluorouracil; CRC: Colorectal cancer; TS: Thymidylate synthase; TK: Thymidylate kinase; MMR: Mismatch repair; MDR: Multidrug resistance; DOT1L: Disruptor of telomeric silencing 1-like; ECM: 
Extracellular matrix; KEGG: Kyoto Encyclopedia of Genes and Genomes; TNM: Tumor, node, metastasis.

Ye et al[40] evaluated the effect of miR-1290 on CRC cells, which targets HMSH2. They 
reported that this miRNA is positively correlated with dMMR status. Moreover, the 
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Figure 2  Thymidylate synthase inhibition. Fluorodeoxyuridine monophosphate (FdUMP) incorporation into thymidylate synthase in place of deoxyuridine 
monophosphate (dUMP) results in suppression of thymidylate synthase (TS). Consequently, the synthesis of thymidine monophosphate required for DNA replication 
and repair is diminished, which leads to deoxyuridine triphosphate (dUTP) imbalances, increased dUTP, DNA damage and finally apoptosis of actively dividing 
cancerous cells[20]. TK: Thymidylate kinase; CH2THF: 5,10-methylene tetrahydrofolate; dTMP: Deoxythymidine monophosphate; dTTP: Deoxythymidine triphosphate; 
dNTP: Deoxynucleotide triphosphate.

Figure 3  5-Fluorouracil inhibits ribonucleic acid pseudouridylation including the conversion of uridine to pseudouridine and formation 
of stable ribonucleoprotein complexes. These actions will interrupt cellular tRNA, pre-mRNA and rRNA production and also post-transcriptional modification, 
leading to RNA biosynthesis cessation. Moreover, 5-fluorouracil (5-FU) disrupts the assembly and activity of snRNA and protein complexes through its effect on the 
pseudouridylation of U2 snRNA, thereby inhibiting the splicing of pre-mRNA[21]. Because of the similarity between the 5-FU metabolite fluorouridine triphosphate 
(FUTP) with uridine triphosphate, FUTP can be identified by RNA polymerases and incorporated into both nuclear and cytoplasmic RNA molecules, interrupting 
normal RNA processing and function[22]. RNA-based 5-FU toxicity decreases the cellular levels of the nuclear exosome Rrp6 or exosome component 10, a breakdown 
complex for RNA, banning the effectual turn-over of aberrant RNA transcripts[21]. FUMP: Fluorouridine monophosphate; FUDP: Fluorouridine diphosphate.

expression of miR-1290 was associated with poor prognosis in stage II and III CRC 
patients who received 5-FU. They also demonstrated that inhibition of miR-1290 
decreased 5-FU chemoresistance[40]. miR-552 is another miRNA that targets the SMAD2 
cascade. Zhao et al[41] evaluated the effect of different expression levels of miR-522 on 5-
FU chemoresistance. They demonstrated that expression of miR-552 that was 
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downregulated in 5-FU-resistant tissues and cells was regulated by dMMR. Moreover, 
the expression of this miRNA was associated with poor post-chemotherapy prognosis. 
In terms of 5-FU resistance, overexpression of miR-552 reduced chemoresistance, and 
its inhibition may lead to increased 5-FU chemoresistance (Table 1)[41].

THYMIDYLATE SYNTHASE AND RESISTANCE TO 5-FU
Abundant research regarding 5-FU resistance in mCRC have highlighted that various 
genes were involved in 5-FU pharmacokinetic and pharmacodynamic metabolic 
pathways. One of the major key enzymes in 5-FU metabolism is TS. TS expression is 
the main determinant of 5-FU sensitivity. Disturbed methylenetetrahydrofolate or one 
of its polyglutamate pools that results in an unstable ternary complex of 
fluorodeoxyuridine’ monophosphate and TS (which leads to poor inhibition of TS) 
along with a high level of TS enzyme before treatment are two main factors of intrinsic 
resistance to 5-FU[42]. 5-FU chemotherapy nonrespondents have higher TS enzyme 
activity in comparison to 5-FU respondents. TS has a negative autoregulatory role in 
the translational level by binding to its own TS mRNA, thereby it inhibits the 
production of functional TS enzyme. However, the inhibition becomes interrupted by 
TS enzyme interaction with 5-FU metabolite. As a result, the 5-FU treatment causes 
acquired resistance by affecting TS stability. Besides, acquired resistance to 
chemotherapy that is emanating from the gene amplification of TS with consequent 
increases in TS mRNA and protein is observed in 5-FU and 5-fluorouridine 
deoxyribose (5-FUDR) treated cell lines[43-46]. Moreover, TS overexpression may result 
in oncogenic phenotypes by decreasing the translational efficiency of the TP53 
transcript[47]. Manifold clinical and preclinical investigations showed that colorectal 
tumors are more sensitive to 5-FU-based therapy in patients with low tumoral TS 
expression[48-50]. In line with these findings, Abdallah et al[51] reported that analyzing TS 
expression in circulating tumor cells of mCRC patients would be a promising tool as a 
5-FU resistance predictor biomarker.

Genotyping of the TYMS promoter shows interindividual differences among 
patients with variable sensitivity to 5-FU treatment and divides CRC patients into 
those who receive a survival benefit from 5-FU chemotherapy and those who do 
not[52,53]. The 5’-region of the TYMS gene promoter has a variable number of tandem 
repeats, and this is composed of usually either two (TSER*2 or 2R) or three (TSER*3 or 
3R) 28-base-pair tandem-repeat sequences[54]. Preliminary studies indicated that 
TSER*3/TSER*3 homozygous patients are less likely to respond to 5-FU-based 
chemotherapy than TSER*2/TSER*2 homozygous or TSER*2/TSER*3 heterozygous 
patients[55,56]. In vitro studies showed that TYMS promoter variants observed in tissue 
tumors with the TSER*3 alleles produce nearly four times higher mRNA in 
comparison to patients with mCRC who carry TSER*2 alleles (P < 0.004)[57]. 
Homozygous TSER*2/TSER*2 alleles have a significantly higher percentage of a 
favorable response to 5-FU treatment compared to those who were homozygous for 
TSER*3/TSER*3 (50% vs 9%, P = 0.04)[20].

TYMS is the target of miRNAs, and it is demonstrated in Table 1. Boni et al[58] 
demonstrated that ectopic expression of miR-192 and miR-215 are stronger predictors 
of 5-FU response than TYMS inhibition. In their study, miR-192 and miR-215 
expression do not affect chemoresistance, although their overexpression reduced cell 
proliferation. Li et al[59] reported that miR-203 increased the inhibitory effect of 5-FU on 
tumor growth and suppressed TYMS protein levels. Inhibition of miR-203 expression 
increased chemoresistance, and the miR-203 overexpression increased 
chemosensitivity[59]. Another miRNA affecting 5-FU response is miR-330. Ectopic 
expression of miR-330 reduced cell proliferation and enhanced chemosensitivity[60]. In 
HCT116 and HT29 cell lines, miR-218 expression suppressed BIRC5 and TS, promoting 
apoptosis. Overexpression of this miRNA showed an increase in 5-FU 
chemosensitivity[61] (Table 1).

DIHYDROPYRIMIDINE DEHYDROGENASE AND RESISTANCE TO 5-FU
Patients with decreased 5-FU catabolize capacity due to partial or complete DPD 
deficiency are prone to severe systemic toxicity in response to 5-FU[12]. Increased drug 
concentration and longer half-life due to the decreased drug catabolism may be the 
possible explanation for this finding. The assessment of more than 60 human cancer 
cell lines illustrated a highly significant inverse relationship between the 5-FU 
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response and both DPD mRNA expression and DPD activity. Low DPD mRNA levels 
and DPD activity in human tumor xenografts are in strong correlation with better 
response to 5-FU in comparison with tumors expressing a higher level of DPD 
mRNA[12]. Furthermore, in vitro studies have also shown that high levels of DPD 
mRNA expression in colorectal tumors and the corresponding catabolism of 5-FU 
correlate with resistance to 5-FU[62]. Importantly, previous studies showed that DPD, 
TS and thymidine phosphorylase are independent prognostic markers of 5-FU 
response, and measurement of all three markers significantly enhanced the ability to 
predict tumor response to 5-FU-based chemotherapy[63-65].

As alterations in DPD is correlated with 5-FU chemoresistance, miRNAs regulating 
its expression can interfere with chemotherapy resistance. When miR-494 is bound to 
the 3’UTR of DPD’s gene, it can decrease its expression[66]. Similarly, miR-27a and miR-
27b decrease 5-FU resistance by targeting DPD[67].

P53 AND RESISTANCE TO 5-FU
Some in vitro and in vivo studies reported that loss of p53 function (due to mutant or 
inactive TP53) reduced cellular sensitivity to cytotoxic agents including 5-FU, which is 
accompanied by poor prognosis and poor survival rates[68-70]. One of the main 
outcomes of 5-FU treatment is the induction of apoptosis in normal and tumoral 
intestinal cells. Thereby, any alterations in genes involved in apoptotic pathways may 
have extensive impacts on chemotherapy and can take part in the induction of 5-FU 
resistance by cancerous cells[71]. Disrupting both alleles of TP53 in a colon cancer cell 
line made the cells strikingly resistant to apoptosis induced by 5-FU compared with 
the parental line[69]. Remarkably, several clinical studies reported that p53 
overexpression correlates with resistance to 5-FU[72,73].

Some studies evaluated the effect of the expression of different miRNAs targeting 
p53. Kim et al[74] studied the p53 stability regulator (UBE2N) in CRC tissue. miR-96 
targets UBE2N. Kim et al[74] demonstrated that exposing CRC cells to 5-FU decreased 
the expression of an antiapoptotic regulator (XIAP) and UBE2N[74]. Also, in another 
study, the miR-96 expression was reported to be a modulator of 5-FU chemosensitivity 
and promoted apoptosis of CRC cells[74]. Zhang et al[75] investigated the miR-520g 
expression and its target, p21, in CRC cells. p53 suppressed miR-520g expression, and 
inhibition of miR-520g in p53 negative cells increased chemosensitivity to 5-FU[75] 
(Table 1).

CIRCULAR RNAS AND RESISTANCE TO 5-FU
One of the new research fields of transcriptome studies performed on drug resistance 
in CRC is circular RNAs (circRNAs). Recently, these noncoding closely looped RNAs 
were found to be involved in 5-FU-based chemotherapy resistance in CRC mainly 
because of their ability to act as a miRNA sponge. Using microarray analysis, Xiong 
et al[76] for the first time revealed that circRNAs were expressed differently in 5-FU 
chemoradiation resistant CRC cells than parental control cells, suggesting the new 
potential role of these biomolecules in 5-FU drug resistance. This study introduced hsa 
circ 0007031 as the most upregulated circRNA (116 fold) in 5-FU chemoradiation 
resistant CRC cells[76]. In line with the work of Xiong et al[76], Abu et al[77] compared the 
expression profile of circRNAs between chemosensitive and chemoresistant FOLFOX 
(5-FU + oxaliplatin) HCT-116 colon cancer cells. They concluded that up to 773 and 732 
circRNAs were upregulated and downregulated in these two cell lines, respectively. 
Among the investigated circRNAs, hsa circ 32883 that encodes for the EML5 gene was 
believed to be a potential molecular target demanding further research[77].

MIRNAS PROMOTE 5-FU DRUG RESISTANCE IN CRC
Among miRNAs presented in Table 1, some miRNAs can induce 5-FU resistance. 
Upregulation of ST6GALNAC2 (which further activates the PI3K/AKT pathway) is 
one of the main mechanisms resulting in chemoresistance caused by miR-182 and miR-
135b[78]. Based on the DIANA-miRPath database, these two miRNAs play a role in 
signaling pathways regulating the pluripotency of stem cells, adherent junctions and 
cell cycle[79]. In a study by Amankwatia et al[80], it has been shown that miR-224 
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knockdown significantly increased sensitivity of HCT116 KRAS wild-type cells to 5-
FU but did not affect sensitivity to oxaliplatin or irinotecan. Additionally, they 
demonstrated that miR-224 silencing markedly enhanced KRAS activity and ERK and 
AKT phosphorylation, suggesting a direct effect of miR-224 on prosurvival 
RAS/AKT/PI3K pathway[80]. miR-587 is another miRNA that can downregulate 
activation of the AKT/XIAP axis and induce 5-FU resistance[81]. miR-587 inhibited AKT 
activation; when this miRNA was inhibited, it decreased chemoresistance to 5-FU[81]. 
Regardless of the cancer cells, expression of some specific miRNAs including miR-
196b-5p in cancer stem cells is also related to 5-FU resistance, and it activates 
JAK/STAT3 signaling[33].

MIRNAS REVERSE 5-FU DRUG RESISTANCE IN CRC
In contrast to the previous section, other miRNAs are involved in reducing 5-FU 
chemoresistance in CRC patients. miR-24 is a tumor suppressor and increases the 
chemosensitivity of SW48 cells to 5-FU, probably due to targeting and downregulating 
DND1, which is upregulated in CRC cell lines up to 5.3-fold[82]. Moreover, according to 
the DIANA-miRPath database, miR-24-3p is involved in proteoglycans in cancer, cell 
cycle and pancreatic cancer pathways. Likewise, miR-361 overexpression increased cell 
apoptosis in 5-FU-resistant HCT116 and HT29 cells through targeting and modulation 
of FOXM1 and ABCC5/10, respectively[83]. miR-361 is also involved in adherent 
junction as well as extracellular matrix receptor interaction cellular pathways 
(DIANA-miRPath database). miR-375-3p targets YAP1 and SP1. Inhibition of YAP1 
downstream genes including survivin, CTGF, and cyclin D1 promoted CRC cell 
sensitivity to 5-FU[84]. miR-133b also increased the sensitivity of cancer stem cells 
within colorectal spheroids to 5-FU by targeting disruptor of telomeric silencing 1-like, 
which is responsible for H3K79 methylation[85]. Similar to miRNAs promoting 5-FU 
drug resistance, some miRNAs reverse 5-FU drug resistance in CRC and are listed in 
Table 1 along with detailed explanations.

CONCLUSION
The latest and most important molecular mechanisms of 5-FU resistance including 
MSI, altered expression of TS and DPD enzymes and loss of p53 were introduced in 
detail. As discussed above, MSI induced by sporadic or germline mutations in DNA 
mismatch repair machinery genes increased the tolerance of CRC cells to DNA 
damage and apoptosis caused by 5-FU, leading to 5-FU resistance. High expression 
levels of TS and DPD before treatment are two important factors for intrinsic resistance 
to 5-FU in CRC. Polymorphism of the 5’-region of the TS gene promoter and loss of 
p53 function due to mutation or TP53 overexpression are other molecular 
determinants of response to 5-FU. miRNAs and their alterations are other important 
factors in 5-FU drug resistance in CRC. New emerging evidence indicated that the 
consideration of miRNAs not only confer great assurance for the diagnosis, prognosis 
and clinical follow-up of CRC patients but also can be considered as a potential tool for 
anticancer therapies. Moreover, miRNAs can be utilized as predictive markers for CRC 
patients[86,87]. As it is shown in Table 1, some miRNAs promote 5-FU drug resistance in 
CRC, while some reverse it. The identification of new potential molecular 
determinants of response to 5-FU could be an important clinical tool to develop 
treatment strategies and select CRC patients who would most likely benefit from 5-FU-
based chemotherapy.
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