Skip to main content
. 2020 Sep 22;20:67. doi: 10.1186/s40644-020-00341-y

Table 4.

summary of studies showing the predictive performance of radiomics signature, clinical-radiological and the combined models

Study Objectives No. of subjects The area under the ROC curve Sensitivity Specificity Best model
RS CM COM RS CM COM RS CM COM
Ma et al. [56] Preoperative prediction of MVI 157 (T:110, V: 47) 0.793 0.761 0.801 0.656 0.944 0.889 0.944 0.655 0.759 COM
Yang et al. [41] Prediction of MVI 208 (T: 146, V: 62) 0.837 0.759 0.861 0.842 0.737 0.895 0.744 0.674 0.814 COM
Xu et al. [29] Prediction of MVI and survival 495 (T:350, V:145) 0.806 N/A 0.889 0.755 0.653 0.898 0.719 0.760 0.792 COM
Zhang et al. [57] Prediction of MVI 267 (T:194, V:73) 0.820 0.721 0.858 0.692 0.269 0.808 0.809 0.936 0.861 COM
Zhu et al. [58] Prediction of MVI 142 (T:99, V:43) 0.773 N/A 0.794 0.750 N/A 0.812 0.815 N/A 0.852 COM
Zhang et al. [59] Prediction of early recurrence 155 (T:108, V:47) 0.728 0.814 0.841 0.696 0.783 0.913 0.708 0.833 0.750 COM
Zhou et al. [60] Prediction of early recurrence 215 0.817 0.781 0.708 0.794 0.784 0.824 0.699 0.619 0.708 COM

T training cohort, V validation cohort, N/A not available, ROC receiver operating characteristic curve, RS Radiomics signature, CM Clinical model, COM Combined model