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Abstract

Background: Access to quantitative information is crucial to obtain a deeper understanding of biological systems.
In addition to being low-throughput, traditional image-based analysis is mostly limited to error-prone qualitative or
semi-quantitative assessment of phenotypes, particularly for complex subcellular morphologies. The PVD neuron in
Caenorhabditis elegans, which is responsible for harsh touch and thermosensation, undergoes structural
degeneration as nematodes age characterized by the appearance of dendritic protrusions. Analysis of these
neurodegenerative patterns is labor-intensive and limited to qualitative assessment.

Results: In this work, we apply deep learning to perform quantitative image-based analysis of complex
neurodegeneration patterns exhibited by the PVD neuron in C elegans. We apply a convolutional neural network
algorithm (Mask R-CNN) to identify neurodegenerative subcellular protrusions that appear after cold-shock or as a
result of aging. A multiparametric phenotypic profile captures the unique morphological changes induced by each
perturbation. We identify that acute cold-shock-induced neurodegeneration is reversible and depends on rearing
temperature and, importantly, that aging and cold-shock induce distinct neuronal beading patterns.

Conclusion: The results of this work indicate that implementing deep learning for challenging image segmentation
of PVD neurodegeneration enables quantitatively tracking subtle morphological changes in an unbiased manner.
This analysis revealed that distinct patterns of morphological alteration are induced by aging and cold-shock,
suggesting different mechanisms at play. This approach can be used to identify the molecular components
involved in orchestrating neurodegeneration and to characterize the effect of other stressors on PVD degeneration.
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Background

Aging, environmental stressors, and injury can induce
reversible or irreversible changes at the subcellular, cel-
lular, and tissue levels of an organism [1-11]. The Cae-
norhabditis elegans nervous system is not an exception
and undergoes morphological and functional deterior-
ation under these conditions. Morphological phenotypes
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indicative of neurodegeneration in this roundworm in-
clude somatic outgrowth, distorted soma, branched and
wavy dendrites, and dendritic beading [2, 8, 12-18]. For
instance, degenerative axonal beading has been observed
and identified previously in various neurons such as
ALM, PLM, and HSN ([8, 19-22], and in dopaminergic
neurons upon exposure to genotoxins [23]. The ability
of neurons to recover from degeneration has also been
studied. For instance, Oren-Suissa et al. found that pri-
mary dendrites in the PVD neuron reconnect via branch
fusion following laser surgery [24]. PVD is a widely
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studied multidendritic nociceptor neuron that responds
to harsh touch (mechanosensor) and cold temperatures
(thermosensor) (Fig. 1a) [25-32]. Prior work has identi-
fied genetic pathways important for organization of den-
dritic branches and dendritic self-avoidance [33-38].
Dendritic organization in PVD is also affected by aging;
while young animals have well-organized menorah-like
dendritic structures, these tend to be replaced by non-
uniform and chaotic outgrowth of dendritic branches
[37]. Recently, Lezi et al. identified the formation of pro-
trusions (or beading) along the dendrites of PVD during
aging, through a process driven by the expression of an
antimicrobial peptide [39]. They also identified a de-
crease in nematode’s responsiveness to harsh touch as
nematodes age coinciding with the increase in number
of bubble-like protrusions throughout the dendrite. Fur-
thermore, mutants with delayed bead formation also ex-
hibit a delayed emergence of harsh touch defects [39].
While these correlations suggest beading accompanies
aging, their functional outcomes are still to be
determined.

Characterization of PVD beading has thus far been
performed by visual inspection and manual counting of
fluorescent images, which is labor-intensive and time-
consuming and does not provide additional information
about the observed morphological changes, aside from
number of beads. Traditional image processing ap-
proaches typically rely on intensity difference for image
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segmentation [40—42]. The protrusions that appear in
PVD have fluorescence intensities similar to the rest of
neuron and autofluorescent lipid droplets. Thus, trad-
itional image processing approaches are unable to per-
form the challenging segmentation of PVD protrusions.
Quantitative analysis of PVD neurodegeneration morph-
ology is important to understand the root causes of neu-
rodegeneration. Machine learning has proven useful for
analysis of biological systems and deep phenotyping [9,
43-45]. Specifically, deep phenotyping and machine
learning have been implemented in several C. elegans
studies. San-Miguel et al. implemented a deep phenotyp-
ing pipeline to study synaptic patterning in the DA9
motoneuron [43]. Hakim et al. developed a platform
called WorMachine which is comprised of image pro-
cessing, deep learning, and machine learning techniques
to perform assays such as supervised classification of
binary-sex phenotype, scoring continuous-sexual pheno-
types, quantifying the effects of two different RNA inter-
ference treatments, and measuring intracellular protein
aggregation [46]. Kaltdorf et al. combined a machine
learning technique with an image segmentation work-
flow to develop an automated method to classify Clear
Core (CCV) and Dense Core (DCV) synaptic vesicles
[47]. Wang et al. investigated cell movement by integrat-
ing deep reinforcement learning embedded in a model-
ing system to analyze 3D time-lapse microscopy images
[48]. Wu et al. imaged neuronal activity of C. elegans in
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3D by training a deep neural network to refocus two-
dimensional fluorescence images into user-defined
three-dimensional surfaces [49]. In this work, we sought
to integrate cutting-edge deep learning approaches to
segment beads in PVD fluorescence images from live an-
imals (Fig. 1b). In this pipeline, confocal fluorescence
images are fed to the trained Mask R-CNN-based algo-
rithm for segmentation. The masks obtained are then
used, along with its corresponding original image, to ex-
tract quantitative metrics describing the morphological
changes of PVD, some of which include intensity-based
information. Convolutional neural networks (CNNs)
have recently shown state-of-the-art performance in
image segmentation tasks across a wide range of bio-
logical and biomedical image datasets [50—56]. Here, we
utilize Mask R-CNN [57], a CNN model that is designed
to predict binary instance masks (one mask per pre-
dicted bead object) from an image to detect PVD beads.
We follow this user-free segmentation approach with
multiparametric phenotyping of PVD by extracting 46
quantitative features that describe beading patterns.
These metrics include number of beads, cumulative area
occupied by beads, average bead size, and average pair-
wise inter-bead distance. We take advantage of the
quantitative data provided by this pipeline to track sub-
tle neurodegenerative phenotypes caused by different
physiological stressors (Fig. 1c). We validate our pipeline
by assessing the effects of aging on PVD beading, and re-
capitulate previously observed changes [39]. In addition,
we identify a previously unknown degenerative effect of
exposure to acute cold-shock on neuronal structure. Fi-
nally, we show that this deep phenotyping approach en-
ables predicting the biological status of a nematode
(young, aged, cold-shocked) based on the quantitative
metrics generated by the pipeline with over 85% accur-
acy. This analysis reveals that different stressors (aging
and cold-shock) induce distinct neurodegenerative phe-
notypes hinting at potentially different underlying neu-
rodegeneration mechanisms. This approach enabled
automating image analysis of PVD neurodegeneration
thus increasing throughput, eliminating the human bias
and error introduced by manual assessment, and facili-
tated high-content quantification of the subtle neurode-
generative changes in PVD, unfeasible in conventional
methods.

Results and discussion

Training the Mask R-CNN algorithm to perform complex
image segmentation

We adapted the convolutional neural network (CNN)
model Mask R-CNN [57] to automatically detect bead
protrusions in high-resolution images of nematode den-
drites (Fig. 2a). The input to Mask R-CNN is a 1-
channel grayscale microscopy image (1024 x 1024 x 1),

Page 3 of 18

and the output is a set of predicted bead regions consist-
ing of one binary instance mask (1024 x 1024 x 1) per
bead, i.e., a pixel has a value of 1 in the mask when it is
part of a bead and 0 otherwise. A tiling procedure was
employed to adapt Mask R-CNN for use with 2048 x
2048 x 1 microscopy images (see the “Methods” section),
since this image size was sufficient to resolve the smal-
lest bead protrusions. The Mask R-CNN architecture
first generates regions of interest (ROIs) using a Faster
R-CNN model, composed of a residual network
(ResNet-101 [58]) and a feature pyramid network [59].
ROIs are then processed with region proposal and ROI
align neural network layers to produce an instance seg-
mentation mask for each detected object. In contrast to
thresholding-based methods, which only rely on image
intensity for predicting segmentations, CNNs automatic-
ally learn and then use hierarchical sets of image features
directly from the training data without requiring manual
feature engineering. Learning features enable relevant
local context to be used in making segmentation predic-
tions, e.g., the shape and size of the bead, what a den-
drite looks like, and the proximity of beads to dendrites.
We leveraged a transfer learning [60] approach in which
Mask R-CNN is pre-trained on a large annotated dataset
(ImageNet [61]), and then fine-tuned on a dataset of
nematode images that we manually annotated.

The Mask R-CNN algorithm requires a training
dataset comprised of raw images of PVD and their
corresponding ground truth masks that label the pro-
trusions. The masks were created from raw images
using a custom MATLAB code that allows the user
to draw around each bead location. A total of 19 im-
ages (each with ~50-150 beads with an average size
of ~ 150 pixels) were manually segmented to compile
the training set. In addition, an independent test set
was generated with 12 raw images and their associ-
ated binary masks. The test set includes diverse im-
ages with ~30 to ~150 beads. These were equally
split into images with a low (<100) and a high (>100)
number of beads, to test segmentation consistency. To
assess segmentation performance, we quantified precision
and recall, described as:

. True Positive
Precision =

True Positive + False Positive

Recall — True Positive

True Positive + False Negative

In these expressions, true positives are correctly identi-
fied beads, false positives are non-bead objects identified
as beads, and false negatives are non-identified beads
(Fig. 2b). As shown in Fig. 2c, the segmentation preci-
sion for the test dataset was 85% and 91% for images
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with low and high bead numbers, respectively. Similarly,
a recall of 90% and 93% was obtained for low and high
bead number images, respectively (Fig. 2d). These slight
differences could stem from the low number of beads
while retaining the same level of objects that can be
falsely identified as beads in the first group. The opti-
mized Mask R-CNN algorithm successfully scored 88%
in precision and 91% in recall for the entire test set.
Thus, this machine learning approach offers consistent
unbiased segmentation with high accuracy. To measure
the algorithm’s pixel-level accuracy, we calculated the
Jaccard index (i.e., intersection over union) of each indi-
vidual bead in the validation set. The average Jaccard
index for all beads was 0.7 (std. dev = 0.15). Furthermore,
we show that this index is consistent for animals with
drastic beading and with minor beading, as shown in
Additional file 1: Fig. S10.

Importantly, precision and recall do not provide infor-
mation to assess the performance of the model in ignor-
ing objects that can easily be identified as beads (true
negatives). In this particular phenotyping problem, this
type of objects is prevalent. Autofluorescent lipid drop-
lets can be easily mistaken for neurite protrusions, due

to their round shape and location, which can overlap
with PVD dendrites in maximum projections. Distin-
guishing round objects with comparable intensity levels
and with similar locations and sizes is a significant chal-
lenge. To assess the power of the algorithm to distin-
guish between the two, we chose 3 images from animals
with an abundance of fat droplets that overlapped with
dendrites, as part of our training set. As shown in Fig. 2e
and Additional file 1: Fig. S1, the algorithm achieved ~
99% precision in discerning fat droplets from beads, des-
pite their similarities. Prior approaches have addressed
this problem by performing dual color microscopy to
compare images that show only lipid droplets with im-
ages that show the fluorescent reporter [43]. This deep
learning approach eliminates the need to perform alter-
native analyses or dual color microscopy to subtract
autofluorescent objects.

Deep phenotyping of age induced PVD
neurodegeneration

The nervous system in C. elegans undergoes morpho-
logical and functional decline due to aging [14, 18]. Mor-
phological changes in PVD include dendritic outgrowth



Saberi-Bosari et al. BMC Biology (2020) 18:130

Page 5 o

f 18

a) b)
400 T T T T T T
« 3003 000 wax 1
-c ek *
S .
f 200 - a LI
2 "
5 * o . . .
L 1504 ¢ . e
£ )
3 L[] £ N —
g 100 . Tﬁ 4
Day 2 2 2
& = ¢ ]
2 A ?
01— - - - - -
Day 2 Day 4 Day 6 Day 8 Day 10  Day 12
Day 6 B , e . : o
[} E E
.g *
T 2504 e NS % S 1
3 —f - %
9 ¢ . -
c y o ¢
Day 10 S | ] 3 . |
g 3 :
- #
5} % FZ\
D 1504 ) ] g
g’ '.o ‘ -
g : '
Z ol P=0.08 :
e) f) d) Day 2 Day 4 Day 6 Day 8 Day 10  Day 12
1000 T T T T T T
w1 m " ® 3 . ok
(%) O 800 p=0.02 2 9504 e |
e Anterior Posterior c @© . o FEE .
8 1204 o} p=0.02 % 900 e A
(2]} — .
o ] *kk B i © 850+ & oo
5 "] 5™ B - t s i
o | ® o 80+ D o A
o o 1) o i ob
'g g 600 - o 7504 & 8
60 -—
2 S £ 700 > | 4 i
40 ‘o () P ®
o 9, s00- P 0] 5 H - ]
© © & o o
§ 20 § g 6004 © :u . ’ B
< o < 400+ < 550 4 e 5
0ZE— - . - - -
Day2 Day4 Day6 Day8 Day10 Day12 Day2 Day4 Day6 Day8 Day10 Day 12 Day 2 Day4 Day6 Days Day10 Dayi2
Fig. 3 Deep learning allows quantitative analysis of aging-induced morphological changes in PVD. a Qualitative inspection of PVD at 3 time
points of their life span shows an increase in number of beads throughout the dendrites. Protrusion formation was identified in both anterior and
posterior parts of the PVD neuron. Yellow arrows point to neuronal beads. b—-d Average number of beads, average of mean bead size, and
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tests for multiple comparison with equal or unequal variance assumptions, respectively, and significance level determined using Bonferroni
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and beading, which become more common as animals
age, as evidenced in Fig. 3a. As previously mentioned,
quantitatively investigating beading is difficult as animals
can exhibit tens to hundreds of beads with fluorescence
intensity levels similar to those of labeled neurons and
autofluorescent lipid droplets. Moreover, beading is a
highly variable process, and quantification thus requires
analysis of large animal populations. We first aimed to
quantitatively analyze aging-induced beading in PVD
using the deep learning pipeline. Metrics such as average
number of beads, size, and inter-bead distance were

selected for deeper independent analysis, due to their
potential biological significance. These metrics enabled
us to examine the morphological changes in PVD. These
parameters offered the most descriptive measures which
facilitated visualizing the dendritic changes of PVD
neuron. Our results (Fig. 3b) show that the average bead
count increases from days 2 to 4, 6, and 8 of adulthood.
Interestingly, the average number of protrusions does
not appear to change significantly afterwards. These re-
sults suggest that there may be a saturation point for the
beading process, which animals reach at mid-age.
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One of the advantages of computer-based image seg-
mentation is that quantification of beading neurodegener-
ation is not limited to the number of beads. Our post-
segmentation MATLAB pipeline enabled extracting add-
itional metrics (a total of 46, Additional file 1) to compre-
hensively describe the morphological neurodegeneration
phenotypes. The average bead size (Fig. 3c) seems to de-
crease slightly as animals age (days 6-12 vs. days 2-4),
which can be explained by an increase in percentage of
small beads (area < 100 pixels) (Additional file 1: Fig. S2b).
While the size is slightly reduced, the total area occupied
by beads increases as nematodes age (Additional file 1:
Fig. S2a). These results suggest that the main morpho-
logical change induced by aging is an increase in total
beading (as measured by number or total bead area), ra-
ther than in bead size. The average inter-bead distance
(ie., average of all pairwise distances), which describes
how dispersed the beads are, decreases in older popula-
tions as expected due to an increase in total number of
beads (Fig. 3d). Other metrics that describe bead size and
spatial bead distribution (such as 90th percentile of bead
size, and percentage of pairwise inter-bead distances < 300
pixels, Additional file 1: Fig. S2d-e) confirmed an overall
trend towards accumulation of smaller beads with in-
creased density throughout the neuron in older animals.

To deepen our understanding of aging-induced beading,
we compared the patterns exhibited anterior (towards the
head) and posterior (towards the tail) to the PVD cell body,
since separate images were acquired (Fig. 3a). While both
regions exhibit an increase in number of beads (Fig. 3e),
this change was more drastic in the anterior section. This
difference could be explained either by a higher susceptibil-
ity to beading or by the fact that the anterior region occu-
pies larger area, since the posterior is closer to the animal’s
tail and is thus more tapered. The average inter-bead dis-
tance in the posterior region tends to be larger than in the
anterior side (Fig. 3f), as would be expected for a reduced
number of beads. As shown in Additional file 1: Fig. S2f,
bead morphology appears to be homogeneous, as there is
no significant difference in anterior vs. posterior average
bead size. Metrics such as the percentage of small beads (<
100 pixels) or the percentage of beads with close neighbors
(pairwise inter-bead distances <300 pixels) did not show
any significant differences along the two different sections
of PVD (Additional file 1: Fig. S2g-h). This deep learning-
based analysis corroborates the neuronal beading reported
by Lezi et al., while deepening our understanding of the
subtle neurodegenerative patterns that result from aging.

Acute cold-shock induces morphological changes in PVD
neuron

In addition to sensing harsh touch, PVD acts as a ther-
mosensor activated by cold temperatures [62]. Cold-
shock has been previously studied as a stressor for C.
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elegans [62-73]. Robinson and Powell identified that an-
imals can survive short (4h) exposures to acute cold-
chock (2°C), but longer exposures (24 h) result in death
for a fraction of the population [74]. Furthermore, Ohta
et al. showed that the pre-cold-shock culture
temperature is inversely correlated with survival rate
(more animals survive cold-shock if previously cultured
at lower temperatures) [75]. While the detrimental ef-
fects of cold-shock on nematodes’ survival and PVD’s in-
volvement in responding to cold temperatures have been
independently studied, the impact of cold-shock expos-
ure on PVD health has not been investigated. To answer
this question, we first tested the effects of exposure to
cold-shock on PVD morphology, where we identified the
appearance of PVD neurite beading. Thus, we sought to
examine the effects of acute cold-shock at 4°C on the
structure of PVD through our deep learning phenotyp-
ing pipeline.

To characterize the relation between cold-shock and
beading, we first exposed different C. elegans popula-
tions to cold-shock for various durations. As shown in
Fig. 4a, eggs extracted from gravid hermaphrodites were
transferred to NGM plates and cultured at 20 °C until
day 2 of adulthood, when pre-cold-shock microscopy
was performed. Nematodes were then split into four
separate plates and transferred to 4 °C for either 4, 8, 16,
or 24 h. Visual inspection of raw images suggested bead-
ing increases with longer cold-shock, but is especially
evident in populations that were exposed for 16 h or
more. Quantitative analysis performed using the trained
Mask R-CNN and post-segmentation feature extraction
pipeline shows that the number of beads gradually in-
creases with longer periods of cold-shock (Fig. 4b), and
is almost doubled after 16h, as compared to non-
exposed animals. Similar to the aging process, beading
reaches a saturation point, where no significant change
in the number of beads is observed after 16 h. Interest-
ingly, the percentage of small beads (area <100 pixels)
increases after 4 and 8 h of cold-shock, but this effect is
not observed after 16 and 24 h (Additional file 1: Fig.
S3b). This suggests that new small beads are generated
in the first 8h, resulting in a higher percentage of
smaller beads. The drop in percentage of small beads
after 16 and 24 h could be due to existing protrusions
becoming larger once the number of beads saturate.
This fluctuation in percentage of small beads is also
reflected in the average size (Fig. 4c), which slightly de-
creases during the first 8 h of cold-shock and grows after
16 and 24 h. One potential explanation for these obser-
vations is that initially new small beads form, but even-
tually the beading mechanism switches to bead growth
rather than bead generation.

Computer-based image processing and quantitative
analysis also enabled identifying subtle differences
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between aging and cold-shock beading patterns.
While an increase in bead number was observed in
both cases, cold-shock also resulted in an increase in
average inter-bead distance (Fig. 4d), in contrast to
aging. This counterintuitive result can potentially be
explained by the tendency of cold-induced protrusions
to form in more distant dendrites (such as 3rd or 4th
order branches) of healthy menorahs. With aging,
beads are generated evenly throughout the entire
neuron, likely as a result of the aging-induced

disorganized branching that increases the density of
dendrites (where beads are formed) throughout the
worm’s body (Fig. 4e). The information extracted
from anterior and posterior regions of PVD for nema-
todes exposed to acute cold-shock shows very similar
patterns to aging-induced neurodegeneration (Add-
itional file 1: Fig. S3f-j). Utilizing this deep learning
quantitative phenotyping enabled the identification of
a previously unknown effect of acute cold-shock on
PVD, which is exacerbated with longer exposures.
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Moreover, this analysis suggests that beading patterns
differ for aging and acute cold-shock, suggesting po-
tentially  different mechanisms of  protrusion
formation.

Post-cold-shock recovery can eliminate PVD dendritic
protrusions

Given the significant increase in number of dendritic
protrusions in PVD upon exposure to acute cold-shock,
we next sought to determine its potential for regener-
ation. To test this hypothesis, we designed experiments
to characterize PVD beading patterns after acute cold
exposure and following a subsequent period under nor-
mal culture conditions (referred to as rehabilitation or
recovery). As shown in Fig. 5a, we performed 3 “1-day”
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rehabilitation regimes at 3 different temperatures, se-
lected to cover the entire physiological range (15, 20,
and 25°C). Given that nematodes’ growth rate and life
span depend on culture temperature, we expected the
population cultured at 25°C to show a faster recovery
rate than those grown at 15 °C. After exposure to 16 h of
acute cold-shock, the average number of beads increased
by 100% as compared to pre-cold-shock conditions.
After 1day of rehabilitation, we observed a decrease in
the number of dendritic protrusions in all three rehabili-
tation temperatures (Fig. 5b). As expected, populations
cultured at 15°C and 25 °C had the lowest (~30%) and
highest (~50%) recovery, respectively, suggesting that
recovery rate is correlated with growth rate.
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In addition to a reduction in number, the average bead
size slightly decreases after rehabilitation (Fig. 5¢ and Add-
itional file 1: Fig. S5). This recovery is corroborated by the
total area covered by beads (Additional file 1: Fig. S4a),
which increases after cold-shock and decreases in all recov-
ery regimes, indicating that bead formation due to cold-
shock is reversible. These results suggest that recovery oc-
curs by both bead elimination and a gradual size reduction.
To further understand the spatial patterns of cold-shock
bead formation, we also explored inter-bead distances. As
previously mentioned (Fig. 4c), the average inter-bead dis-
tance increased post-cold-shock, suggesting beads are
formed in the farthest dendrites. One-day recovery treat-
ment at all three temperatures reduced this metric (Fig. 5d),
suggesting that beads on the farthest dendrites are more
prone to disappear post-recovery. As expected, the percent-
age of beads with close neighbors (inter-bead distance <
300 pixels) decreases with cold-shock and increases after
recovery (Additional file 1: Fig. S4d). Taken together, these
quantitative features suggest that cold-shock induces the
formation of beads, particularly in distal regions (as the
inter-bead distance increases), and that subsequent culture
at physiological temperatures reverts these changes.

In line with previous findings, the anterior region of
PVD exhibits a higher number of beads than the poster-
ior region, post-rehabilitation. However, recovery does
not appear to favor either side, as both areas show a re-
duction of beading post-recovery (Additional file 1: Fig.
S4f). Likewise, while the posterior region shows higher
inter-bead distances than the anterior region, both ex-
hibit a reduction of inter-bead distance post-recovery
(Additional file 1: Fig. S4g). The average bead size, per-
centage of small beads (area < 100 pixels), and percent-
age of beads with close neighbors (inter-bead distance
<300 pixels) do not show any significant differences
between the anterior and posterior regions, either post-
cold-shock or post-recovery (Additional file 1: Fig. S4h-j),
for most conditions. This suggests that the propensity of
the anterior region to increased beading observed with
aging is also observed upon cold-shock and after recovery
from cold-shock. Taken together, these results indicate
that after acute cold exposure, 1 day recovery at different
temperatures can almost completely alleviate the induced
morphological changes of PVD neuron. In addition, this
data suggests that a more efficient recovery can be
achieved by rehabilitation at higher temperatures. Finally,
it appears that cold-shock preferentially induces beading
in the farthest dendrites, but these are also preferentially
removed during recovery.

Pre-cold-shock culture temperature affects the severity of
morphological changes

Physiological culture temperature is a key environmental
factor that affects development, growth, and life span in
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poikilotherms, such as C. elegans [66]. Nematodes ha-
bituate to imposed environmental conditions, including
temperature [75-79]. Previous studies have identified
that after a 4 °C of cold-shock, over 85% of animals cul-
tured at 25 °C die, while most animals cultured at 15°C
survive [75]. These findings motivated us to investigate
whether the pre-cold-shock culture temperature plays a
role in beading process. To test this, 3 parallel cold-
shock/recovery experiments at 3 physiological tempera-
tures were conducted (Fig. 6a) where populations were
cultured at 15, 20, and 25 °C for ~ 3.5, 2.5, and 1.5 days,
respectively. These animals were then exposed to acute
cold-shock at 4°C and subsequently returned for 1 day
to their culture temperature. The difference in culture
time prior to cold-shock allowed animals to reach the
same developmental stage. Based on prior studies where
nematodes cultured at lower temperatures prior to cold-
shock have a higher survival rate [75], we hypothesized
that lower temperatures would result in less severe mor-
phological changes than high temperatures.
Post-cold-shock behavioral analysis revealed that ani-
mals grown at 25°C were the most affected, as they re-
covered mobility long after transfer to room
temperature (30—40 min), while this time was consider-
ably shorter for animals cultured at 15 and 20 °C. Once
animals started crawling, based on qualitative observa-
tion, nematodes cultured at 25°C moved significantly
slower than those cultured at lower temperatures. This
difference could indicate that worms habituated to a
higher temperature may undergo a more drastic shock
under cold exposure, although the relevance of locomo-
tion as a metric of shock in the context of PVD is un-
determined. These observations suggest that a larger
temperature gradient between culture and cold-shock
results in increased neuronal damage. As shown in
Fig. 6b, the number of beads present after cold-shock
and rehabilitation confirms this trend. The average num-
ber of beads increases post-cold-shock in all samples,
with the smallest change for nematodes grown at 15 °C.
The mean bead count after cold-shock reaches the same
level for samples cultured at 20 and 25°C, potentially
due to beading reaching a saturation point. This upper
limit in number of beads was also observed in neurode-
generation caused by aging and in cold-shock exposure
for different periods of time. Interestingly, while popula-
tions rehabilitated at 15 and 20 °C show a reduction in
number of beads, this effect was not present in those re-
covered at 25 °C. This could be explained by either a de-
layed or slower regeneration, or an inability to
regenerate for animals cultured at 25 °C. Interestingly, in
contrast to animals cultured at 15 and 20 °C, the mean
bead size appears to slightly decrease after the rehabilita-
tion regime at 25 °C (Fig. 6¢), suggesting that recovery at
25 °C does induce some regenerative effect, although this
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result was not statistically significant. The regeneration
results observed in animals cultured at 20 °C and recov-
ered at 25 °C (presented in the previous section) support
the idea that regeneration at 25°C is possible but is
likely slower for the population cultured at 25°C pre-
cold-shock. Such delayed regeneration could stem from
the more drastic difference between the baseline and
cold-shock temperature. Finally, these experiments cor-
roborate that cold-shock-induced beading occurs in the
farthest regions of the neuron, as inter-bead distance

increases with cold-shock, and is then reduced after re-
habilitation for all culture temperatures (Fig. 6d). The
percentage of small beads (area <100 pixels) and the
percentage of beads with close neighbors (inter-bead dis-
tances <300 pixels) (Additional file 1: Fig. S6b,d) also
show a reversal of the cold-shock exposure effect in all
three physiological temperatures.

Consistent with our previous results, the anterior re-
gion of PVD showed a higher number of protrusions
than the posterior (Additional file 1: Fig. S6f). Both
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regions recapitulate the trends observed for pre-cold-
shock, post-cold-shock, and post-rehabilitation in the
entire animal. The anterior region consistently exhibits
~20-100% higher number of beads than the posterior,
with pre-cold-shocks showing the largest difference. The
average bead size does not show differences between
these regions (Additional file 1: Fig. S6h). However, simi-
lar to previous experiments, the protrusions are more
densely distributed in the anterior part, as is expected
for a higher number of beads (Additional file 1: Fig.
S6g). The results from this assay support our hypothesis
that the culture temperature impacts how nematodes re-
spond to acute cold-shock. Animals cultured at 15 °C ex-
hibited the least morphological changes and faster
recovery, while those grown 25°C showed more drastic
beading and slower rehabilitation rate. This difference in
response indicates that the magnitude of the cold-shock
(based on the baseline temperature) correlates with the
induced morphological alteration through a yet un-
known mechanism.

Predicting biological status using deep quantitative
classification

The quantitative analysis of beading induced by aging
and cold-shock indicates that the patterns of PVD mor-
phological changes are different. To further investigate
the morphological changes observed, we took advantage
of the rich information obtained from the Mask R-CNN
segmentation and feature extraction pipeline, which in-
cludes all 46 metrics. Through visual inspection of the
raw images, as well as the quantitative analysis of the
beading patterns, it is clear that beading phenotypes can-
not be fully described with a single feature, such as num-
ber of beads. Furthermore, there is significant variability
within a population. As shown in Fig. 7a, a large fraction
of aged animals exhibit less than 70 beads, which is con-
siderably lower than the average of the population and is
closer to the number of beads for young individuals.
Likewise, some young animals showed more than 70
beads, which is significantly higher than the average of
the population. The same variability was observed in
cold-shock experiments, suggesting that the number of
beads does not offer a comprehensive description about
biological status of a nematode. Combining two metrics
such as number of beads and average bead size still does
not provide enough information to distinguish between
young and aged adults (Fig. 7a).

Given that beading patterns relay information about
the health state of PVD, we reasoned that beading phe-
notypes could be used to predict the biological state of
the animals. To test this hypothesis, we sought to in-
corporate all 46 metrics extracted from each image in a
classification model. In a first attempt, as shown in
Fig. 7b, we performed PCA (principal component
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analysis) on the 46 metrics. Two principal components
(PC1 and PC2) explain 46% of the total variance and are
unable to accurately differentiate nematodes from these
two stages in their life span. Thus, we aimed to test the
ability of classification models to distinguish young and
old nematodes using the metrics extracted from PVD
beading patterns. As shown in Fig. 7c, animals from dif-
ferent groups (e.g., pre- and post-cold-shock) can exhibit
very similar beading patterns. Successful predictive
models would prove the presence of subtle patterns that
can only be described using multiple metrics. We first
developed a classification model to distinguish young vs.
old adults. To create a labeled training set, data from the
posterior side of PVD for worms younger than 4 days
old were grouped together while the second class was
comprised of information from nematodes older than 4
days old. An independent validation dataset was then
generated to test classification accuracy. It should be
noted that these two classes are more difficult to distin-
guish than comparing day 2 vs. day 12 animals (i.e., the
youngest vs. the oldest samples). We tested four classifi-
cation algorithms: subspace discriminant ensemble
(SDE), support vector machines (SVMs), logistic regres-
sion, and K-nearest neighbors (KNNs). Two models,
SDE and SVM, achieved both training and validation ac-
curacies above 80%, with the validation accuracy of SDE
reaching 90% (Fig. 7d). For age-based classification, the
information acquired from the PVD anterior side was
also used to train separate models leading to training
and validation accuracies higher than 80% (Additional
file 1: Fig. S7a). In addition, the area under curve (AUC)
of the receiver operating characteristic (ROC) curve for
both anterior and posterior section reached 0.89 and
0.88, respectively (Additional file 1: Fig. S8). These re-
sults suggest that age-induced PVD neurodegeneration
causes subtle morphological changes that can only be
captured using quantitative deep phenotyping. We also
sought to analyze the capability of our trained classifiers
in correctly classifying aged nematodes with low number
of beads. As shown in Additional file 1: Fig. S9, the
trained SDE classifier is capable of identifying aged nem-
atodes even when these appear young, based on their
low number of beads, suggesting that other metrics are
relevant to differentiate distinguish these two groups. To
gain some insight regarding the relevant metrics to dis-
tinguish these populations, a stepwise logistic regression
was performed and 5 metrics were found to be import-
ant. These include the following: percentage of beads
with area smaller than 100 pixels (metric 16), standard
error of mean for inter-bead distance (metric 20), stand-
ard deviation of mean bead intensity (metric 35), 90th
percentile of bead intensity (metric 37), and 25th per-
centile of bead intensity. As shown in Additional file 1:
Fig. S9, although the data points for young and aged
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nematodes overlap for metrics 16, 20, and 37, the classi-
fier is capable of achieving 90% accuracy in distinguish-
ing them, suggesting the beading phenotype requires
integration of information from multiple metrics. Simi-
larly, we tested models for classifying nematodes ex-
posed to cold-shock from those that did not experience
this stressor. The training and validation set for this ana-
lysis was comprised of data from cold-shock performed
at all three pre-cold-shock temperatures, and as shown
in Fig. 7e, ~80% classification accuracy was obtained
both in training and validation. Since differences be-
tween degenerated (i.e., old or cold-shocked) and healthy
(young or non-cold-shocked) animals have been shown,
it was expected that these populations are distinguish-
able. However, given the significant variability in each
population, the high classification accuracy obtained was
surprising and points to consistent phenotypic patterns
exhibited upon morphological alteration that are not evi-
dent to visual inspection.

To further test the power of our deep phenotyping
pipeline, we next investigated potential differences in
PVD exhibited upon aging and acute cold-shock. We
compiled data from the anterior and posterior part of
the PVD from aging and cold-shock assays to generate
training and validation sets. As shown in Fig. 7f, the SDE
model reaches ~90% training and validation accuracy
for the anterior and ~80% for the posterior regions
(Additional file 1: Fig. S7c). This difference in classifica-
tion accuracy could stem from the anterior part of PVD
undergoing stronger beading patterns than the posterior.
Notably, these results indicate that these two stressors
cause distinct morphological patterns which can be cap-
tured by in-depth quantitative analysis. To further eluci-
date the differences between these two stressors, we
sought to identify the metrics used to distinguish these
two groups. The training dataset was used to fit a step-
wise logistic regression model to identify the metrics
most important in the classification process. Interest-
ingly, the most important metrics were average inter-
bead distance (metric 17) and percentage of beads with
inter-bead distance below 150 pixels (metric 21). These
findings are compatible with the observed trends in
average inter-bead distance between aging and acute
cold-shock. In addition to these two metrics, median
bead size (metric 25), max bead size (metric 26), and
median bead intensity (metric 32) were among the met-
rics incorporated by the stepwise logistic regression
model. As a last test, we sought to establish whether the
differences in bead patterning between the anterior and
posterior part of the PVD could be used to classify im-
ages of each class. An accuracy of ~85-90% was
achieved from different models, confirming underlying
beading pattern differences between these two regions of
the neuron (Additional file 1: Fig. S7d). The developed
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classification models are a powerful tool to identify po-
tential differences in beading patterns caused by various
environmental stressors (cold-shock or aging).

Conclusions
Neurons undergo degeneration during the aging process.
In C. elegans, PVD, a neuron responsible for mechano-
sensation and thermosensation, experiences morpho-
logical and functional changes as animals age [37, 39].
Prior studies have identified changes in dendrite morph-
ology characterized by disorganization in the menorah-
like dendritic arbors [33, 34]. In addition, Lezi et al.
identified that aging results in the formation of protru-
sions (or beads) along PVD dendrites [39]. However,
analyzing such morphological changes is challenging.
Manual inspection to quantify the number of protru-
sions is  time-consuming, labor-intensive, low-
throughput, and subject to human bias. In addition,
manual counting provides limited information and
makes thorough analysis of the complex phenotypes ac-
quired in fluorescence images unfeasible. In order to
track morphological changes that PVD undergoes with
degeneration, we integrated a cutting-edge deep learning
technique to segment the protrusions that form along
PVD. This technology decreased the time required to
process each image from 3 h to less than a minute, while
eliminating the human bias in analyzing the data. In
addition, a secondary algorithm was developed to extract
46 different metrics that make up a comprehensive
phenotypic profile that describes the beading patterns.
We implement a convolutional neural network-based
algorithm (Mask R-CNN) to carry out challenging image
segmentation, unfeasible with traditional image process-
ing approaches. The algorithm segmentation precision
and recall achieved 88% and 91%, respectively. An im-
portant advantage offered by this technology (which can-
not be quantified using the metrics above) is its
capability to distinguish autofluorescent lipid droplets
from actual protrusions, in spite of their remarkable
similarities in shape, intensity, and location. High recall
and precision achieved using Mask R-CNN can be fur-
ther improved in future work by implementing enhanced
architects, such as Mask Scoring R-CNN [80]. The in-
depth quantification of PVD morphology enabled by this
technology revealed subtle neurodegenerative changes
induced by aging and upon exposure to acute cold-
shock. With this approach, we identified an increase in
the number of beads formed along PVD as animals aged,
recapitulating earlier work by Lezi et al. [39]. In addition,
the reduction in average bead size and inter-bead dis-
tance quantified in later points of the nematode’s life
span suggested that the protrusions formed due to aging
tend to be small and appear close to each other.
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Prior work has focused on the effect of acute cold-
shock on a population’s survival and on PVD degener-
ation independently [37, 39, 63, 75]. However, the im-
pacts of acute cold-shock on PVD were still unexplored.
We sought to test the effect of acute cold-shock on PVD
by exposing populations of worms to 4°C and subse-
quently quantifying the protrusions generated as a result.
We demonstrate that exposure to cold-shock for 16 h or
more induces bead formation in PVD. In contrast to the
beading patterns induced by aging, the average inter-
bead distance increased in animals as a result of cold-
shock, a counterintuitive result as an increased bead
density is expected with a higher number of beads. This
finding, however, can be explained by the formation of
beads in the farthest regions of the neuron. These results
were the initial signs of aging and cold-shock inducing
phenotypically distinct beading patterns. We next sought
to study the regenerative potential of PVD post-cold-
shock. Thus, populations of worms exposed to cold-
shock were transferred to 3 different temperatures (15,
20, and 25°C) for a day of recovery. Interestingly, a de-
crease in the number of beads was observed after the re-
habilitation in all 3 temperatures, while the population
cultured at 25 °C exhibited the greatest decrease. The in-
creased inter-bead distance induced by cold-shock was
reversed in all three temperatures. These results suggest
that bead formation due to cold-shock is a reversible
process, at least at the earlier stages of adulthood. We
also investigated whether culture temperature impacts
the severity of bead formation due to cold-shock. Our
data suggested that populations cultured at lower tem-
peratures experience less drastic morphological changes,
while those cultured at higher temperatures undergo
more severe damage.

Finally, we use our deep phenotyping approach to
predict the biological status of nematodes based on
46 metrics extracted from the images. We tested mul-
tiple algorithms (SVM, KNN, SDE, and logistic
regression) to classify young and old adults, cold-
shocked and non-shocked nematodes, and cold-
shocked and aged worms. These models achieved ~
85% classification accuracy, indicating distinct beading
patterns result from different stressors. Importantly,
this classification method, which relies on multiple
descriptive metrics of beading patterns, enables dee-
per exploration of the relevant parameters that de-
scribe the biological status of the neuron and its
particular beading pattern. These promising results
suggest that this approach can be used in future stud-
ies to characterize beading patterns associated with
other conditions or environmental stressors. While
the nature of the beads is still unclear, this approach
will be crucial in understanding their role, compos-
ition, and generation mechanisms, by applying it in
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genetic or drug screens, and to test the beading pat-
terns formed under other conditions.

In this work, we developed a computer-based compre-
hensive pipeline to study the dynamics of PVD morpho-
logical changes in a high-content, automated manner.
Our quantitative analysis enabled interrogating the mor-
phological changes that PVD undergoes under different
scenarios, leading to deeper understanding of neuronal
degeneration. Through this deep phenotyping pipeline,
we identify a new environmental stressor (cold-shock)
that induces morphological changes characterized by
beading and reveal distinct neurodegeneration patterns
induced by aging. The presented results are evidence
that this high-content phenotyping technology can be
used to characterize subtle and noisy beading patterns
with differences among stressors unnoticeable to the hu-
man eye. This pipeline is a promising approach to fur-
ther explore the mechanisms underlying of beading in
these and other contexts (such as oxidative stress, diet-
ary restriction, and neurodegenerative disease models),
to understand the differences that lead to distinct aging
and cold-shock-induced morphological changes, and to
identify whether beads are a result of loss of neuronal
integrity or could act as a protective mechanism. In
addition, with minor modifications, this pipeline could
be implemented to investigate beading and protrusion
forming along other neurons such as ALM and PLM.
The application of these quantitative methods can be
further broadened by investigating beading and blebbing
as a result of degeneration [23].

Methods

Worm culture

The C. elegans strain used in this work is NC1686
(wdls51 [F4H12.4::GFP + unc-119(+)]), which expresses
GFP in PVD. All populations were cultured on solid
nematode growth media (NGM) plates. For aging exper-
iments, 12 mg of fluorodeoxyuridine (FUdR) was added
to 1L of media (50 uM). Animals exposed to this con-
centration of FUdR produced non-viable eggs. For cold-
shock experiments, plates without FUdR were used since
experiments took place in 4 days. Age-synchronized pop-
ulations were obtained by extracting eggs from gravid
hermaphrodites using a bleaching solution (1% NaOCl
and 0.1 M NaOH). Eggs were then transferred to NGM
plates seeded with Escherichia coli OP50. M9 buffer (3 g
KH,PO,4, 6g Na,HPO, 5g NaCl, and 1mL of 1M
MgSO, in 1L of water) with 5pM Triton X-100 was
used to transfer worms.

Microscopy

Animals were mounted on 2% agarose pads on glass
slide. Agarose pads were placed at room temperature
overnight before microscopy. A drop of 10mM
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tetramisole in M9 buffer was added for immobilization.
Images were acquired on a Leica DMi8 equipped with a
spinning disk confocal head (CrestOptics X-light V2)
and a Hamamatsu Orca-Fusion camera using a x 63 ob-
jective. The illumination source is a Laser Diode Illu-
minator (89 North LDI). The imaging settings were
maintained constant for all images (exposure time of 60
ms and laser power at 50%). Due to small field of view
provided by the high-magnification x 63 objective (NA =
1.40), two sections of each worm (anterior and posterior
of PVD cell body) were imaged separately to cover larger
area of the body. Images were acquired as z-stacks of 31
slices taken 1um apart. The final raw images used in
this study were maximum projections of the z-stacks
taken at every 1-pm step.

Image segmentation and analysis

The inputs to the Mask R-CNN machine learning algo-
rithm trained for this study were 2048 x 2048 maximum
projection PNG images. Images were preprocessed be-
fore being fed to the algorithm using MATLAB image
processing toolbox (imadjust function) to equalize the
image contrast throughout the dataset. We modified the
Mask R-CNN implementation open-sourced by Matter-
port Inc. under the MIT license [81] using Python3,
Keras [82], and Tensorflow [83]. During training, each
2048 x 2048 x 1 image and its set of corresponding bin-
ary instance masks were split into 9 overlapping tiles of
size 1024 x 1024 x 1. Symmetric padding was used on
the boundary of each 2048 x 2048 x 1 image to ensure 9
tiles of size 1024 x 1024 x 1 were obtained. A total of 19
images of size 2048 x 2048 x 1 were contained in the
training data, and 12 images were contained in the test-
ing data. The 19 images of size 2048 x 2048 x 1 were
each tiled into 9 tiles of size 1024 x 1024 x 1, resulting in
a total of 171 training images of size 1024 x 1024 x 1
with its corresponding instance masks. The 19 training
images contained a total of 1642 beads with correspond-
ing instance segmentation masks, ranging from 6 beads
to 293 beads per image with a median of 65 beads per
image. The 12 images in the testing set contained a total
of 965 beads with corresponding instance segmentation
masks, ranging from 23 to 157 beads per image with a
median of 77 beads per image. The Mask R-CNN head
was trained for 20 epochs, and the entire model was
trained for 400 epochs, starting from pre-trained Ima-
geNet weights. The training data were augmented inline
during training using random combinations of left-right
and up-down flips, 90° rotations, and affine shearing.
From the 171 training images, approximately 20% (34
images) were held out as a validation set used to com-
pute a validation loss. The model with the lowest valid-
ation loss after 400 epochs was used for predicting
instance masks. Importantly, our ability to train a deep
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neural network for instance segmentation on only 171
training images relied on leveraging a combination of
transfer learning with pre-trained weights and data aug-
mentation. The strong use of data augmentation was ob-
served to enable robust training on only a few training
samples in previous deep learning models, e.g., the sem-
inal work on the U-net architecture [50]. We note that
we also experimented with Gaussian blur and contrast
augmentations, but found that random rotations and
shearing were sufficient for our training dataset, likely
because the combination of microscopy parameters and
the use of the imadjust function for contrast adjustment
ensured uniform image sharpness and brightness across
all experiments. The use of inline augmentations over
420 epochs resulted in an effective training set size of
~ 57k images containing a total of ~ 552k beads with
corresponding instance masks, which were used to train
the Mask R-CNN model parameters (~47.8 million).
The trained Mask R-CNN model was used to predict
instance masks by similarly tiling the testing images.
Predictions were made sequentially on 9 tiles from the
top left to the bottom right of each image, and newly
predicted instance masks were kept only if they did
not overlap with any previously predicted mask by
more than 30%. Only objects yielding a predicted
probability greater than 0.7 of being in the foreground
or “bead” class were kept. The threshold of 0.7 was
chosen based on optimization of the precision metric
(see the “Training the Mask R-CNN algorithm to perform
complex image segmentation” section) on the training
dataset. The binary masks acquired by performing image
segmentation using the Mask R-CNN were then coupled
with raw images and fed to secondary MATLAB-based
algorithm to extract metrics describing the morphology of
neuronal beads.

MATLAB algorithms for feature extraction is publicly
available on github: github.com/asanmiguel/Beading

Aging assay

Eggs extracted from gravid hermaphrodites were trans-
ferred to a seeded plate and maintained at 20 °C until
the population reached late L4 stage and then trans-
ferred to an FUdR plate. FUdR plates were checked daily
to ensure no viable eggs or progeny were produced.
During the first 7-8 days of adulthood, nematodes were
transferred to a fresh FUdR plate on a daily basis to pro-
vide worms with sufficient food specially during their
early adulthood. Every 2 days, a subset of nematodes was
picked to perform high-resolution microscopy.

Cold-shock assay

The cold-shock experiments were designed to be con-
ducted in ~ 4 days, which included pre/post-cold-shock
microscopy and rehabilitation. For the first two cold-
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shock assays, eggs extracted from gravid hermaphrodites
were transferred to NGM plates and cultured for 4-5
days at 20 °C until they reach day 2 of adulthood, when
pre-cold-shock microscopy was performed. Cold-shock
was performed by transferring plates to a 4 °C refriger-
ator for the designated amount of time. Plates were then
placed at room temperature for 1h before performing
post-cold-shock microscopy. This hour-long rehabilita-
tion allowed nematodes to regain their mobility. For the
tests where rehabilitation was needed, plates were trans-
ferred to designated temperature (15°C, 20°C, and
25°C) for 1 day before post-rehabilitation microscopy
was performed. For the pre-cold-shock culture
temperature effect assay, nematodes were cultured at
20 °C until reaching young adulthood. Subsequently, the
three populations were transferred to 15°C, 20°C, and
25°C incubator and cultured for 3.5, 2.5, and 1.5 days
before performing pre-cold-shock microscopy on each
population (to ensure all three samples reach the same
developmental stage). Populations experienced 16h of
cold-shock at 4 °C prior to post-cold-shock microscopy.
The samples were then transferred back to the
temperature they were cultured at before cold-shock for
1 day to examine the post-shock recovery.

Principal component analysis and classification

Principal component analysis (PCA) based on correlation
was performed using JMP Pro 14 software. For this analysis,
a dataset comprised of 150 images (half from animals youn-
ger than 4 days and half from animals older than 4 days
old) was generated. All 46 metrics extracted from images
were incorporated in the analysis. The first two principal
components explained 46% of the variance. Classification of
biological status was conducted using MATLAB Classifica-
tion Learner App. For all training sessions, all 46 metrics
extracted from images were incorporated to train the
models, and used 5-fold cross-validation was carried out. A
separate validation set was used to test performance.
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