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a b s t r a c t 

Number of well-known contagious diseases exist around the world that mainly include HIV, Hepatitis B, 

influenzas etc., among these, a recently contested coronavirus (COVID-19) is a serious class of such trans- 

missible syndromes. Abundant scientific evidence the wild animals are believed to be the primary hosts 

of the virus. Majority of such cases are considered to be human-to-human transmission, while a few 

are due to wild animals-to-human transmission and substantial burdens on healthcare system follow- 

ing this spread. To understand the dynamical behavior such diseases, we fitted a susceptible-infectious- 

quarantined model for human cases with constant proportions. We proposed a model that provide better 

constraints on understanding the climaxes of such unseen disastrous spread, relevant consequences, and 

suggesting future imperative strategies need to be adopted. The main features of the work include the 

positivity, boundedness, existence and uniqueness of solution of the model. The conditions were derived 

under which the COVID-19 may extinct or persist in the population. Sensitivity and estimation of those 

important parameters have been carried out that plays key role in the transmission mechanism. To op- 

timize the spread of such disease, we present a control problem for further analysis using two control 

measures. The necessary conditions have been derived using the Pontryagin’s maximum principle. Param- 

eter values have been estimated from the real data and experimental numerical simulations are presented 

for comparison as well as verification of theoretical results. The obtained numerical results also present 

the verification, accuracy, validation, and robustness of the proposed scheme. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

On the basis of genetic properties the coronaviranae family 

omprises of four genera, which include genus Betacoronavirus, 

enus Gammacoronavirus and genus Deltacoronavirus etc., [1] . 

NA genome of the coronavirus is the largest RNA among the 

ll reported virus RNA ranging from 26 to 32 kb [2] . The coron-

virus can infect aves reptiles mammals including homo sapiens. 

he coronavirus mainly infect subclinical [1–3] . The severe respira- 

ory syndrome (SARS-CoV) and Middle East respiratory syndrome 

oronavirus (MERS-CoV) are zoonotic pathogens which are related 

o the genus of Betacoronavirus causing severe respiratory infec- 

ions in man. The COVID-19 can rapidly adapt to the new host and 

cological niches and attain the tendency for genetic recombina- 

ion and strengthen the inherently mutation rate of typical RNA 

iruses [4,5] . The typical structural representation of the COVID-19 
∗ Corresponding author. 
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s shown in Fig. 1 highlighting various segments of proteins namely 

-Protein, S-Protein, M-Protein, and HE-Protein [3] . 

Not yet the definite source of this virus is still under consid- 

ration. Apart, the infections in family and health workers clus- 

ers confirm the spread from human to human, while the mood of 

ransmission is still open for confirmation. However, on January 21, 

020, WHO approved human to human transmission [3,5,6] . 

Till March 16, 2020, a total of 81,009 confirm cases were re- 

orted in Mainland China due to pneumonia/COVID-19 and the 

ame time new patients were also reported worldwide including 

hailand, South Korea, Japan, United Kingdom, USA, India etc. The 

OVID-19 appeared to cause mild from viral pneumonia with low 

apability from person to person transmission which is different 

rom SARS-CoV [4] . The attitude behind this maybe because of 

he recombination within receptor-binding of glycoprotein of the 

irus originated form the snake, wildlife or from both. Accord- 

ngly, the COVID-19 will likely be attenuated upon infection to hu- 

ans. Still the concern about the adaptation in humans may ac- 

uire more competence to efficiently replicate and provide fea- 

ible route transmit rapidly via close contacts with the infected 

odies [7] . 

https://doi.org/10.1016/j.chaos.2020.110286
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2020.110286&domain=pdf
mailto:stslyj@mail.sysu.edu.cn
https://doi.org/10.1016/j.chaos.2020.110286
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Fig. 1. Structure of COVID-19 [3] . 
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In order to identify the mechanism from which CoVs infected 

atients are passing, we developed a flow diagram in Fig. 2 . In the

rst step, an infected patient is identified. Further, we will use any 

raceable app to track back the record of locations recently visited 

y the positively diagnosed patients. For this purpose, CDR analy- 

is can be used with minimum 2 − 3 weeks of records. Followed 

y this, the awareness about this disease will be increased among 

he public. For this aim, we shall spread the news of the result 

f the second step through social media platforms such as apps. 

t will also lead to further trace the chain of the infected people. 

urthermore, we will use any easiest and possible method to get 

he chain of people who interacted with patient and the places 

isited by them. The identified confirmed coronavirus infected pa- 

ients will comply with strict health and security monitoring. Fi- 

ally, the same strategy shall be used for all infected patients. 

To properly know the mechanism of transmission and hence 

ontrol the COVID-19 mathematically, we will formulate a model 

ith the help of available literature. The current study is actually 

ivided into three main parts; the statistic, dynamic and control. 

n the first part, we just studied the qualitative aspects of the dis- 

ase and estimated the key rates form the real data. In the dynam- 
Fig. 2. COVID-19 patients ident

2 
cs part, the authors have tried to answer questions like when the 

isease will dies out of the Hubie province? When does it will per- 

ist in the population? Which parameters are more responsible for 

he disease spreading? Mathematically, we will calculate the possi- 

le equilibria of the model and its stability analysis will be carried 

ut using the methods of linearization, the Lyapunov theory and 

eometrical approach. The last part is devoted to control theory of 

OVID-19. In this part, we have chosen two control measures and 

ormulated a control problem for further mathematical analysis. To 

btain an optimal control problem along with characterization of 

ontrol variables, using the Pontrygin’s principle. The obtained an- 

lytical results and real data will be compared with numerical so- 

utions using standard numerical method. 

Formal organization of the manuscript are as: In the 2nd sec- 

ion, the statistics analysis of Coronavirus (COVID-19) will be pre- 

ented. The data to be used for the study is till March 2, 2020. 

e proposed the Coronavirus (COVID-19) model in Section 3 using 

he previous knowledge on epidemic modeling. Further, we delib- 

rate the properties of existence, positivity, boundedness of solu- 

ion to the problem and biologically feasibility. In Section 4 , the 

eproductive number will be calculated and it will be used for an- 

lyzing both local and global behavior of the disease free state. 

he dynamics with local properties as well as global properties 

round endemic state will be carried out in Section 5 . Also, lo- 

al sensitivity analysis will be a part of this section. In Section 6 ,

e will present numerical simulation for supporting theoretical re- 

ults related to dynamical behavior of the problem under discus- 

ion. Section 7 is devoted to the formulation of the optimal con- 

rol problem, development of suitable objective functional, exis- 

ence of control variables, optimality condition and characteriza- 

ion of the control variables. The numerical results will be derived 

oth for control and without control problems and a comparison 

ay be presented between real data and the obtained findings. Fi- 

ally, Section 8 and 9 will be presented which are discussion and 

onclusion of the study, respectively. 

. Statistical analysis of COVID-19 

The 2019 novel coronavirus (COVID-19) was identified by us- 

ng the next-generation sequencing. Until 28th January,2020, about 

900 confirmed cases and about 90 0 0 suspected cased were re- 
ification and its protocol. 
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Fig. 3. Daily new number of epidemiological curve of COVID-19 (infected, deaths, recovered) worldwide. 
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orted via Chinese authorities due to COVID-19 in various region 

f Mainland China [7] . In the same time various cases of COVID-19 

ave been reported in other countries like Italy, Iran, Japan, Spain, 

SA, Germany, South Korea and Singapore etc. The medical worker 

nd family member were also reported infected causing human to 

uman transmission upon exposure to infected person of COVID- 

9. The usual symptoms of novel COVID in an infected subject are 

igh fever, some had dyspnea, while the chest radiographs reveals 

nvasive lesions in lungs [5–7] . The epidemiological curve in Fig. 3 

or the worldwide case reported and upon data implementation, 

an suggests the trend of infected, death and recovered cases from 

OVID-19. 

On December 31, 2019 Wuhan health authority release a pub- 

ic notice about the outbreak after confirmation, with no evidence 

rom human to human transmission of the virus and suggest that 

he disease is preventable and controllable after implementing 

roper precautionary measurements while going out. The WHO 

as also formally informed about the outbreak shortly [7] . Later 

n January 20, 2020 scientists from the China’s National Health 

ommission expressed their potential from one human to another 

pon the confirmation of two cases in Guangdong, upon the visit 

f infected family visited to Wuhan. Later the Wuhan authorities 

lso announced new measurements for the control and prevention 

f this epidemic by canceling Chinese New Year celebrations, and 

tart examine of body temperature upon traveling in public trans- 

ort on 14th January, 2020. Beside all these for the general public 

afeguard a quarantine period was introduce on January 23rd, 2020 

nd lock-down Wuhan was initiated [7,8] . 

On January 26th, 2020, a high level tasked force was initiated 

or the prevention and control of newly rise epidemic by COVID-19, 

hich decided to implement new measurements for the control 

nd prevention aiding extension of spring festival holidays [9] . Be- 

ides on 1st February, Huanggang, Hubei authorities permitted sin- 

le person for purchasing necessary household items on alternative 

ays. Then same measurements was implemented in other parts of 

he Mainland China. Till 20th of February, 2020, the number of re- 

orted cases were 75,465 in China according to NRS [10,11] . 

NRS updated the record on daily basis for the cumulative con- 

rmed, as well as suspected, dead and new cases. Beside Hubie, 

ach province hold a media talk at 1300 hr daily and update about 

he CoVID-19 and compare with the previous day [10,11] . From 
3 
ig. 4 a, the curves for epidemics are drawn with the help of In- 

ectious Disease Information System (IDIS) data China’s National, 

hich need every case of covid and therefore have been reported 

lectronically by authorities immediately after diagnosed. It con- 

ain cases which are reported as asymptomatic and data is updated 

n real time, while individually cases are reported and downloaded 

fter every 2400 hr . Fig. 4 b represents the epidemiological curve 

f the reported cases of Hubei province. The curves includes the 

raphical presentation of the infected, death and quarantine cases 

5–7] . 

. Corona model formulation 

We discuss transmission dynamics of the novel coronavirus 

 mathematical model according to the component of the virus 

ransmittal [12–14] . We subdivide the human host populace ( T ( t ))

n three groups: susceptible individuals S ( t ) as vulnerable for the 

nfection; infected I ( t ) i.e., confirmed infected; Q ( t ) those who have

ontact history with an infectious individual and may or may not 

e infected with COVID-19 and whose activities have been re- 

tricted for a specific period of time. SIQ models are appropriate 

o model COVID-19 as quarantine destabilizes the epidemic and 

ead to sustained oscillations in the dynamics of the disease. The 

OVID-19 model whose the transmission structure is depicted in 

he Fig. 5 . 

Moreover, we also put some assumptions before presenting the 

roposed model in the following form: 

[ a 1 .] All parameters as well as variable and state variables are 

positive as well as non-negative respectively. 

[ a 2 .] The susceptible agents goes to the infection classes and 

there is a constant inflow into the susceptible population. 

[ a 3 .] Initially infected or suspected people move to quarantined 

class and confirmed cases from quarantined come back to 

the infected compartment. 

Keeping in view the 5 and assumptions a 1 − a 3 we can describe 

he dynamics of COVID-19 in Hubie in the form of the system of 

hree differential equations: 

d 
dt 

S(t) = � − γ S(t) I(t) − d 0 S(t) , 
d 
dt 

I(t) = γ S(t) I(t) − (d 0 + k + η) I(t) + σQ(t) , 
d Q(t) = ηI(t) − (d 0 + μ + σ ) Q(t) , 

(1) 
dt 
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Fig. 4. The daily and total infected, death, recovered and quarantined cases. 

Fig. 5. Flowchart of our proposed model (1) . 

Table 1 

Model parameters with detailed description. 

Notation Parameters description 

� Recruitment rate 

γ Disease transmission rate 

d 0 Natural death rate 

η Rate of getting quarantine 

μ Disease-related death rate in quarantined individuals 

σ Rate at which quarantined people getting infection 

k Disease death in the infected group 
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ith initial conditions 

(0) = S 0 > 0 , I(0) = I 0 ≥ 0 , Q(0) = Q 0 ≥ 0 , (2)

here the parameters detail and its associated description are ex- 

lained in the table. 1 given below. 

We discuss the well possedness of the proposed model in the 

orm of the following axioms. 

roposition 1. The model (1) in orthant R 3 + is invariant. 

roof. Let Y = (S, I, Q ) T , then system (1) becomes 

dY (t) = LY + C, (3) 

dt 

4 
here 

 = 

( −(γ I(t) + d 0 ) 0 0 

γ I(t) −(d 0 + k + η) σ
0 η −(d 0 + μ + σ ) 

) 

, 

 = 

( 

�
0 

0 

) 

. 

Clearly, C ≥ 0 and L preserve the axioms of Metzler matrix, so 

ystem (1) is invariant in R 3 + . �

roposition 2. The solution of (1) i.e., ( S, I, Q ) with (2) are positive. 

roof. It could be clearly noted that the solution of the first equa- 

ion of system (1) becomes 

dS(t) 

dt 
+ (γ I(t) + d 0 ) S(t) = �. (4) 

The solution of Eq. (4) is 

(t) = e −
∫ t 

0 (γ I(t)+ d 0 ) dt 

(
S 0 + �

∫ 
e 

∫ t 
0 (γ I(t)+ d 0 ) dt dt 

)
, (5) 

 t > 0, which shows that S ( t ) > 0. Similarly the second equation

f (1) gives the form 

(t) = e −
∫ t 

0 (d 0 + k + η−γ S(t)) dt 
(

I 0 + σ

∫ 
Q(t ) e 

∫ t 
0 (d 0 + k + η−γ S(t)) dτ dt 

)
, 

hich implies that I ( t ) ≥ 0. Continuing the same process it is 

ery simple to prove that Q ( t ) is also positive. Thus ( S, I, Q ) is

onnegative. �

roposition 3. The solution i.e., ( S, I, Q ) of the proposed problem is

iven by (1) –(2) is bounded. 

roof. Since 

 (t) = S(t) + I(t) + Q(t) . (6) 

The differentiation of the above Eq. (6) gives 

dT 

dt 
+ d 0 T = � − μQ − kI. (7) 

Clearly, dT 
dt 

+ d 0 T ≤ �. Solving we obtain 

 < T (t) ≤ �

d 0 
+ T (0) e −d 0 t , (8) 

hich gives that 0 < T (S, I, Q ) ≤ �
d 

as t → ∞ . �

0 
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roposition 4. If T (0) ≤ �
d 0 

, then the proposed problem is stated by 

1) –(2) is a well-defined dynamical system the region is given by 

= 

{
(S, I, Q ) ∈ R 

3 
+ : 0 < T ≤ �

d 0 

}
, (9) 

hich is biologically feasible. Moreover every solution in � remains 

n � for t ≥ 0 . 

roof. It is very much clear that all the states variables of the 

roposed problem are nonnegative, so the problem as stated by 

1) –(2) is well-posed and biologically feasible. From T (0) ≤ �
d 0 

, we 

oncludes that T (t) ≤ �
d 0 

. So every solution of (1) along with (2) in

remains in �. �

. Basic reproductive number and stability of disease-free 

quilibrium 

Let

 = d 0 + k + η, b = d 0 + μ + σ. (10)

The disease-free state ( E 1 ) takes the form 

 1 = (S 1 , 0 , 0) , S 1 = 

�

d 0 
. (11) 

This disease free state is used to calculate the threshold pa- 

ameter ( R 0 ), also called the basic reproduction number i.e., the 

verage of secondary number of infections, see for detail [15–18] . 

oreover, the threshold parameter ( R 0 ) is used in the calculating 

f the endemic state. We follow the Watmough et al., method for 

he purposes of calculating the threshold parameter, whose detail 

s given in [14] . We know that I ∗ > 0, so 

 

∗ = 

γ�b − d 0 ab + d 0 ση

ab − ση
. 

By rearranging the terms, we can write I � in the following way 

 

∗ = 

b�γ − d 0 

(
b(d 0 + k ) + η(d 0 + μ) 

)
γ
(

b(d 0 + k ) + η(d 0 + μ) 
) = 

d 0 
γ

(
R 0 − 1 

)
. (12) 

The term R 0 used in (12) and so called the threshold number 

r threshold quantity which is given by 

 0 = 

b�γ

d 0 

(
b(d 0 + k ) + η(d 0 + μ) 

) . (13) 

emma 1. If R 0 < 1 then model (1) is stable locally at DFE (E 1 ) de-

ned in (11) . 

roof. The three eigen-values of the Jacobean matrix at DFE 

re λ1 = −d 0 , λ2 = −b and λ3 = 

b(d 0 + k )+ η(d 0 + μ) 
b 

(
R 0 − 1 

)
− ησ

b 
. 

learly, the first two eigenvalues are negative, whereas, the third 

igenvalue is negative only if R 0 < 1 . Hence the proof. �

heorem 1. Assume that R 0 < 1 , then model (1) is stable globally at

FE (E 1 ) (11) . Otherwise unstable. 

roof. We define a function is given by 

 (t) = S 1 

(
S 

S 1 
− ln 

S 

S 1 

)
+ I(t) + Q(t) . 

Differentiating F ( t ), we get 

dF 
dt 

= 

(
dS 
dt 

− S 1 
S 

dS 
dt 

)
+ 

dI 
dt 

+ 

dQ 
dt 

= − S 1 dS + 

dS + 

dI + 

dQ . 

(14) 
S dt dt dt dt 

5 
Then 

dF 

dt 
= −S 1 

S 

(
� − γ S(t) I(t) 

−d 0 S(t) 
)

+ � − d 0 (S + I + Q ) − μQ − kI. 

The simplification and some re-arrangements gives 

dF 

dt 
= − (� − d 0 S) 

2 

d 0 S 
+ 

b�γ − d 0 b(d 0 + k ) 

bd 0 
I − (d 0 + μ) Q . 

As Q = 

η
b 

I, thus 

dF 
dt 

= − (�−d 0 S) 
2 

d 0 S 
+ 

b�γ −d 0 b(d 0 + k ) 
bd 0 

I − η(d 0 + μ) 
b 

I, 

= − (�−d 0 S) 
2 

d 0 S 
+ 

b�γ −d 0 b(d 0 + k ) −d 0 η(d 0 + μ) 
bd 0 

I, 

= − (�−d 0 S) 
2 

d 0 S 
+ 

b(d 0 + k )+ η(d 0 + μ) 
b 

(
R 0 − 1 

)
I. 

Thus, when R 0 < 1 , then 

dF 
dt 

< 0 . Also, dF 
dt 

= 0 iff S(t) = S 1 ,

(t) = 0 and Q(t) = 0 , which proves the conclusion. �

. Existence and stability of endemic equilibrium 

We discuss the endemic state (EE) in this section. To prove the 

tability of model (1) at endemic equilibrium, let E ∗
2 

is the EE and 

hen by the use of Eq. (10) and Eq. (13) we arrive 

 

∗
2 = ( S ∗, I ∗, Q 

∗) , (15) 

here 

S ∗ = 

ab−ση
γ b 

= 

�
d 0 R 0 

, 

I ∗ = 

γ�b−d 0 ab+ d 0 ση
ab−ση

= 

d 0 
γ

(
R 0 − 1 

)
, 

Q 

∗ = 

γ�bη−d 0 abη−d 0 ση2 

γ ab 2 −γ σbη
= 

d 0 η
bγ

(
R 0 − 1 

)
. 

Clearly, the relations (15) exists if R 0 > 1 . 

emma 2. If R 0 > 1 , then (15) exists for the problem as stated by

1) . 

The local dynamics at EE (15) is discussed via the following the- 

rem. 

heorem 2. If R 0 > 1 , then system (1) is locally asymptotically sta- 

le at the endemic equilibrium E ∗
2 

defined in (15) . Otherwise, (1) is 

nstable. 

roof. Let J ∗ is the Jacobian matrix of (1) at E ∗2 (15) , then 

 

∗ = 

( −γ I ∗ − d 0 −γ S ∗ 0 

γ I ∗ γ S ∗ − a 0 

0 η −b 

) 

. (16) 

or obtaining the characteristic polynomail, we set | J ∗ − λA | = 0, 

here A is identity matrix. Thus 

et 

( −γ I ∗ − d 0 − λ −γ S ∗ 0 

γ I ∗ γ S ∗ − a − λ 0 

0 η −b − λ

) 

= 0 . (17) 

xpansion of the determinant in (17) gives us 

| J ∗ − λA | = 

−(b + λ) 
[ 

− (γ I � + d 0 + λ)(γ S � − a − λ) + γ 2 S � I � 
] 

= 0 , 

mplies that 

b + λ) 
[ 
λ2 − (γ S � − a − γ I � − d 0 ) λ + aγ I � − d 0 γ S � + ad 0 

] 
= 0 . 
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t

r

w

p

t

t

F

G

e noted that one of the eigenvalue of the matrix is λ1 = −b. For

alculating the values of other eigenvalues, we will consider the 

uadratic equation 

2 − (γ S � − a − γ I � − d 0 ) λ + aγ I � − d 0 γ S � + ad 0 = 0 . 

y using the values of the endemic equilibrium, we ca write the 

bove equation in the form 

λ2 + 

ση + d 0 bR 0 

b 
λ

+ 

d 0 
b 

(
b(d 0 + k ) + η(d 0 + μ) 

)(
R 0 − 1 

)
+ σηR 0 = 0 (18) 

ow by Descartes’ rules of sign, if R 0 > 1 then equation (18) has

wo negative real roots or complex with negative real parts. Hence 

ll of the eigenvalues are negative and hence the theorem. �

heorem 3. Assumption of R 0 > 1 guarantees that endemic equilib- 

ium E ∗2 = (S ∗, I ∗, Q 

∗) of model (1) is globally asymptotically stable

nd unstable otherwise. 

roof. Let J 2 and J 
| 2 | 
2 

be the Jacobian matrix and second additive 

ompound matrix of the system containing only the model (1) and 

sing Eq. (10) . Then 

 2 = 

( −γ I(t) − d 0 −γ S(t) 0 

γ I(t) γ S(t) − (d 0 + k + η) σ
o η −(d 0 + μ + σ ) 

) 

, 

 

| 2 | 
2 

= 

( −γ I(t) − d 0 + γ S(t) − a σ 0 

η −γ I(t) − d 0 − b −γ S(t) 
0 γ I(t) γ S(t) − a − b 

) 

. 

Next, we will take into account the function P (χ ) = P (S, I, Q ) =
iag 

{
S 
I , 

S 
I , 

S 
I 

}
, then P −1 (χ ) = diag 

{
I 
S , 

I 
S , 

I 
S 

}
. By considering the 

erivative P f ( χ ), we have 

 f (χ ) = diag 

{
˙ S 

I 
− S ̇ I 

I 2 
, 

˙ S 

I 
− S ̇ I 

I 2 
, 

˙ S 

I 
− S ̇ I 

I 2 

}
. 

hus, P f P 
−1 = diag 

{ 

˙ S 
I −

˙ I 
I , 

˙ S 
I −

˙ I 
I , 

˙ S 
I −

˙ I 
I 

} 

and PJ 
| 2 | 
2 

P −1 = J 
| 2 | 
2 

. Taking 

 = P f P 
−1 + PJ 

| 2 | 
2 

P −1 . 

or simplicity, we write B , such that 

 = 

⎛ 

⎝ 

˙ S 
I 
− ˙ I 

I 
0 0 

0 

˙ S 
I 
− ˙ I 

I 
0 

0 0 

˙ S 
I 
− ˙ I 

I 

⎞ 

⎠ + 

( −γ I(t) − d 0 + γ S − (t) − a 
η −
0 

 

⎛ 

⎝ 

˙ S 
I 
− ˙ I 

I 
− γ I(t) − d 0 + γ S(t) − a σ

η
˙ S 
I 
− ˙ I 

I 
− γ I(t) − d 0 − b 

0 γ I(t) 
˙ S 

S 
−

 

(
X 11 X 12 

X 21 X 22 

)
, 

here 

X 11 = 

˙ S 
I 
− ˙ I 

I 
− γ I(t) − d 0 + γ S(t) − a, 

X 12 = 

(
σ 0 

)
, X 21 = 

(
0 

0 

)
, 

 22 = 

(
˙ S 
I 
− ˙ I 

I 
− γ I(t) − d 0 − b −γ S(t) 

γ I(t) 
˙ S 

S 
− ˙ I 

I 
+ γ S(t) − a − b 

)
. 

Let us assume that ( X 1 , X 2 , X 3 ) be a vector in R 

3 with the norm

 · ‖ defined by 

 X 1 , X 2 , X 3 ‖ = max {‖ X 1 ‖ , ‖ X 2 ‖ + ‖ X 3 ‖} . 

6 
σ 0 

) − d 0 − b −γ S(t) 
γ I(t) γ S(t) − a − b 

) 

, 

0 

−γ S(t) 

 γ S(t) − d 0 − a − b 

⎞ 

⎠ , 

onsidering the Lozinski measure � ( B ) [19,20] with endowed norm 

efined above 

 (B ) ≤ sup { g 1 , g 2 } = sup { � (X 11 ) + ‖ X 12 ‖ , � (X 22 ) + ‖ X 21 ‖ } , 
here g i = ‖ X i j ‖ + � (X ii ) for i, j = 1 , 2 and i 
 = j , which implies

hat 

 1 = ‖ X 12 ‖ + � (X 11 ) , g 2 = ‖ X 21 ‖ + � (X 22 ) , 

here 

 (X 11 ) = 

˙ S 
S 

− ˙ I 
I 
− γ I + γ S − 2 d 0 − k − η, 

 (X 22 ) = 

˙ S 
S 

− ˙ I 
I 
− 2 d 0 − μ − σ. 

ince, ‖ X 12 ‖ = σ and ‖ X 21 ‖ = η, therefore, g 1 and g 2 becomes 

 1 = 

˙ S 
S 

− ˙ I 
I 
− γ (I − S) − 2 d 0 − k − γ − k + σ, 

 2 = 

˙ S 
S 

− ˙ I 
I 
− 2 d 0 − μ − γ + η. 

(19) 

hus, we can also write Eq. (19) as 

 1 ≤ ˙ S 
S 

− 2 d 0 − k − η + σ, 

 2 ≤ ˙ S 
S 

− 2 d 0 − μ − η + σ. 

s a result, we get 

 (B ) ≤ sup { g 1 , g 2 } , 
≤ sup { ˙ S 

S 
− 2 d 0 − min { k + η − σ } ≤ ˙ S 

S 
− 2 d 0 , 

i f k + η > 0 and μ + σ > η. 

inally 

¯
 = lim 

t→∞ 

sup 

1 

t 

∫ t 

0 

� (B ) ds ≤ −2 d 0 < 0 , 

o 

¯
 ≤ −2 d 0 < 0 . 

�

Which proves the conclusion, that the proposed model is glob- 

lly stable around the endemic equilibrium. 

.1. Local sensitivity analysis 

The local sensitivity analysis discuss the relation between the 

hreshold quantity (basic reproductive number) and the model pa- 

ameters. To find these indices, we use the formula Z � = 

�
R 0 

∂R 0 
∂�

, 

hich was used by many authors, e.g., see [21,22] . This analysis 

rovides the changes in the values of the epidemic parameters to 

he value of the threshold parameter and then to the disease con- 

rol and spreading. For simplicity, we suppose that 

 = b�γ = �γ d 0 + �γμ + �γσ, 

 = d 0 (b(d 0 + k ) + η(d 0 + μ)) = d 3 0 + d 2 0 k + d 2 0 μ + d 0 μk 

+ d 2 0 σ + d 0 kσ + d 2 0 η + ημd 0 
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Table 2 

Values and sources of parameter used in numer- 

ical simulation. 

Parameter Value Source 

� 0.03805333333 fitted 

γ 0.00594474 estimated 

d 0 0.007121000000 [3] 

η 0.144211141 estimated 

ν 0.007121000000 [3] 

σ 0.0052281 estimated 

k 0.027864676 estimated 
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e perform the local sensitivity analysis using Z � = 

�
R 0 

∂R 0 
∂�

along 

ith the following parameter’s values � = 0 . 03805333333 , 

= 0 . 144211141 , γ = 0 . 00594474 , d 0 = 0 . 007121000000 ,

= 0 . 0 071210 0 0 0 0 0 , k = 0 . 027864676 , and σ = 0 . 0052281 .

e get the following sensitivity indices 

 σ = 

σ
R 0 

∂R 0 

∂σ
= 

σ
F ( 

G (�γ ) −F (d 0 k + d 2 0 ) 

G 
) = −0 . 03348 , 

 γ = 

γ
R 0 

∂R 0 

∂γ
= 

γ
F (�d 0 + �μ + �σ ) = 1 , 

 η = 

η
R 0 

∂R 0 

∂η
= − η(d 2 0 + μd 0 ) 

G = −0 . 7509 , 

 μ = 

μ
R 0 

∂R 0 

∂μ
= 

μ
F ( 

G (�γ ) −F (d 0 k + d 2 0 + ηd 0 ) 

G 
) = −0 . 0052 

(20) 

It is worthy noted that Eq. (20) demonstrates the indices of η, 

, γ , μ. On the basis of these it is easy to find the essential param-

ters related to the disease dominance and spreading. The above 

quations states that γ is proportional to threshold parameter in a 

irect way. Therefore increasing in this parameter leads to increas- 

ng the value of threshold quantity (R 0 ) . On the other side η, μ
nd σ are proportional to (R 0 ) in inverse direction. This indicate 

hat increase will make decrease in the value of threshold quan- 

ity. Thus it is easy to formulate a control analysis on the basis of 

bove sensitivity analysis 

. Simulations on dynamical results of novel coronavirus 

COVID-19) 

We carry out the simulation of the model to verify the previous 

nalytical results with the help of graphical representations. We 

se 4th order Runge-Kutta technique. The application of Runge- 

utta method of order 4th on the proposed model leads to the 

ollowing system 

S i +1 −S i 

n 
= � − γ S i I − d 0 S 

i +1 , 
I i +1 −I i 

n 
= γ SI i − (d 0 + k + η) I i +1 + σQ 

i , 
Q i +1 −Q i 

n 
= ηI i − (d 0 + μ + σ ) Q 

i +1 , 

(21) 

Algorithm 

Step 1. For S(0) = 0 , I(0) = 0 , Q(0) = 0 , 

Step 2. For i = 1 , 2 , 3 , 4 , . . . , n − 1 , 

 

i +1 = S i + 

n �
1+�(γ I i + d 0 ) , 

 

i +1 = I i + 

δQ i 

1+�(d 0 + k + η−γ S i ) 
, 

 

i +1 = Q 

i + �ηI, 

(22) 

Step 3. For i = 1 , 2 , 3 , . . . , n − 1 , writing 

S ∗(t i ) = S ∗, I ∗(t i ) = I ∗, Q 

∗(t i ) = Q 

∗. 

We used the available data from Section 2 and estimated the 

alues of some important parameters like γ , η, σ , k . Whereas, the 

alues of other parameters such as �, d 0 and μ were taken from 

he available sources. Precisely, the following set of parameters is 

onsidered 

 1 = { �, γ , d 0 , η, μ, σ, k } , 
here its corresponding numerical values and sources are pre- 

ented in Table 2 . 
7 
For this set of parameter values, the value of R 0 and S 0 were 

alculated 0.2261469439 and 5.343818752, respectively. The simu- 

ation was carried out for this set of data as shown in Fig. 6 . 

By using the values shown in Table 2 , sample simulation were 

arried out for susceptible population. We have consider four dif- 

erent initial population of susceptible individual, that is, S 0 = 

8 . 498998 , 65 . 498998 , 50 . 498998 , 70.498998 where the popula-

ion was considered in million and 58.498998 million is the ac- 

ual population of the Hubie province. Fig. 6 a shows that all of the 

usceptible population will approach to 5.343818752 irrespective 

f its initial values whenever R 0 < 1 . In the case of R 0 < 1 , each

olution curve S ( t ) almost taking 550 days in order to reach to its

quilibrium value S 0 = 5 . 343818752 . It means that if the we wish

o eliminate the disease from the community, still it will take al- 

ost one and half year. Further, the figures shows that the disease 

ill effect a major portion of the population during the indicated 

ourse of outbreak. 

The dynamics of infected population in case of R 0 < 1 

as plotted in Fig. 6 b for initial infected population I(t) = 

 . 0 010 0 0 actual , 0 . 010 0 0 , 0 . 0510 0 0 , 1 . 010 0 0 millions. It is clear

rom the plot that the if we increase the initially infected people, 

t will markedly contribute to infected population at initial stages. 

owever, the infection may completely eliminated from the com- 

unity after 250 days irrespective of the initial infected popula- 

ion if we kept R 0 < 1 . It means that if we able to reduce the

asic reproduction rate was decreased to less than one, the dis- 

ase will dies out from the province after more than eight months. 

n the same way, we plotted Q ( t ) for different values of Q (0),

.e., 0.0 0 0 0 02 actual, 0.0 0 0 02, 0.042, 2.0 0 0 0 02 millions for R 0 < 1

n Fig. 6 c. During initial period of the infection, quarantine people 

ay be increased if we increased the initial value of Q (0). How- 

ver, in long run (almost 400 days) all of the solution curves Q ( t )

pproaches zero irrespective of its initial values. Thus, for elimina- 

ion of COVID-19 form Hubie it is necessary to keep the value of 

 0 < 1 . During initial phase of outbreak, more people have close 

ontact history with infected so one must quarantine major por- 

ion of the population. However, as the time evolves, the quaran- 

ine people will tend to decline and eventually goes to zero. Fur- 

her, Figs. 6 a- 6 c verify our theoretical findings that the disease- 

ree equilibrium is locally and globally asymptotically stable if and 

nly if R 0 < 1 . 

Next, we assumed the real value of �, i.e., � = 0 . 3805333333 

nd use the same values of other parameters as in Table 2 and 

tudy the dynamical analysis of the model under discussion nu- 

erically. The corresponding values of R 0 and endemic equilib- 

ium was calculated as follows: 

 0 = 2 . 261469439 , S ∗ = 23 . 62985172 , 

 

∗ = 1 . 511070942 , Q 

∗ = 11 . 19220059 . (23) 

The global analysis of all of the classes were presented in Fig. 7 

or R 0 > 1 . 

In Fig. 7 a, we have consider again the same initial population 

f susceptible individual, i.e., 58.498998, 65.498998, 50.498998, 

0.498998 millions, however, the value of R 0 is now greater than 

nity. It is clear from the figure, that the susceptible population 

ill tend to decrease/increase during initial 250 days of the in- 

ection and afterward it will show no effect. That is, in long run 

he susceptible population will stabilize itself and will approaches 

3.62985172. 

Fig. 7 b shows that due to an increase in the initially infected 

eople a sudden increase may be observed later on, i.e., initial 50–

0 days. The infection will increase in first 50 days and afterward 

ecreases gradually. However, using the current epidemic status in 

he province, it is to be noted that the disease will persist in the 
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Fig. 6. The plot shows the dynamics of susceptible, infected and quarantined individuals for different initial population in case of R 0 < 1 . 
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opulation. The disease will attain its endemic status during ini- 

ial 150 days and after that 1.511070942 million infected people 

ill persist in the community if control measures were not im- 

lemented properly. In Fig. 7 c, we plotted sample simulations of 

 ( t ) for different initial value of the state. All of the curves tend to

tabilize itself during initial 300 days. A sudden increase could be 

bserved at early stages and then a gradual decrease in quarantine 

opulation irrespective of the initial population. It is clear from the 

gure that as lim t→∞ 

Q(t) = 11 . 19220059 = Q 

� . These figures sug-

est that the infection will persist in the Hubie province if the cur- 

ent situation remains the same. However, now Chinese data sug- 

est that COVID-19 is well-controlled by Chinese government. 

. Optimal control analysis 

One of the very applied and effective analysis to design the con- 

rol programme for infectious diseases is optimal control theory, 

ee for detail [12,20,22–30] . The optimal control theory will be uti- 

ized to design a control mechanism for COVID-19 on the basis of 

ocal sensitivity analysis. Here our main purposes are: 

• Reducing vulnerability to COVID-19 by isolating susceptible 

population and limiting its movement to only non-dangerous 

zones. This control will be implemented to susceptible popula- 

tion and will be denoted by u ( t ). 
1 

8 
• Reducing COVID-19 infected people via treatment. Our strategy 

is to imposed this control on infected people and amount of 

this control at any time t will be represented by u 2 ( t ). 

• Most importantly we will maximize the size of the class Q ( t ) in

order to reduce the spread of the disease with minimum cost. 

Here it could be noted that it would make sense if the isolation 

f the vulnerable population but the treatment of infected agents 

re taken. For this we modify system (1) by incorporating isolation 

 1 ( t ) for S ( t ) and treatment u 2 ( t ) for I ( t ). So from this it is straight

orward that model (1) becomes a special case control model if 

e let u 1 (t) = 0 (the case of no isolation) and u 2 (t) = 0 (the case

f no treatment). There are various types of representations of the 

ontrol variables in the corresponding system. Majority of the re- 

earchers used (1 − u (t)) I(t) type of representation (like in [31] ), 

hereas, other use u ( t ) I ( t ) (like in [32] ) or r 0 u ( t ) I ( t ) (like in [1]) etc.

n the present study, the authors used the techniques of [32] . For 

inimization purpose, we formulate the objective functional of the 

orm 

J (u 1 , u 2 ) = ∫ T [ 
ξ1 S(t) + ξ2 I(t) − ξ3 Q(t) + 

1 

2 

(
ξ4 u 

2 
1 (t) + ξ5 u 

2 
2 (t) 

)] 
dt, (24) 
0 
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Fig. 7. The plot shows the dynamical behavior of susceptible, infected and quarantine classes for different values of initial population for R 0 > 1 . 
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ubject to 

d 
dt 

S(t) = � − γ S(t) I(t) − d 0 S(t) − S(t) u 1 (t) , 
d 
dt 

I(t) = γ S(t) I(t) − (d 0 + k + η) I(t) + σQ(t) − u 2 (t ) I(t ) , 
d 
dt 

Q(t) = ηI(t) − (d 0 + μ + σ ) Q(t) + S(t ) u 1 (t ) + u 2 (t ) I(t ) , 

(25) 

ith 

 0 > 0 , I(0) = I 0 ≥ 0 , Q(0) = Q 0 ≥ 0 . (26)

n the objective functional (24) , ξ 1 , ξ 2 and ξ 3 are the weights 

onstants. Moreover ξ 4 and ξ 5 are also the positive constants, 

easures the relative cost on isolation and treatment respectively. 

q. (24) has a clear goal: to decrease the number of people who 

re at risk as well as infected persons and maximizing the quaran- 

ined population. Many researchers assumed that the susceptible 

opulation has no concern with the objective functional. However, 

e believed that more susceptible individual means more people 

t risk. The longer the time that a vulnerable individual stays in 

he susceptible state, the longer he or she will be exposed to the 

isease and it is more likely that individual will be infected. By 

inimizing vulnerability to the infection ultimately lead towards 
9 
limination of the disease from the community. That is why we 

ncluded the susceptible population in the objective functional. A 

opulation can be protected from disease in many ways. For exam- 

le, the number of susceptible individuals can be reduced through 

mmunizations, the contact rate can be reduced through quaran- 

ines or public health campaigns, or the removal rate can be in- 

reased through better medical treatment of the sick. In this study, 

e included quarantine as immunization strategy in the model. It 

s worthy to notice that quarantine individuals do not participate 

n the total active population, thus, it should be maximized in any 

ontrol program. We wish to minimize the objective functional, so 

 term with negative sign will be ultimately maximized and the 

ame was reflected in our objective functional in case of Q(t). Thus, 

ur objective is to find (u ∗1 , u 
∗
2 ) such that 

 (u 

∗
1 , u 

∗
2 ) = min { J (u 1 , u 2 ) , u 1 , u 2 ∈ U } , (27) 

ubject to the control system (25) and (26) , where U , the control 

et is as 

 : = { (u 1 , u 2 ) | 0 ≤ u 1 ≤ l 1 , 0 ≤ u 2 

≤ l 2 , u 1 , u 2 is Lebesgue measurable on [0 , T ] } . (28) 

First we show the existence analysis of such controls. 
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.1. Existence 

We prove that there is a solution to problem (24) –(26) , which 

xists. So clearly the control functions are Lebesgue measurable 

nd not negative, therefore with nonnegativity of initial data it 

s very handy to investigate that a solution with the axiom of 

ounded-ness and positivity exists, for example see for more de- 

ail [24–26] . 

Let 

d�

dt 
= A � + X (�) , (29) 

here 

= 

( 

S(t) 
I(t) 
Q(t) 

) 

, 

 = 

( −d 0 − u 2 (t) 0 0 

0 −(d 0 + k + η + u 2 (t)) σ
u 1 (t) u 2 (t) + η −(d 0 + μ + σ ) 

) 

, 

 (�) = 

( 

� − γ S(t) I(t) 
γ S(t) I(t) 

0 

) 

. 

Clearly Eq. (29) shows that it is a nonlinear equation and the 

oefficient are bounded. Now we set 

 (�) = A � + ψ(�) , (30) 

hich satisfies 

 ψ(�1 ) − ψ(�2 ) | ≤ n 1 | S 1 (t) − S 2 (t) | + n 2 | I 1 (t) − I 2 (t) | 
+ n 3 | Q 1 (t) − Q 2 (t) | 

≤ N(| S 1 (t) − S 2 (t) | + | I 1 (t) − I 2 (t) | 
+ | Q 1 (t) − Q 2 (t) | , 

(31) 

here N = max { (n 1 , n 2 , n 3 ) } is free of state variables of (1) . We

lso write 

 G (�1 ) − G (�2 ) |≤ M | �1 − �2 | , (32) 

here M = max { N, ‖ A ‖} < ∞ , which implies that G is uniformly

ipschitz continuous. This from the control functions and non- 

egativity of state variables, it is easy to conclude existence of so- 

ution. 

We show the optimal values of the control variable minimize 

he objective function in the following result. 

heorem 4. There exist optimal values of the controls namely u ∗ = 

u ∗
1 
, u ∗

2 
) ∈ U which is the solution of the control problem (24) –(26) . 

roof. It is already shown that the control and state functions 

re not negative. Further, the set U as stated by Eq. (28) that 

he controls functions are closed as well as convex. Moreover, the 

ounded-ness of system (25) shows that the necessary compact- 

ess holds. It is also to be noted that the state and control func- 

ions within objective functional indicated the convexity of objec- 

ive functional. Hence there exist optimal controls (u ∗
1 
, u ∗

2 
) . �

.2. Optimality conditions 

To show the characterization of the optimal solution to (24) –

26) , we need to define the Lagrangian as well as Hamiltonian for 

he proposed control problem. Let us symbolize x = (S, I, Q ) and 

 = ( u 1 , u 2 ) . Then the Lagrangian L is defined by 

 (x, u ) = ξ1 S(t) + ξ2 I(t) − ξ3 Q(t) + 

1 

2 

(
ξ4 u 

2 
1 (t) + ξ5 u 

2 
2 (t) 

)
, 

nd the associated Hamiltonian function H becomes 

(x, u, λ) = −L (x, u ) + λ · g(x, u ) , 
10 
here λ = ( λ1 , . . . , λ3 ) and g(x, u ) = ( g 1 (x, u ) , . . . , g 3 (x, u ) ) with 

 1 (x, u ) = � − γ S(t) I(t) − d 0 S(t) − S(t) u 1 (t) , 
 2 (x, u ) = γ S(t) I(t) − (d 0 + k + η) I(t) + σQ(t) − u 2 (t ) I(t ) , 
 3 (x, u ) = ηI(t) − (d 0 + μ + σ ) Q(t) + S(t ) u 1 (t ) + u 2 (t ) I(t ) . 

Thus, the Hamiltonian function becomes 

H(x, u, λ) = ξ1 S(t) + ξ2 I(t) − ξ3 Q(t) + 

1 

2 

(
ξ4 u 

2 
1 (t) + ξ5 u 

2 
2 (t) 

)
+ λ1 (t) 

(
� − γ S(t ) I(t ) − d 0 S(t) − u 1 (t ) S(t ) 

)
+ λ2 (t) 

(
γ S(t) I(t) − (d 0 + k + η) I(t) + σQ(t) − u 2 (t ) I(t ) 

)
+ λ3 (t) 

(
ηI(t) − (d 0 + μ + σ ) Q(t) + S(t ) u 1 (t ) + u 2 (t ) I(t ) 

)
. 

(33) 

ext, to find the optimal solution, we use the standard Pontrya- 

in’s Maximum Principle [19,20] , if ( x ∗, u ∗) is an optimal solution

or the proposed control problem (24) –(26) , then there exists a 

on-trivial vector function λ such that the Hamiltonian system 

 

 

 

 

 

dλ(t) 

dt 
= −∂H 

∂x 
(x ∗(t) , u 

∗(t) , λ(t)) , 

∂H(x ∗(t) , u 

∗(t) , λ(t)) 

∂u 

= 0 , 

(34) 

he maximality condition 

(x ∗(t) , u 

∗(t) , λ(t)) = max 
u ∈ [0 ,l 1 ] ×[0 ,l 2 ] 

H(x ∗(t) , u, λ(t)) , (35)

nd the transversality condition 

(T ) = 0 , (36) 

old. 

heorem 5. Let S ∗, I ∗, and Q 

∗ be the optimal values of states vari-

bles associated to the optimal controls (u ∗1 , u 
∗
2 ) for problem (24) –

26) . Then, there exist adjoint variables λi ( t ), i = 1 , 2 , 3 , satisfying 

dλ1 (t) 
t 

= γ I(t) λ1 (t) + d 0 λ1 (t) + u 1 (t) λ1 (t) − γ I(t) λ2 (t) 
−u 1 (t) λ3 (t) − ξ1 , 

dλ2 (t) 
t 

= γ S(t)(λ1 (t) − λ2 (t)) + (d 0 + k + η) λ2 (t) 
+ u 2 (t) λ2 (t) − (η + u 2 (t)) λ3 (t) − ξ2 , 

dλ3 (t) 
t 

= −σλ2 (t) + (d 0 + μ + σ ) λ3 (t) + ξ3 , 

(37) 

with terminal (transversality) conditions 

i (T ) = 0 , i = 1 , 2 , 3 . (38)

oreover, the optimal control functions u ∗1 (t) and u ∗2 (t) are repre- 

ented by 

 

� 
1 (t) = max 

{
0 , min { (λ1 (t) − λ3 (t )) S � (t ) 

ξ4 

, l 1 } 
}

, (39) 

nd 

 

� 
2 (t) = max 

{
0 , min { (λ2 (t) − λ3 (t )) I � (t ) 

ξ5 

, l 2 } 
}

. (40) 

roof. The adjoint system (37) is calculated from equations 

33) with the help of adjoint variables and Pontryagin Principle, 

hile the conditions (38) are the direct consequences of transver- 

ality condition as stated by Eq. (36) . To find the optimal values for 

ontrol functions, differentiating H with respect to the control vari- 

bles and then solving the pair of equations ∂H 
∂u 1 

= 0 and 

∂H 
∂u 2 

= 0 .

eeping in mind the upper and lower bounds of the control mea- 

ures we can present the characterization of the control defined in 

39) –(40) and hence proved. �
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Table 3 

Values and sources of parameter used in numerical 

simulation. 

Parameter Value Source 

� 0.3805333333 Calculated [3] 

γ 0.00594474 Estimated 

d 0 0.007121000000 [3] 

η 0.144211141 Estimated 

ν 0.007121000000 [3] 

σ 0.0052281 Estimated 

k 0.027864676 Estimated 

ξ 1 30 Estimated 

ξ 2 400 Estimated 

ξ 3 0.005 Estimated 

ξ 4 2,000,000 Fitted 

ξ 5 500 Estimated 

b

s

(

(

7

l

c

t

w

t

c

w

w

d

r

r

c

a

t

s

d

i

d

i

a

p

f

t

c

T

u

b

e

c

u  

d  

p

r  

i

8

c

b

l

a

v

c

i

a

u

t

i

s

t

t

R
t

b

a

m

t

i

s

u

s

m

r

m

a

w

o

b

h

r

h

r

d

O

p

s

a

o

d

c

d

F

i

i

t

u

m

2

c

r

o

a  

W

a

o

e

c

a

We founded that the optimal values of states and controls 

y solving analytically the optimal system, which includes the 

tates (25) and the adjoint Eq. (37) , boundary conditions (26) and 

38) , along with the characterization of optimal control variables 

u ∗
1 
, u ∗

2 
) in the form of (39) and (40) . 

.3. Simulation on control strategies of COVID-19 

In order to obtain the numerical solution for the control prob- 

em, we will use Runge-Kutta procedure of order four. More pre- 

isely, we descritize the original model (1) , the control model (25) , 

he adjoint system (37) and will coded the same in MATLAB along 

ith subsidiary conditions (26), (38) and the characterization of 

he control (39) - (40) . The parameter values used for simulating the 

ontrol and uncontrolled problem is depicted in Table 3 . 

The simulation for the control and without control problems 

ere carried out and a comparison was presented among real data, 

ithout control and with control curves in Fig. 8 for all classes. 

Fig. 8 a shows the dynamics of susceptible population in three 

ifferent perspective. If we compare the uncontrolled curve with 

eal data, we reach to the conclusion that our model best fit the 

ealistic scenario. Further, it is clear that without implication of the 

ontrol strategies, more people will be vulnerable to the disease 

nd eventually a particular portion of the population will be prone 

o the disease at all the time. However, if we imposed the control 

trategies upon the susceptible people, the population will tend to 

ecline and after 100 days there will be no susceptible individual 

n the community. 

Again, Fig. 8 b shows that our proposed model best explain the 

ynamics of COVID-19 in the Hubie province. Figure suggest that 

f we ignore the control policy, the infection will tend to grow 

nd the decrease and eventually persist constantly in the Hubie 

rovince for long run. However, after 100 days there will be no in- 

ection if one impose the control strategies in true spirit. Similarly, 

he usefulness of the proposed model and the best output of the 

ontrol upon quarantine population could be observed in Fig. 8 c. 

hus, we can say that the model under consideration is correct 

p to the mark for explaining the dynamics of COVID-19 in Hu- 

ie province and to eliminate the disease, it is most beneficial and 

ffective to adopt the same control strategies as outlined in the 

urrent study. 

Figs. 9 a and 9 b shows the dynamics of the control variables 

 1 ( t ) and u 2 ( t ). During initial phase of the control policy (up to 60

ays), the control u 1 ( t ) have very low effect upon the susceptible

eople, afterward, the control tend to increase very fast and finally 

each to its maximum value. Similarly, the control u 2 ( t ) is silent till

nitial 70 days and then start working with maximum returns. 
11 
. Discussion 

Keeping in view the ongoing disastrous spread of the novel 

oronavirus (COVID-19) across the globe, we have proposed a ro- 

ust mathematical model that is able of assisting the health regu- 

atory authorities in adopting important safety measures and man- 

gement strategies for controlling such spreads. In order to test the 

alidity and accuracy of the proposed model, in this paper, we have 

onsidered Hubei Province of the People’s Republic of China, and 

s part of the Central China region. We have conducted a detailed 

nalysis of our model, and applied it to study the Wuhan epidemic 

sing publicly reported data. Parameters in the basic reproduc- 

ion number R 0 of this model comes from three compartments; 

.e., from the quarantine individuals, the infected individuals, and 

usceptible individuals. We have established the global asymp- 

otic stability of the disease-free equilibrium when R 0 < 1 , and 

he global asymptotic stability of the endemic equilibrium when 

 0 > 1 . Our numerical simulation results demonstrate the applica- 

ion of our model to the COVID-19 outbreak in Wuhan. Our model 

est fit the reported data very well. Through data fitting, we obtain 

n estimate of basic reproduction number, R 0 = 2 . 261469439 . Our 

odel predicts the appearance of an epidemic peak, after which 

he infection level would decrease and approach an endemic state 

n the long run. We also find that if we use constant transmis- 

ion rates instead, the model would predict a much higher and 

nrealistic epidemic peak. This is caused by the fixed transmis- 

ion rates that do not reflect the impact of on-going disease control 

easures. It is an indication that using epidemiologically and envi- 

onmentally dependent transmission rates can potentially generate 

ore practical simulation results. 

At present, many aspects regarding the pathology, ecology 

nd epidemiology of the novel coronavirus remain unknown [30] , 

hich add challenges to mathematical modeling. Particularly, in 

ur current model, we have employed a bilinear incidence rate 

ased on the law of mass action to represent the human-to- 

uman transmission route. Though, a saturation based incidence 

ate might better characterize the environmental pathogen, and we 

ope to investigate it in our future modeling effort s. Given the cur- 

ent development of COVID-19, it is widely speculated that this 

isease would persist in the human world and become endemic. 

ur mathematical analysis and numerical simulation results sup- 

ort this speculation. The findings in this study imply that we 

hould be prepare our self to fight the coronavirus infection for 

 much longer term than that of the current epidemic wave, in 

rder to reduce the endemic burden and potentially eradicate the 

isease eventually. Among other intervention strategies, new vac- 

ines for the novel coronavirus, which are currently in research and 

evelopment, could play an important role in achieving that goal. 

urther, our study strongly support the fact if we imposed the two 

ndicated control measures, we can easily eliminate the COVID-19 

n almost 100 days from Wuhan. We emphasize that our data fit- 

ing is based on the reported confirmed cases in Wuhan from Jan- 

ary 21, to March 2, in 2020. These confirmed cases were deter- 

ined by the method of nucleic acid testing kits. On February 12, 

020, the national health commission in China started including 

ases confirmed by another method; i.e, clinical diagnosis, which 

efers to using CT imaging scans to diagnose patients. This change 

f criteria led to a surge of confirmed cases on February 12, (with 

n increase of about 14,0 0 0 new cases for Wuhan in a single day).

e plan to address the new development of the outbreak data in 

nother piece of work in the near future. We also plan to expand 

ur modeling effort s to the province and country levels beyond the 

picenter, the city of Wuhan, and study the spread of the novel 

oronavirus in larger spatial scales. 

In a nutshell, we can say that understanding the dynamics of 

 fast-moving disease (like COVID-19) in the early stages of a pan- 
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Fig. 8. Dynamics of real data, without control and with control problem. 

Fig. 9. The dynamics of control variables. 
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emic is indeed a challenging task for the health official and policy 

akers. A single model is not appropriate, and long-term predic- 

ions of such models are likely to be futile. Perhaps, one can use 

odel to short-term data which will enables us to comprehend 

eeply the existing data as well as to make predictions when data 

s unavailable. For this purpose, fast-moving models should be de- 

eloped and analyzed for better understanding of such diseases. 

he strategy of short-term data fits will definitely help us to con- 

rol the spread of COVID-19 at earliest. As infectious disease will 

e always with us, thus, the results of a model could be applied to 

ny next disease if not working for the current situation. 

. Conclusions 

In this article, we have established a model for the transmission 

ynamic of novel CoVID-2019 by taking into account the classifica- 

ion of different phases of its spread in population. First, we stud- 

ed the statistics of novel CoVID-2019 in Hubie, China and then we 

ombined different characteristics of the disease and formulated a 

athematical model which describe the dynamics of the infection. 

urther, we presented different mathematical analysis on the pro- 

osed model including boundedness, biological feasibility, positiv- 

ty and existence of equilibria of the proposed model. For analy- 

is purpose, initially we obtained the basic reproduction number 

nd then derived all the disease-free and endemic equilibrium of 

he model. The local and global stability of the disease-free equi- 

ibrium was carried out by using the linearization and Lyapnove 

unctional theory, respectively. The DFE is globally asymptotically 

table if R 0 < 1 . Similarly, it is shown that the endemic equilib-

ium is locally, as well as globally asymptotically stable whenever 

 0 > 1 . The value of R 0 was calculated for the COVID-19 at Hubie

nd it was founded that the disease will persist for long term if not 

roperly addressed. Finally, the numerical simulation and sensitiv- 

ty analysis were presented to show the feasibility of the proposed 

odel and effectiveness of the control strategies. 
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