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Abstract

Background—Surveillance with annual mammaography and breast MRI is recommended for
female survivors of childhood cancer treated with chest radiation, yet benefits, harms and costs are
uncertain.

Objective—To compare the benefits, harms and cost-effectiveness of breast cancer screening
strategies in childhood cancer survivors.

Design—Collaborative simulation modeling using two Cancer Intervention and Surveillance
Modeling Network breast cancer models.

Data Sources—Childhood Cancer Survivor Study, published data.

Target Population—Women aged 20+ with a history of chest radiation.
Time Horizon—L.ifetime.

Perspective—Payer.

Interventions—Annual MRI +/- mammography, starting at ages 25, 30 or 35.

Outcome Measures—Breast cancer deaths averted, false-positive screens, benign biopsies,
incremental cost-effectiveness ratios (ICERS).

Results of Base-Case Analysis—Lifetime breast cancer mortality risk without screening was
10%-11% across models. Compared to no screening, starting at age 25, annual mammography
with MRI averted the most deaths (56%-71%), and annual MRI (without mammography) averted
56%-62%. Both had the most screening tests, false-positives, and benign biopsies. For an ICER
threshold of <$100,000 per quality-adjusted life year, starting at age 30 was preferred.

Results of Sensitivity Analysis—Assuming lower screening performance, the benefit of
adding mammography to MRI increased in both models, although the conclusions about preferred
start age remained unchanged.

Limitations—Elevated breast cancer risk was based on survivors diagnosed with childhood
cancer between 1970 and 1986.

Conclusions—Early initiation (at ages 25-30) of annual breast cancer screening with MRI with
or without mammaography could reduce breast cancer mortality for survivors of childhood cancer
by half or more.

INTRODUCTION

Improvements in treatment for childhood cancer over the past five decades have resulted in

remarkable survival increases, with more than 80% of children diagnosed today expected to

survive five years or longer (1, 2). Despite this success, survivors face very high risks for
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treatment-related mortality (3) and late-effects, including secondary breast cancer (4, 5).
This includes ~55,000 women in the US who have been treated with =20 Gray (Gy) chest
radiation (6). Similar to BRCAL mutation carriers, an estimated 30% of these survivors will
develop breast cancer by age 50 (7). At the same time, overall competing mortality is higher
among survivors than women without childhood cancer, reflecting the burden of
comorbidities (8, 9), which may reduce health benefits from breast cancer screening and
treatment.

Because of this elevated breast cancer risk, earlier initiation and more intensive screening is
recommended for these women (10-13). For example, the Children’s Oncology Group
(COG) recommends annual mammography screening with adjunct breast magnetic
resonance imaging (MRI) starting at age 25 (or 8 years after chest radiation) in survivors of
childhood, adolescent or young adult cancer who received =20 Gy chest radiation (14).
However, fewer than 50% of at-risk survivors undergo recommended screening (15, 16) and
clinicians who care for adult survivors are often unfamiliar with surveillance guidelines (17,
18). Recently, the International Late Effects Of Childhood Cancer Guideline Harmonization
Group noted the substantial uncertainty about the balance between the benefits and harms of
mammography and MRI in this high-risk population (19).

Decision modeling can facilitate evidence synthesis and provide data to inform guidelines in
circumstances when randomized clinical trials are infeasible (20, 21). For example,
modeling work by the Cancer Intervention and Surveillance Modeling Network (CISNET)
informed the US Preventive Services Task Force (USPSTF) recommendations for breast
cancer screening for average-risk women by assessing the benefits and harms for clinically
relevant strategies (22, 23). Building upon this work, we used data from the Childhood
Cancer Survivor Study (CCSS) (24) and two CISNET breast cancer simulation models to
estimate the clinical benefits, harms, and cost-effectiveness of breast cancer screening
among childhood cancer survivors previously treated with chest radiation.

METHODS

Overview

To examine breast cancer screening outcomes in survivors of childhood cancer, we used data
from the CCSS (25) and adapted two CISNET breast cancer models (26): Model G-E
(Georgetown University Medical Center and Albert Einstein College of Medicine) and
Model W (University of Wisconsin-Madison) (27, 28) (Appendix Figure 1). The models
share common model inputs such as screening test performance and competing mortality
risks but vary in their approaches to modeling unobservable breast cancer natural history,
including tumor onset and progression (29). Examining results across models thereby
provides a range of estimates on breast cancer screening outcomes and helps determine the
robustness of the conclusions to structural uncertainty resulting from different approaches to
modeling disease natural history. Representative of the larger US population of survivors
(25), the CCSS is a multi-institutional cohort study with longitudinal follow-up of North
American five-year survivors of common childhood and adolescent cancers diagnosed prior
to age 21 between 1970 and 1999 (24). The study was determined not to be human subjects
research (Boston Children’s Hospital) or exempt from human subjects review (Georgetown
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University Medical Center; University of Wisconsin-Madison) by each Institutional Review
Board.

Screening strategies

For a cohort of female survivors of childhood cancer with a history of chest radiation, the
models evaluated the following strategies: 1) no screening; 2) digital mammography with
MRI screening starting at age 25 (current COG recommendations), 30 or 35 and continuing
to age 74, and 3) MRI only starting at age 25, 30 or 35 to age 74. Digital mammography
alone was not considered as none of the current guidelines recommend mammography alone
as a surveillance strategy in this high-risk population. To estimate efficacy, we assumed
100% adherence to screening and that women will receive the most effective therapy
available at the time of breast cancer diagnosis, based on calendar year, age, stage, and
estrogen receptor/ human epidermal growth factor 2 status.

Computer Simulation Models

Both Models G-E and W are discrete-event system microsimulation models of US women.
Model G-E is a state-transition model that simulates breast cancer natural history without
explicitly modeling tumor growth (27). Each breast cancer is assigned a time period in
which the cancer can be detected prior to clinical symptoms; screening benefit is a function
of detection at younger ages and earlier stage (i.e., stage-shift). Treatment benefits are based
on a hazard reduction (i.e., due to lower stage of disease from detection at younger age).
Model W simulates breast cancer natural history using a continuous tumor growth model
(28). Screening benefit occurs through detection at younger age and smaller tumor size.
Treatment benefit is modeled as lifelong “cure” for a proportion of those diagnosed (i.e., no
possibility of dying from breast cancer) and no cure for the remainder. In both models, a
subset of cancers are nonprogressive (Model G-E) or have limited malignant potential
(Model W) (27, 28). Appendix Table 1 provides more detailed model overviews, also
available at https://cisnet.cancer.gov/ and previously described (27, 28, 30). Coding for both
models underwent extreme value testing to ensure that results changed in the expected
directions. Both models reproduce US temporal trends in incidence and mortality for
average-risk women (31) and also have predictive validity by replicating the UK Age Trial
results (22, 32).

Model parameters

Breast Cancer Incidence—CCSS participants who were female at time of childhood
cancer diagnosis between 1970 and 1986 (median age, 13 years) and treated with =220 Gy of
chest radiation (74%) are at a 21.9-fold (95% ClI, 19.1 to 25.2) higher risk of developing
breast cancer compared to average-risk women based on Surveillance, Epidemiology, and
End Results Program (SEER) data (7). These women were diagnosed with Hodgkin
lymphoma (55%), Wilms (12%), non-Hodgkin lymphoma (8%) and other tumors. To reflect
this elevated risk, we applied age-specific standardized incidence ratios from CCSS
participants (relative to age- and calendar year-specific SEER rates) to breast cancer
incidence rates in Models G-E and W (Table 1).
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Breast Cancer Characteristics—We assumed that the following natural history
parameters were similar for breast cancers in childhood cancer survivors as for average-risk
women (48): 1) probability and time of disease progression from preclinical to clinical
disease, 2) stage distribution among clinically-detected and screen-detected cancers, 3)
estrogen receptor/ human epidermal growth factor 2 distribution, and 3) breast cancer-
specific mortality rates.

Screening Test Performance—Due to the limited available data on mammography and
MRI screening performance specific to childhood cancer survivors, we based estimates of
sensitivity and specificity on a meta-analysis which pooled individual-level data from six
screening studies on BRCA 1/2 mutation carriers (35), estimated to have cancer risk similar
to survivors previously exposed to chest radiation (7). We assumed that past radiation did not
affect test performance.

To estimate additional imaging and biopsy rates for combined modality screening, we
assumed that 75% of false positive screens were due to MRI (36). Thus, the proportion of
women undergoing additional imaging without biopsy (6.7% vs. 6.1%) or having a benign
biopsy (14.4% vs. 9.4%) was higher for mammography with MRI versus MRI alone,
respectively.

Mortality—Childhood cancer survivors face general population risks of dying but also may
develop multiple late complications. We therefore added the excess mortality risks
associated with late recurrence of childhood cancer and development of comorbidities (40)
to competing causes of mortality (39).

Costs—The costs of screening and diagnostic evaluation of a positive screen were based on
US 2018 Medicare reimbursement rates and published estimates (41) (Table 1). For false-
positive screen results, we assumed MRI findings led to 30% higher biopsy costs than
mammography ones because of higher costs for MRI guidance. For true-positives, we
assumed work-up costs were similar for all screening modalities. Cancer treatment costs
varied by cancer stage and treatment phase and reflect updated SEER-Medicare costs from a
prior analysis (42—-44).

Quiality of Life—To reflect quality of life among survivors living with late-effects, we used
age- and sex-specific utility (quality of life preference) weights for childhood cancer
survivors (45). We also incorporated utility deductions for undergoing screening, having
false-positive screen results, and undergoing breast cancer treatment (by stage) (46, 47)
(Table 1). Due to lack of published estimates for multi-modality screening, we inflated
previously published disutility weights for screening mammaography (46) by 2-fold for MRI
only and 3-fold for mammography with MRI.

Both Models GE and W simulated a cohort of 20-year-old female survivors of childhood
cancer with a history of chest radiation undergoing breast cancer screening. Model outcomes
included lifetime clinical benefits (reduction in breast cancer deaths, gains in life years and
quality-adjusted life years), potential harms (number of false-positive screen results, benign
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biopsies, overdiagnosed cases), and costs. Overdiagnosed cases were defined as those that
would not be clinically detected in the absence of screening.

To illustrate the tradeoffs, we calculated the following harm-benefit ratios: screening tests
per death averted, false-positive screens per death averted, benign biopsies per death averted
and overdiagnosed cases per death averted. For context, we compared these estimates to
published estimates following USPSTF recommendations for biennial mammography for
average-risk women aged 50-74 (22, 23). We evaluated the relative performance of
strategies, calculating incremental cost-effectiveness ratios (ICERS), defined as the
additional cost of a strategy divided by the additional clinical benefit, compared with the
next least expensive strategy, and expressed as cost per quality-adjusted life year (QALY)
gained. Analyses were conducted from a payer perspective following established
recommendations (49, 50).

To reflect uncertainty in key model parameters on results, we conducted sensitivity analyses
on the elevated risk of breast cancer associated with chest radiation among survivors,
screening performance, and MRI-related costs and disutility weights. Plausible ranges were
based on 95% confidence intervals for data used in the base case and expert opinion.

Role of Funding Source

RESULTS

The American Cancer Society and the National Cancer Institute funded this research. The
funding sources had no role in the design or conduct of the study; collection, management,
analysis, and interpretation of the data; or in the preparation, review, or approval of the
manuscript.

Clinical benefit and harms of current COG recommendations

Without screening, the lifetime risk of dying from breast cancer among childhood cancer
survivors previously treated with chest radiation was 10%-11% across models (Table 2). For
all strategies, the estimated benefits were greater in Model W than Model G-E. Compared to
no screening, annual mammaography and breast MRI starting at age 25 averted the most
(56%-71%) breast cancer deaths and increased life years gained by 884-1990 years per
1000 women. Over their lifetimes, 1000 women would have 4188-4878 false-positive
screens 1340-1561 benign biopsies. Appendix Table 2 provides estimates of overdiagnosed
cases.

Alternative screening strategies: Harm-benefit tradeoffs

In both models, all screening strategies, regardless of start age and screening modality
reduced breast cancer deaths by 50% or more (Figure 1). Similarly, adding mammography to
MRI or starting screening earlier at age 25 averted more breast cancer deaths, but with
greater absolute reductions in Model W than Model G-E, especially when examining start
age (Table 2).

For all strategies, the number of false-positive screens per death averted ranged from 31 to
85 per 1000 women and for benign biopsies per death averted, 11 to 27 per 1000 women

Ann Intern Med. Author manuscript; available in PMC 2021 March 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Yeh et al.

Page 7

across models (Appendix Table 3). These harm-benefit ratios were considerably lower (i.e.,
more favorable) than benchmarks for average-risk women undergoing USPSTF
recommendations for biennial screening (Figure 2). Estimates of overdiagnosed cases per
death averted were also lower than average-risk benchmarks (Appendix Table 3).

Cost-effectiveness

When examining COG recommendations, the ICER for annual mammography with MRI
starting at age 25 versus no screening was cost-effective at the common threshold of <
$100,000/QALY gained ($28,890/QALY in Model G-E and $9,160/QALY in Model W).
When considering all screening and start age strategies falling below this threshold, the
preferred screening modality was mammography with MRI starting at age 30 (Table 3).
ICERs for screening starting at age 25 increased above the threshold relative to starting at
age 30, reflecting decreasing marginal gains in QALY relative to higher incremental costs
(Figure 3). For example, in Model W, mammaography with MRI screening starting at age 30
(vs. 35) increased QALYS by an additional 215. Starting at age 25 (vs. 30), the gain was only
86 QALYSs (Table 2), with even smaller relative increases when discounted to calculate
ICERs (Table 3).

Sensitivity analyses

In both models, ICERs for annual screening starting at age 25 became more favorable if the
lifetime risk of breast cancer associated with prior chest radiation increased to 64%—-67%
(vs. 56%—-59% in the base case), and less favorable with a lower 43-44% lifetime risk
(Appendix Tables 4; Appendix Figure 2). Results were largely unchanged if the elevated risk
was 50% lower starting at age 60. If changes in radiotherapy (e.g., decreased volume, dose,
field) were assumed to reduce the elevated breast cancer risk by 50% at all ages, ICERs for
screening starting at age 25 (compared to no screening) remained below the $100,000/
QALY threshold ($86,500/QALY in Model G-E and $38,330/QALY in Model W). When all
strategies were considered, the ICER for mammography with MRI starting at age 30
remained below the threshold in Model W but not Model G-E (Appendix Figure 3).

Model W results were more sensitive to changes in test sensitivity and specificity than
Model G-E, although overall conclusions about screening strategies and start ages remain
unchanged in both models (Appendix Table 4). For example, the 95% lower bound test
characteristics for MRI only and MRI with Mammography (35) increased the benefit of
adding mammography to MRI in both models, but the ICERs for screening starting at age 30
remained below the $100,000/QALY threshold (Appendix Figure 4).

Additionally, if the disutilities associated with MRI-related screening and false-positive
results were similar to those for mammography and MRI costs were halved, ICERs for
screening starting at age 25 (compared to 30) improved in both models, but remained above
the $100,000/QALY threshold in Model G-E. If breast cancer treatment was assumed less
effective in survivors (a proxy for possible higher breast cancer-specific mortality among
survivors (8)), ICERSs for all screening strategies fell as the relative benefits of early
detection became greater (Appendix Figure 5).
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DISCUSSION

In this collaborative modeling study, we found that in the absence of screening,
approximately 1 in 10 female childhood cancer survivors with a history of chest radiation
will die from breast cancer compared with 1 in 40 among average-risk women in the general
population (23). Screening with mammography and MRI starting at age 25, as currently
recommended by the COG, is projected to avert half of expected breast cancer deaths among
these high-risk survivors. With this annual schedule, a survivor will have an average of 4 to 5
false-positive screens and 1 to 2 benign biopsies over the course of her lifetime. However,
due to the large survival benefits, the harm-benefit tradeoffs for survivors appear to be
appropriate, resulting in more favorable harm-benefit ratios than published benchmarks for
average-risk women (following USPSTF recommendations). To our knowledge, our study is
the first to estimate these harm-benefit ratios for breast cancer screening among survivors of
childhood cancer. Further, our findings suggest that starting screening at 30 is cost-effective
given commonly cited cost-effectiveness thresholds (51, 52).

Recognizing that screening may be associated with potential anxiety from screening tests
and benign biopsies, we evaluated alternative screening strategies which focused on
initiating screening at later ages and/or with breast MRI only. We found that all strategies
averted more than an estimated 50% of breast cancer deaths among survivors with favorable
harm-benefit ratios. However, when both costs and quality of life were considered, ICERs
for initiating screening at age 25 (compared to age 30) were considerably higher, reflecting
the relatively small incremental benefit (e.g., 2-3 per 1000 women) in breast cancer deaths
averted from initiating screening 5 years earlier. We also found that the additional mortality
benefit of adding mammaography to MRI varied by model, reflecting differences in model
assumptions about the impact of detecting smaller or earlier-stage tumors. This is consistent
with prior work by the models, with Model G-E generally finding small additional benefits
from improvements in screening sensitivity versus more appreciable benefits in Model W.
Although not directly comparable given differences in strategies evaluated, our findings are
consistent with previous studies which found early initiation of screening among survivors
to reduce breast cancer mortality (53) and be cost-effective (54).

Our findings underscore the importance of making sure that young women previously
treated with chest radiation are informed about their elevated breast cancer risk and the
benefits of routine screening. Both primary care providers and oncologists who care for
survivors should discuss breast cancer screening with survivors. Screening guidelines should
emphasize the importance of MRI screening (with or without mammography) among
survivors. Our findings also highlight the importance of ensuring survivors have access to
health insurance coverage for MRI screening. Of note, highlighting the challenges in
augmenting rates in these women, the EMPOWER study found only marginal increases in
MRI screening rates within 12 months among survivors who received a tailored telephone-
delivered motivational interview(16).

Importantly, we did not account for the risk of radiation-induced breast cancer from
mammography screening as the additional radiation exposure from mammograms between
ages 25 and 39 is small (<0.3%) relative to the total radiation dose in women previously
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treated with 20 Gy of chest radiation (6). While the risks of radiation in survivors are likely
smaller than for BRCA mutation carriers (who may be more sensitive to radiation-induced
DNA damage due to the role of these genes in DNA repair), the use of mammography under
the age of 30 remains controversial, and is currently not recommended by the American
Cancer Society (11) nor the National Comprehensive Cancer Network (12). Our findings
suggest that even without accounting for these additional potential risks, the benefit of
adding mammography to MRI screening at these young ages is uncertain, and MRI alone
may be a reasonable screening strategy at younger ages.

Additional limitations to our study include using data from survivors diagnosed between
1970 and 1986 to inform the elevated risk of subsequent breast cancer in adulthood now. Our
findings suggest that even if the risk declines by half with changes in radiation dose/delivery,
initiating screening earlier at younger ages in survivors remains favorable. Second, we based
screening test performance on a meta-analysis on BRCA1/2 mutation carriers, who are
known to be at higher risk for more aggressive breast cancer subtypes. However, results
were stable in sensitivity analyses across a range of test performance (55, 56). We also did
not consider digital breast tomosynthesis; its improved specificity (57) may lead to more
favorable ICERs. Third, we assumed tumor characteristics and cancer treatment among
survivors were similar to average-risk women (6, 48). Treatment options (e.g., use of
radiotherapy or cardiotoxic chemotherapy agents) may be more limited for some survivors
due to prior treatment exposures, although we found that with lower breast cancer treatment
effectiveness, ICERs were even more favorable. Fourth, we assumed that in situ and invasive
cancers were equally detectable with mammography or MRI; prior studies have shown that
invasive cancers are more likely to be detected by MRI, and ductal carcinoma in situ by
mammography. Fifth, we recognize that some childhood cancer survivors are unable to
receive MRI and therefore undergo screening mammography only. We did not evaluate this
strategy as MRI is recommended by all professional societies for this high-risk cohort and
test performance data for mammography screening (without MRI) in high-risk women are
limited. Screening costs for young survivors may also be higher than Medicare rates,
especially if they are underinsured (58). Additionally, we found considerable uncertainty in
estimated overdiagnosed cases between models. However, we note that the biology of
overdiagnosis may differ among survivors given prior chest radiation and that estimated
cases of overdiagnosis varied little across strategies in both models. Rates of overdiagnosis
therefore provide less useful information on the tradeoffs in potential benefits and harms
associated with different screening strategies for this unique group of women. Sixth, because
of the large number of model parameters and computation time needed, we did not conduct
probabilistic sensitivity analyses to evaluate the uncertainty surrounding all input
parameters. However, we used two alternative natural history models of breast cancer to
understand structural uncertainty and found qualitatively similar results. Lastly, we did not
evaluate recently identified genetic markers of susceptibility for secondary breast cancer
among survivors (59, 60). Survivors without a history of chest radiation have also been
shown to be at elevated risk for breast cancer (56, 61, 62). Future planned analyses include
using modeling to understand how this information can refine and inform screening
guidelines for at-risk survivors.

Ann Intern Med. Author manuscript; available in PMC 2021 March 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Yeh et al.

Page 10

In conclusion, female childhood cancer survivors previously treated with chest radiation are
at high risk from dying from breast cancer and this early mortality can be averted with
initiation of annual breast cancer screening. Our models suggest that annual screening with
MRI (with or without mammography) starting at ages 25-30 can avert half or more of the
expected deaths, with an acceptable rate of false-positive screens. Our findings highlight the
importance of MRI in reducing deaths from breast cancer among young women previously
exposed to chest radiation. Identifying effective policies and interventions to reduce barriers
to screening should be priorities for policymakers to ensure comprehensive and coordinated
care for these high-risk survivors.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Study protocol
Available from Dr. Yeh (email, jennifer.yeh@childrens.harvard.edu).
Computer code

Detailed information about the models is available online at https://cisnet.cancer.gov/
breast/profiles.html and available in references (27) and (28).

Analytic dataset

Output data from models available from Dr. Yeh (email,
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Figure 1. Reduction in Breast Cancer Mortality for Screening Strategies Varying by Modality
and Start Age among Childhood Cancer Survivors.

Shown are estimates for the reduction in breast cancer deaths for each screening strategy
varying by modality (mammography with MRI, MRI only) and start age (25, 30 and 35)
compared to no screening. G-E, Georgetown-Einstein; MRI, magnetic resonance imaging;
W, Wisconsin.
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Figure 2. Harm-Benefit Ratiosfor Screening Strategies Varying by Modality and Start Age
among Childhood Cancer.

Shown are estimates for number of screening tests per breast cancer death averted (Panel A),
false positive screens per breast cancer death averted (Panel B) and benign biopsies per
breast cancer death averted (Panel C) for each screening strategy. For context, benchmark
published estimates for harm-benefit ratio are shown for average-risk women in the general
population undergoing USPSTF screening recommendations (biennial mammography
between ages 50 and 74) (22, 23) Estimates for all screening strategies in both Model W and
G-E were more favorable than benchmark ratios for average-risk women. G-E, Georgetown-
Einstein; mammo, mammaography; MRI, magnetic resonance imaging; W, Wisconsin.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnue Joyiny

1duosnue Joyiny

Yeh et al.

Incremental QALYs

Page 18

@ MammoMRI25 O MammoMRI-35 <> MRI-30 B No screening

© Mammo/MRI-30 € MRI-25 > MRI-35
Model G-E Model W
0.50 $50,580  $256.870 v 0.50 1
$5 260 > $25,400  $117,960
0.251 O < 0.251 $20,130
€ )
©
0.001 £ 0.001
()
£
-0.251 ® -0.251 =
(&)
L=
-0.50 -0.50
0 2000 4000 6000 8000 0 2000 4000 6000 8000

Incremental costs, $ Incremental costs, $

Figure 3. Cost-Effectiveness Efficiency Frontier for Screening Strategies Varying by Modality
and Start Age.

Shown are incremental discounted costs per gain in discounted QALY'S for each screening
strategy compared to the baseline strategy in Model W (Panel A) and Model G-E (Panel B).
Because of the greater estimated reduction in breast cancer deaths in Model W vs. Model
GE, no screening was dominated (and eliminated) by MRI-35 and the baseline comparator
was MRI-35 in Model W and no screening in Model G-E. Strategies on the efficiency
frontier (solid line) have incremental cost-effectiveness ratios (ICERS), expressed as cost per
QALY gained, as shown and offer both higher effectiveness and lower cost than those
strategies below it. Both costs and benefits were discounted 3% annually. G-E, Georgetown-
Einstein; mammo, mammography; MRI, magnetic resonance imaging; QALY, quality-
adjusted life year; W, Wisconsin.
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