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Abstract: This study is to demonstrate deep learning for automated artery-vein (AV) classifica-
tion in optical coherence tomography angiography (OCTA). The AV-Net, a fully convolutional
network (FCN) based on modified U-shaped CNN architecture, incorporates enface OCT and
OCTA to differentiate arteries and veins. For the multi-modal training process, the enface OCT
works as a near infrared fundus image to provide vessel intensity profiles, and the OCTA contains
blood flow strength and vessel geometry features. A transfer learning process is also integrated
to compensate for the limitation of available dataset size of OCTA, which is a relatively new
imaging modality. By providing an average accuracy of 86.75%, the AV-Net promises a fully
automated platform to foster clinical deployment of differential AV analysis in OCTA.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Early disease diagnosis and effective treatment assessment are essential to prevent vision loss.
Differential artery-vein (AV) analysis can provide valuable information for disease detection and
classification. It has been demonstrated to be valuable for evaluating diabetes, hypertension,
stroke and cardiovascular diseases [1–3] along with common retinopathies [4,5]. Several clinical
studies have evaluated AV abnormalities in different diseases. However, clinical deployment
of the AV analysis for routine management of eye diseases is challenging. Most of the clinical
studies relied on manual or semi-automated approaches to identify arteries and veins, which is
ineffective in a clinical setting. Therefore, a fully automated platform for AV classification is
important.

To date, automated AV classification has been primarily used in color fundus images acquired
with traditional fundus photography [6–15], which provide limited resolution and sensitivity to
reveal microvascular abnormalities associated with eye conditions [16]. Microvascular anomalies
that occur at early stages of eye diseases, cannot be reliably identified in traditional fundus
photography [17–19]. An alternative to traditional color fundus imaging is optical coherence
tomography (OCT) and OCT angiography (OCTA). OCT and OCTA can provide depth-resolved
visualization of individual retinal layers with capillary level resolution. Especially, OCTA is
sensitive to identify subtle microvascular changes, and thus has been extensively explored for
quantitative analysis and objective classification of retinal diseases [20–24]. Using quantitative
feature analysis, we have recently demonstrated the potential of differentiating arteries and veins
in OCTA [4,5,25,26]. Differential AV analysis showed improved OCTA performance to identify
abnormal changes in diabetic retinopathy (DR) and sickle cell retinopathy (SCR) eyes [4,5,26].
However, clinical deployment of the AV analysis in OCTA requires an automated, simple, but
robust method. A potential solution is to employ deep machine learning i.e., convolutional neural
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networks (CNNs) for AV classification automatically. A fully convolutional network (FCN) can
be trained with a ground truth dataset for a specific task and can be implemented on validation or
testing dataset. A fully automated method is a key factor for clinical deployment of artificial
intelligence (AI) based screening, diagnosis, and treatment evaluation.
In this study, we develop and validate AV-Net, an FCN based on a modified U-shaped CNN

architecture, for deep learning AV classification in OCTA. Amulti-modal training process involves
both enface OCT and OCTA, which provide intensity and geometric profiles, respectively, for
AV classification. Transfer learning is employed to compensate for the limitation of available
dataset size of OCTA which is a relatively new imaging modality. By incorporating transfer
learning and multi-modal training approaches, fully automated AV classification is demonstrated.
The AV-Net performance is validated with manual AV ground truth maps using accuracy and
intersection over union (IOU) metrics.

2. Methods

This study is in adherence to the ethical standards present in the Declaration of Helsinki and was
approved by the institutional review board of the University of Illinois at Chicago (UIC).

2.1. Data acquisition

Spectral domain (SD) -enface OCT and OCTA data were acquired using an Angiovue SD-OCT
device (Optovue, Fremont, CA, USA). The OCT device had a 70,000 Hz A-scan rate, ∼5 µm
axial and ∼15 µm lateral resolutions. All enface OCT/OCTA images used for this study were 6
mm × 6 mm scans; only superficial OCTA images were used. The enface OCT was generated as
a maximum intensity 3D projection of the retinal slabs from internal limiting membrane to outer
plexiform layer. After image reconstruction, both enface OCT and OCTA were exported from
Revue software interface (Optovue) for further processing.

2.2. Model implementation

In this paper, we present for the first time ‘AV-Net’, an FCN based on a modified U-Net
architecture. Recent studies using UNet have demonstrated AV classification using fundus
photographs. To the best of our knowledge, our study is the first to demonstrate AV classification
in OCTA. The input of the AV-Net is a 2-channel system to combine grayscale enface OCT and
OCTA. Enface OCT is a near infrared (NIR) image, which is equivalent to a fundus image, to
provide vessel intensity profiles. On the other hand, OCTA contains the information of blood
flow strength and vessel geometry features. The output of AV-Net is an RGB (red-green-blue)
image. The R and B channels correspond to artery and vein systems, respectively, and the G
channel represents the background.
The overall design of the AV-Net follows an encoder-decoder architecture (Fig. 1(a)). The

encoder of the AV-Net is a combination of dense, convolutional and transition blocks (Fig. 1),
making the network deeper compared to UNet which incorporated a shallower ‘VGG16’
architecture. The encoder, also known as the contracting path, extracts the context of the image.
The decoder, also termed as the expanding path, identify image features. The addition of bridging
between the encoder and decoder is to enable precise localization and mapping of feature maps
to produce the output image [27]. The convolution blocks are similar to the identity block in
ResNet, except for the use of concatenation instead of summation operations [28,29]. The dense
block is composed of convolution blocks, with each subsequent block connected to the previous
blocks by skip-connections.

Skip-connections is to alleviate the vanishing-gradient problem in deep learning [30]. Following
each dense block, a transition block is used to reduce the dimensions of the output feature maps.
In the decoder, we employ upsampling operations and use decoder blocks. The decoder block
concatenates the outputs of the upsampling operation and the output of the convolution from the
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Fig. 1. Network architecture for AV-Net, (a) overview of the blocks in AV-Net architecture,
(b) the individual blocks that comprises AV-Net. In this figure, Conv stands for convolution
operations, AP stands for Average Pooling operation. Each transition block has two outputs,
Output A is the output of the AP operation, and Output B is the output of the Conv operation.
The skip-connections from each transition block are Output B. In the decoder block, the Input
A is the output of the preceding layer, whereas Output B is the output of the appropriately
sized transition block.

appropriate transition block. The feature maps are then convolved to enable precise localization
of image features.
In the AV-Net, all convolution operations are followed by batch normalization and ReLU

activation function, whereas the final convolutional layer is followed by a softmax activation
function. As a relatively new modality, available OCTA dataset size is limited. For deep learning
applications, a small dataset size may lead to overfitting. To overcome this limitation, we employ
transfer learning using the ImageNet Dataset. While the ImageNet dataset (normal every day
images) and OCTA images are different, one of the advantages of CNNs is that the CNN learn
features from a bottom up hierarchical structure. The earlier layers of the CNN learn simple
features such as lines, edges, and color information, and complex features in deeper layers of the
network. By employing transfer learning in the training procedure, the network can transfer these
simple features to learn complex features associated with arteries and veins, such as tortuosity,
branching, and intensity based information.

In this study, the encoder weights were pre-trained on the ImageNet Dataset. Our pre-trained
encoder network contains a fully connected layer with 1000 neurons followed by a softmax
activation function. The pre-training of the encoder concluded when the network achieved a∼75%
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Table 1. Comparative classification performance of AV-Net.

Comparison Cross Validation Accuracy F1 IOU

UNet Dice+Focal Loss Pre-trained Weights
Artery 88.054± 0.343 77.743± 0.673 63.711± 0.879

Vein 88.653± 0.704 78.978± 0.722 65.354± 0.953

Average 88.353± 0.500 78.360± 0.675 64.533± 0.884

AV-Net Dice Loss Pre-trained Weights
Artery 83.570± 0.734 61.769± 1.480 44.871± 1.495

Vein 80.125± 1.587 63.697± 1.401 47.017± 1.388

Average 81.848± 1.020 62.733± 1.423 45.944± 1.422

AV-Net Focal Loss Pre-trained Weights
Artery 81.007± 0.404 46.031± 1.236 29.980± 1.045

Vein 81.566± 0.249 46.137± 0.942 30.066± 0.801

Average 81.287± 0.307 46.084± 0.964 30.023± 0.816

AV-Net Dice+Focal Loss Random Weight
Artery 85.957± 0.842 73.243± 1.377 58.018± 1.656

Vein 85.501± 0.582 73.631± 1.258 58.412± 1.544

Average 85.729± 0.572 73.437± 1.304 58.215± 1.584

AV-Net Dice+Focal Loss Pre-trained Weights
Artery 86.705± 1.087 82.761± 1.677 70.658± 2.404
Vein 86.798± 1.174 82.850± 1.666 70.781± 2.399

Average 86.751± 1.126 82.805± 1.670 70.719± 2.399

classification accuracy on the ImageNet validation dataset. To employ the pre-trained encoder
into a FCN, the fully connected layer was removed. The intermediate outputs of the encoder
network are subsequently connected to the decoder network. This procedure is initialized with
random weights using the glorot uniform distribution, as corresponding inputs to the appropriate
layers (Fig. 1). Our newly constructed FCN, AV-Net, using transfer learning is then trained on
OCTA images for the task of image segmentation. This method of employing transfer learning
for image segmentation, is repeated in the comparative study with the state-of-the-art networks,
i.e. UNet. FCN training procedure utilized the Adam optimizer with a learning rate of 0.0001, a
dice loss function, and a minibatch size of 8. Moreover, regularization procedures including data
augmentation and cross-validation were used to prevent overfitting. Training was performed on
a Windows 10 computer using NVIDIA Quadro RTX5000 Graphics Processing Unit (GPU).
The FCN was trained and evaluated on Python (v3.7.1) using Keras (2.2.4) with Tensorflow
(v1.31.1) backend. In this study, the OCTA dataset comprised of 50 images. To evaluate our
network, a 5-fold cross validation method, with each fold following an 80/20 train/test split
procedure, was employed. Due to a limited dataset, data augmentation, i.e., random flips, rotation,
zooming, and image shifting, was implemented during the training process. Therefore, in each
fold the network was trained with 3,000 images, and testing evaluation was performed on the
8 original images of each fold. Average accuracy, intersection-over-union (IOU) and F1-score
was used as an evaluation metric for AV classification, by comparing with manually labelled
ground truths for each cross-validation folder. In the revision, we have clarified that (page 4):
For evaluation of average accuracy of artery identification, we conducted one vs all pixel-wise
classification (artery pixels vs vein+ background pixels), and measured the average accuracy
from prediction performance of both labels. Similarly, for evaluating vein accuracy, the one vs all
classification labels were vein vs artery+ background pixels. The average performance accuracy
is the mean of artery and vein accuracies (Table 1). Both IOU and F1 score are standard metrics
for segmentation and pixel-wise classification tasks. IOU measures the similarity between a
predicted region (AV) and the ground truth region in an image and can be defined as the size
of intersection, divided by the union of two regions [31]. IOU was measured separately for
artery and vein, by comparing predicted pixels for each category to the pixels from ground truth.
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Average was calculated by taking the mean of artery and vein IOU. F1 score is also a robust
metric for pixel-wise classification and can be defined as a harmonic mean of precision and recall
[32].

2.3. Loss functions

In this study, the AV-Net was trained using a compound loss function derived from dice loss [33]
and focal loss [34] and was defined as Eq. (1):

L = Ldice + Lfocal (1)

Where Ldice is the dice loss (Eq. (2)) and Lfocal is the focal loss (Eq. (3)). Recent studies have found
the combination of multiple losses improves image segmentation tasks with class imbalances
[35,36]. Dice score measures the degree of overlap between the prediction and ground truth and
is therefore suited for image segmentation (pixel-wise classification) tasks. The dice loss can be
written as

Ldice = 1 −
2
∑

x∈ω pl(x)gl(x)∑
x∈ω p2l (x) +

∑
x∈ω g2l (x)

(2)

The focal loss function is used to help mitigate the imbalance between foreground and background
classes during training. The focal loss is derived from the cross entropy (CE) loss and introduces
a focusing parameter γ that helps increase the importance of correcting misclassified examples
[34]. Lfocal can be written as

Lfocal = −
∑

x∈ω
(α(1 − pl(x))γgl(x) log pl(x) + (1 − α)pγl (x)(1 − gl(x)) log(1 − pl(x))) (3)

Where the weighting factor α ∈ [0, 1], focusing parameter γ ≥ 0, gl(x) and pl(x) are label and
estimated probability vectors, respectively. In our experimental designs, α = 0.25 and γ = 2
works best in practice [34].

3. Results

3.1. Patient demographics

Our dataset comprised of images from 50 patients (20 control eyes and 30 DR eyes). Subjects
and diabetic patients with and without DR were recruited from the UIC retina clinic. The patients
present in this study are representative of a university population of diabetic patients who require
clinical diagnosis and management of DR. Two board-certified retina specialists classified the
patients based on the severity of DR according to the Early Treatment Diabetic Retinopathy
Study (ETDRS) staging system. All patients underwent complete anterior and dilated posterior
segment examination. All control OCTA images were obtained from healthy volunteers that
provided informed consent for OCT/OCTA imaging. All subjects underwent OCT and OCTA
imaging of both eyes (OD and OS). The images used in this study did not include eyes with other
ocular diseases or any other pathological features in their retina such as epiretinal membranes
and macular edema. Additional exclusion criteria included eyes with prior history of intravitreal
injections, vitreoretinal surgery or significant (greater than a typical blot hemorrhage) macular
hemorrhages. Validation dataset comprised of healthy volunteers that provided informed consent
for OCT/OCTA imaging.

3.2. Classification evaluation

The AV-Net achieved an average accuracy of 86.75% (86.71% and 86.80% respectively for artery
and vein) on the test data and a mean IOU was 70.72%, and F1-score of 82.81%. The accuracy
metric considers segmentation of artery, vein and background pixels, and takes an average of the
three parameters for final accuracy value. We observed that, the classifier is extremely robust for
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background prediction, i.e., it is very good for segmenting the blood vessels (average accuracy
∼97%). To demonstrate a more robust measure for AV classification performance, we utilize
IOU which compares the AV-Net generated AV map pixel to pixel with the ground truth.

A comparative analysis of AV-Net performance is summarized in Table 1. The optimal AV-Net
was trained with pre-trained ‘imagenet’ weights and a training loss function that integrated both
Dice and Focal loss. In Table 1, we demonstrated AV classification performance using UNet
(‘Imagenet’ weights, Dice+ Focal loss); AV-Net with Dice loss; AV-Net with Focal loss; AV-Net
with both Dice and Focal loss but without transfer learning ‘imagenet’ weights.

For comparative analysis, the results of AV-Net implementation with and without transfer
learning are reported. It is observed that transfer learning improves the performance of AV-net
compared to random weight initialization. Despite the high dissimilarity between ImageNet
and OCTA dataset, there may be certain features that are transferable, such as simple features,
morphology or intensity-based features, in early layers of the encoder.
Additionally, the combination of multiple losses has been demonstrated to improve the

performance for image segmentation tasks. The most used loss function for segmentation tasks is
the dice loss function. On the other hand, recent studies have revealed that the focal loss function
mitigates class imbalances between the foreground and background. Therefore, our hypothesis is
that the combination of both dice and focal loss can improve the performance of AV-Net. To test
our hypothesis, we performed a comparative study by training AV-Net with dice and focal loss
separately. The results from training with the dice and focal loss function separately, revealed that
individually each loss function had adequate performance, with the focal loss function having
the worst performance. However, when combining both the dice and focal losses improved the
performance of AV-Net.
We further compared the performance of AV-Net with the state of the art UNet model. For

comparative analysis, both architectures were trained using transfer learning and the combined
dice and focal loss functions. As shown in Fig. 2, the AV-Net demonstrates improved performance
compared to UNet. Interestingly, it is observed that the UNet showed slightly better accuracy
values compared to AV-Net (88.25% vs 86.71%). Since UNet is a comparatively shallower
network, it is less prone to overfitting, providing a better semantic segmentation performance.
Since accuracy metric considers prediction of all pixels (i.e., artery, vein, and background), the
overall accuracy is increased. However, this does not necessarily mean better performance of
identifying artery and vein pixels. That is why similarity metrics, i.e., F1 and IOU scores of
UNet are comparatively low. As a more complex network, AV-Net is much better for identifying
artery and vein pixels, as represented by the F1 and IOU scores which reflect the comparison of
artery and vein pixels with the ground truth. While AV-Net was inspired by the UNet architecture,
the incorporation of short and long skip connections and the increased depth of the network
improved the performance.
To check the AV classification performance on diseased eyes, we further tested the AV-Net

performance on only the OCT/OCTA data from DR cohort. The accuracies of predicting arteries
and veins were 85.94% and 85.85%, respectively. The mean IOU scores for artery and vein
classification were 68.28% and 68.65%, respectively. The mean F1 scores for artery and vein
classification were 81.12% and 81.4%, respectively.
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Fig. 2. Examples of control and DR (top and bottom, respectively) (a) input OCTA, (b)
enface OCT, (c) the ground truth, (d) UNet predicted AV-maps, and (e) AV-Net predicted
AV-maps.

4. Discussion

In summary, we have demonstrated the AV-Net for fully automated AV classification in OCTA.
The AV-Net achieved an average accuracy of 86.75% (86.71% and 86.80% respectively for artery
and vein) on the test data and a mean IOU was 70.72%, and F1-score of 82.81%.

Differential AV analysis is known to be valuable for quantifying subtle microvascular changes
and distortions due to retinopathies. Incorporating AV classification capability into the clinical
imaging devices would enhance the diagnostic ability and quantitative power of OCTA. Previous
studies exploring the use of deep learning for AV classification have been primarily focused
on traditional fundus photography. Xu et al. adapted a UNet for AV classification using
publicly available fundus datasets, such as DRIVE and INSPIRE, and achieved high accuracy
[37]. Similarly, Meyer et al. employed deep learning using a patch-wise prediction strategy
and included regularization techniques such as dropout and batch normalization [38]. To our
knowledge, this is the first study to employ deep learning for AV classification in OCTA.
In this study, we employed an FCN, based on the UNet architectures. In a previous study,

Ronneberger et. al. [27] have shown the use of long skip connections, that can help the network
localize high resolution features, thereby a more precise output. In AV-Net, we employ dense
blocks that utilize short skip connections. These short skip connections encourage the network
to reuse features, making the model more compact. In comparison to other networks such as
VGG16, AV-Net is a 5 times deeper network (having more convolutional layers) but the number of
parameters is significantly smaller (approximately 17 times less). Having deeper network enables
more learning capability, whereas smaller number of parameters means less computational
burden. By leveraging both long and short skip connections, we are able to train our AV-Net
for robust AV classification. From comparative analysis shown in Table 1, AV-Net performance
is improved compared to AV classification performance using a standard UNet architecture.
Furthermore, a comparison of AV-Net trained with ‘Dice’ loss, ‘Focal’ loss and ‘Dice+Focal’
loss showed that incorporating both Dice and Focal loss improved segmentation since Dice loss
compares similarity between AV map and ground truth, and Focal loss compensates for class
imbalance between AV pixels and background pixels.

The input of the AV-Net consists of both enface OCT and OCTA. While OCTA does provide
highly detailed vasculature maps, the arteries and veins are indistinguishable from each other by
OCTA information itself. On the other hand, OCT retains reflectance information to differentiate
artery and vein [25]. By combining both images, the FCN can learn the intensity information
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from the OCT and the highly detailed vasculature from the OCTA. Employing both OCT and
OCTA is also convenient since they are from same OCT data volume and OCTA is reconstructed
based on OCT processing. Therefore, using enface OCT and OCTA as 2-channel input of the
AV-Net requires no pre-processing and image registration.

The results of the cross-validation study revealed an adequate IOU and F1 score. Qualitatively
AV-Net has good vessel segmentation and AV classification performance. However, the predicted
AV maps do appear more dilated compared to the ground truths. There are notable areas of
misclassification, i.e., at vessel cross points. Future improvements to AV-Net could include
developing a dataset with ground truth for vessel crossings. Additional validation with enlarged
datasets from different OCTA devices will be required to pursue clinical deployments of the
AV-Net for differential AV analysis.

5. Conclusion

The AV-Net has been demonstrated for fully automated AV classification in OCTA. The AV-Net
is based on one FCN with modified U-shaped CNN architecture. A multi-modal training process
was involved to include both enface OCT and OCTA for robust AV classification, and a transfer
learning procedure was integrated to compensate for the limited size of OCTA dataset. By
incorporating transfer learning and multi-modal training, the AV-Net achieved an accuracy of
86.75% for robust AV classification.
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