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Abstract: In this work, we introduce a framework for efficient and accurate Monte Carlo (MC)
simulations of spatially resolved reflectance (SRR) acquired by optical fiber probes that account
for all the details of the probe tip including reflectivity of the stainless steel and the properties of
the epoxy fill and optical fibers. While using full details of the probe tip is essential for accurate
MC simulations of SRR, the break-down of the radial symmetry in the detection scheme leads to
about two orders of magnitude longer simulation times. The introduced framework mitigates this
performance degradation, by an efficient reflectance regression model that maps SRR obtained
by fast MC simulations based on a simplified probe tip model to SRR simulated using the full
details of the probe tip. We show that a small number of SRR samples is sufficient to determine
the parameters of the regression model. Finally, we use the regression model to simulate SRR
for a stainless steel optical probe with six linearly placed fibers and experimentally validate the
framework through the use of inverse models for estimation of absorption and reduced scattering
coefficients and subdiffusive scattering phase function quantifiers.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Through the years diffuse reflectance (DR) spectroscopy has proved itself as a useful method for
non-invasive study of biological tissues. The reflectance spectra can be efficiently collected with
optical fiber probes [1] or imaging systems [2] and sufficiently described through the framework
of radiative transport equation (RTE) [3]. For particular experimental settings [4,5] or large
source-detector separations with dominant scattering [6] the RTE can be solved analytically.
However, for complex experimental settings, the RTE needs to be solved numerically, which is
commonly acomplished by the Monte Carlo (MC) method. Due to the stochastic nature of the
MC method, a large number of photon packets has to be processed to obtain adequate quality
of the simulated quantity. Since such simulations can quickly become time-consuming, the
structure and geometry of the tissue and optical fiber probes is frequently described with some
simplifications. The optical fiber probe tip model (PTM) is often approximated (Fig. 1) by a
laterally uniform boundary with mismatched refractive indices [7–10], which allows radially
symmetric detection schemes that lead to shorter simulation times. This approach can be valid in
some cases, but in general, it could lead to significant errors in the MC simulated reflectance
spectra [1,11,12]. To overcome these limitations, additional parameters of the fiber probe tip,
such as the reflectivity of the stainless steel and refractive index of the black epoxy fill has to be
taken into account. Unfortunately, using the full details of the probe tip in the MC simulations
breaks down the radial symmetry of the detection scheme allowing collection of the photon
packets only through the individual optical fibers. Consequently, the simulation time required to
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obtain a good quality spatially resolved reflectance (SRR) can quickly increase by more than two
orders of magnitude.

Fig. 1. Simplified PTM (left) considers only mismatch between the refractive indices of the
sample and optical fibers, while realistic PTM (right) takes into account all the details of the
optical fiber probe tip.

In this paper, we propose a deep artificial neural network-based (ANN) reflectance regression
model (RRM) that maps reflectance, simulated with a simplified PTM, to reflectance, valid for
realistic PTM. In Section 2, we present the light propagation model, reflectance datasets, inverse
models for estimation of optical properties, the deep ANN-based RRM, experimental setup and
description of turbid phantoms. Section 3 summarizes the performance evaluation of RRM,
validation through the use of inverse models for estimation of optical properties and experimental
validation by liquid turbid phantoms.

2. Materials and methods

2.1. Workflow

The basic idea of the methodology presented in this paper is summarized in Fig. 2. The SRR
obtained by fast MC simulations utilizing a simplified PTM, which inaccurately describes the
optical fiber probe tip and hence introduces errors into the simulated SRR, is rapidly transformed
through the RRM to obtain accurate SRR. The accurate SRR can be also directly computed
with MC simulations that utilize a realistic PTM, however such MC simulations are extremely
slow. Detailed implementation of the RRM is discussed in Section 2.4 and the accuracy of
the RRM is presented in Fig. 5. For additional numerical and experimental validation, the
regressed reflectance was used to prepare inverse models for estimation of optical properties.
Implementation details of the inverse models are presented in Section 2.5 and accuracy of the
estimated optical properties is discussed in Section 3. A detailed workflow of the methodology
that includes the RRM and inverse models is presented in Fig. 3.

2.2. Light propagation model

In this study, the light propagation in sample was modeled by an experimentally validated
OpenCLTM implementation of the MC method for a layered medium that follows the existing
open source implementations [13,14]. All simulations of reflectance were prepared for an optical
fiber probe with an outer diameter of 6.1mm and six linearly placed optical fibers with a diameter
of 200 µm and core-to-core spacing of 220 µm. Due to small source-detector separation (SDS),
we took into account the so-called subdiffusive quantifiers of the scattering phase function (SPF),
namely γ [15] and δ [16], as it has been shown, that they are important for accurate description
of reflectance close to the source. Parameter γ is defined as a function of the first g1 and second
g2 Legendre moments of SPF γ = (1 − g2)/(1 − g1) and δ is defined as a function of the first g1
and third g3 Legendre moments of SPF δ = (1 − g3)/(1 − g1). The first Legendre moment g1 is
commonly termed as the anisotropy factor g. Bodenschatz et al. demonstrated that higher-order
Legendre moments carry information of large-angle scattering [17]. Two different approaches
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Fig. 2. Basic workflow of the proposed methodology. SRR that can be efficiently simulated
with the simplified PTM but consequently subject to significant simulation errors is rapidly
regressed to accurate SRR that could be directly obtained by much slower Monte Carlo
simulations utilizing the realistic PTM. The regressed reflectance is used to substantially
speed-up (up to 480 fold) the preparation of inverse models for estimation of optical properties
from measured and calibrated SRR.

were used in the MC simulations to formulate the PTM that followed the work of Naglič et al.
[18] (Fig. 1).

The first, simplified PTM, assumed a laterally uniform interface that took into account only the
mismatch between the refractive indices of the sample (nsamp=1.33) and optical fibers (nfib=1.452)
[9]. Each MC simulation included at least 108 photon packets that were launched uniformly with
respect to the numerical aperture (NA=0.22) and diameter (200 µm) of the optical fiber core. To
attain an acceptable and consistent signal-to-noise ratio of the SRR collected through the optical
fibers, the MC simulations were terminated when the total weight of the photon packets, collected
through the optical fiber with the largest SDS exceeded 1000. Due to the lateral uniformity of
the PTM, the backscattered light was collected through a radially symmetric detection scheme
(annual rings) centered at the position of the source optical fiber. The SRR collected through the
5 remaining fibers was derived from the output of the radially symmetric detection scheme.
The second, realistic PTM, accounted for the reflections from the polished stainless steel

(0.5), the refractive index of the optical fibers (nfib = 1.452) [9] and the refractive index of the
black epoxy resin (nepoxy = 1.6) (EpoTek 353ND Black, Epoxy Technology Inc., MA, USA),
which were found to significantly affect the simulated reflectance [11,19]. Reflectivity of the
stainless steel was measured by observing the attenuation of a reflected laser diode beam (670 nm)
(Newport Optical Power Meter 1936-C and Thermopile Sensor 818P-001-12) and the reflectivity
of the black epoxy resin was calculated by Fresnel’s equations. Once the photon packet hits the
polished stainless steel or black epoxy surface of the probe tip, it reflects with a probability that
equals reflectivity, otherwise it is considered completely absorbed Since the realistic PTM is
not laterally uniform, the radial symmetry of the detection scheme breaks down and hence the
reflectance was collected only through the individual optical fibers. To attain a signal-to-noise
ratio of the simulated SRR similar to the simplified PTM, the minimum number of launched
photon packets was increased by the ratio between the surface area of the most distant optical
fiber and the corresponding annual ring of the radially symmetric detection scheme used for the
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Fig. 3. Illustration of the framework that includes training of the ANN-based RRMs
that rapidly map SRR from the simplified PTM to the realistic PTM and training of the
inverse models for estimation of optical properties from the SRR valid for the simplified
or realistic PTMs. The RS and RR stand for reflectance at one source-detector separation,
valid for the simplified and realistic PTMs, respectively. The SRRS and SRRR stand for the
spatially resolved reflectance valid for the simplified and realistic PTM, respectively. The OP
stands for optical property. (left) The SRRs simulated with the simplified PTM are passed
through the inverse models for estimation of optical properties from the SRR valid for the
simplified PTM. (right) The SRRs simulated with the realistic PTM are passed through the
inverse models for estimation of optical properties from the SRR valid for the realistic PTM.
Ideally, given that the RRM does not introduce additional errors into the regressed SRR, the
estimation errors of the two inverse models should be similar and hence the inverse model of
the simplified PTM serves as a performance baseline.
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simplified PTM. Consequently, at least 40 × 108 photon packets were launched and the same MC
termination criterion was used as for the simplified PTM.

2.3. Datasets

In this subsection we define the SRR datasets that were used to prepare and evaluate the RRM
that maps the SRR valid for the simplified PTM to the SRR valid for the realistic PTM and the
inverse models for estimation of optical properties. An overview of the datasets is provided in
Table 1 and Fig. 3 shows the use of individual datasets within the proposed framework. Datasets
denoted with letter T were utilized to train the ANN-based RMMs and inverse models, datasets
denoted with letter V were utilized to control (validate) the training process and datasets denoted
with letter E were used to test (independently evaluate) the trained ANNs. The range of optical
properties was selected based on the values commonly reported for biological tissues [1,20–23].
However, the selected range can be customized to accommodate sample and application-specific
requirements.
The points along the absorption coefficient (µa) and reduced scattering coefficient (µ′s) axes

are equally spaced and form a regular grid in the µa − µ′s plane. However, the points in the plane
formed by the γ and δ subdiffuse SPF quantifiers are not located on a regular grid but are instead
uniformly distributed in a way that includes the points that are laying on the boundary of the
γ − δ domain. We accomplish this by first uniformly distributing sample points along the γ
axis within the selected range of γ values. At each γ sample point we compute intersections
with the domain boundary of the GK [24] scattering phase function in the γ − δ plane. The
number of uniformly distributed sample points along the δ axis between the two intersections is
selected in a way that keeps the distance between the sample points under a predefined value dδ.
Consequently, the total number of points in the γ − δ plane is specified for each dataset. The
distributions of sample points for all of the optical properties are presented in Fig. 4. All MC
simulations of SRR were based on the Gegenbauer kernel (GK) [24] SPF. In the following, we
provide a short description of the three groups of datasets summarized in Table 1.

Fig. 4. Visualization of optical properties defined by the datasets summarized in Table 1.
Red line shows the valid domain of γ and δ subdiffusive quantifiers for the GK scattering
phase function.

1. Datasets that were used to prepare inverse models for estimation of optical properties from
the SRR valid for the simplified PTM.
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Table 1. Summary of datasets that includes the total number of SRR samples (NSRR), range of the
optical properties (µa , µ′s , γ and δ), source of the dataset (MC simulations or ANN-based reflectance

regression model (RRM)) and probe tip model (PTM) complexity (simplified (S) or realistic (R)).

Dataset name NSRR µa (cm−1) µ′s (cm−1) γ δ Source PTM

TIM,S 108500 0.00-12.00 5.00-35.00 2.01-2.29 2.69-3.71 MC S

VIM,S 1680 0.19-11.82 5.30-32.85 2.06-2.27 2.84-3.68 MC S

EIM,S 512 0.00-12.00 5.00-35.00 2.09-2.20 2.83-3.52 MC S

TRRM,S 4335 0.00-12.00 5.00-35.00 1.99-2.31 2.58-3.82 MC S

TRRM,R 4335 0.00-12.00 5.00-35.00 1.99-2.31 2.58-3.82 MC R

ERRM,S 1024 0.00-12.00 5.00-35.00 1.99-2.31 2.58-3.82 MC S

ERRM,S 1024 0.00-12.00 5.00-35.00 1.99-2.31 2.58-3.82 MC R

TIM,R 108500 0.00-12.00 5.00-35.00 2.01-2.29 2.69-3.71 RRM R

VIM,R 1680 0.19-11.82 5.30-32.85 2.06-2.27 2.84-3.68 RRM R

EIM,R 512 0.00-12.00 5.00-35.00 2.09-2.20 2.83-3.52 MC R

• The TIM,S dataset was used to train the inverse models (35 equally spaced points
along the µa axis, 50 equally spaced points along the µ′s axis and 62 points in the
γ − δ plane).

• The VIM,S dataset was used to monitor the progress and stop the training of the
inverse models (12 equally spaced points along the µa axis, 10 equally spaced points
along the µ′s axis and 14 points in the γ − δ plane).

• The EIM,S dataset was used to independently evaluate the errors of the inverse models
(8 equally spaced points along the µa axis, 8 equally spaced points along the µ′s axis
and 8 points in the γ − δ plane).

2. Datasets that were used to prepare RRMs that map SRR from the simplified to the realistic
PTM.

• The TRRM,S and TRRM,R datasets were used to train the RRMs (17 equally spaced
points along the µa axis, 17 equally spaced points along the µ′s axis and 15 points in
the γ − δ plane).

• The ERRM,S and ERRM,S datasets were used to independently evaluate the errors of
the RRMs (8 equally spaced points along the µa axis, 8 equally spaced points along
the µ′s axis and 16 points in the γ − δ plane).

3. Datasets that were used to prepare inverse models for estimation of optical properties from
the SRR valid for the realistic PTM.

• The TIM,R dataset was regressed from the TIM,S dataset and used to train the inverse
models.

• The VIM,R dataset was regressed from the VIM,S dataset and used to monitor the
progress and stop the training of the inverse models.

• The EIM,R dataset was used to independently evaluate the errors of the inverse models.

2.4. Reflectance regression model (RRM)

The RRMs that map SRR from the simplified PTM to the realistic PTM were based on deep
ANNs. One ANN model was trained for each SDS. The five inputs of the ANN-based RRMs
were formed by the reflectance value at the selected SDS and the corresponding absorption
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coefficient µa, reduce scattering coefficient µ′s and SPF quantifiers γ and δ. The output of each
ANN-based RRM was defined as the relative difference between the reflectance values at the
selected SDS that were simulated with the simplified and the realistic PTM. The regression
ANNs were trained using the TRRM,S dataset as the input and the relative difference between
TRRM,S and TRRM,R as the output. A small three-layer deep ANN topology was used with 8, 4
and 1 nodes in the individual layers. A softplus activation function was applied to the first two
layers and a hard-sigmoid activation function to the output layer. The training datasets TRRM,S
and TRRM,R were gradually reduced in size as summarized in Table 2 and shown in Fig. 4 to
obtain an estimate for the smallest dataset that is required to train sufficiently accurate RRMs.
The training of the ANNs was based on the Adam optimizer [25] using mean squared error

cost function and fixed learning rate of 10−3. Due to the stochastic nature of the training process,
10 RRMs were trained for each SDS and dataset size. Subsequently, the model with the lowest
regression error on the ERRM,S dataset was selected.

Table 2. Summary of the decimated TRRM,S and TRRM,R datasets used to train the ANN-based
RRMs that map SRR from the simplified PTM to the realistic PTM.

Total number of SRR samples

Parameter 4335 1215 375 225 135 36

µa 17 9 5 5 3 3

µ′s 17 9 5 5 3 3

γ 5 5 5 3 5 2

δ 3 3 3 3 3 2

2.5. Inverse models

Dedicated ANN-based inverse models for estimation of optical properties from SRR were
prepared for the simplified PTM and for the realistic PTM. The inverse models were prepared
following our methodology presented in [26]. The inverse models for the simplified and realistic
PTM were trained using the TIM,S and TIM,R datasets, respectively. The inputs of each inverse
model were formed by the 5 SRR values collected through the optical fibers and one output
represented the estimated optical property. A five-layer deep ANN topology was used with 30, 20,
10, 5 and 1 nodes in the individual layers. A linear activation function was used in the first layer, a
hyperbolic tangent activation function was used in the hidden layers and a hard-sigmoid activation
function was used in the output layer. The training of the ANNs was based on the Adam optimizer
[25] using mean squared error cost function and adaptive learning rate that exponentially decayed
with the number of training epochs 10−3 · e−epoch/1500. The training process was limited to 10000
epochs and was stopped early if the value of the cost function on a small validation dataset,
VIM,S for the simplified PTM and VIM,R for the realistic PTM, did not sufficiently improve for
500 consecutive training epochs. Due to the stochastic nature of the training process, 5 inverse
models were trained for each optical property and PTM. Subsequently, the inverse model with the
lowest estimation error was selected. For notation simplicity, the inverse models prepared for the
simplified PTM will be referred to as IMS and the inverse models prepared for the realistic PTM
will be referred to as IMR,n, where n stands for the number of SRRs used to train the underlying
RRM that produced the correspondent TIM,R dataset (e.g. IMR,1215)

2.6. Turbid phantoms

We prepared five liquid turbid phantoms comprising a mixture of absorbers and scatterers
following the procedure described in [18]. A green molecular dye found in fountain pen inks
(Live Line Green) was used as the absorber. A 10mm cuvette (Hellma Optik GmbH, Jena,
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Germany) and a cuvette holder (CUV-UV/VIS, Avantes, Apeldoorn, The Netherlands) were used
to measure the absorption coefficient µa of diluted molecular dye by applying Beer-Lambert
law to the attenuation of a collimated light beam, transmitted through the cuvette. Aqueous
suspensions of 0.525 ± 0.01 µm and 2.56 ± 0.04 µm polysterene particles (microParticles GmbH,
Berlin, Germany) were used as scatterers. The scattering coefficient and SPF quantifiers γ and δ
of the liquid suspensions were computed using the Mie theory and the wavelength dependence of
the polystyrene refractive index was taken from [27]. The MC simulations of turbid phantoms
required numerical sampling of the scattering angles, which was implemented as detailed in [28].
The optical properties of the five turbid phantoms are summarized in Table 3.

Table 3. The range of optical properties (µa , µ′s , γ and δ) spanned by the five liquid turbid
phantoms (TP) that were prepared to experimentally validate the inverse models and the average
diameter d and standard deviation σ of polystyrene particles in the individual turbid phantoms.

TP µa (cm−1) µ′s (cm−1) γ δ d (µm) σ (µm)

Mien,1 0.00 28.08-34.05 1.53-1.93 2.23-2.95 2.56 0.04

Mien,2 0.00 18.71-22.69 1.53-1.93 2.23-2.95 2.56 0.04

Mien,3 0.00 9.38-11.37 1.53-1.93 2.23-2.95 2.56 0.04

Miea,1 0.00-4.72 17.24-25.43 2.03-2.27 3.10-3.55 0.525 0.01

Miea,2 0.00-4.72 8.63-12.73 2.03-2.27 3.10-3.55 0.525 0.01

2.7. Experimental setup

Experimental validation was based on liquid turbid phantoms with known optical properties.
The turbid phantoms were poured into a cylindrical beaker with a diameter of 19.5mm and
a height of 30mm, coated with a black matte paint to reduce reflections from walls and stray
light pollution. A custom-made linear array optical fiber probe (FiberTech Optica Inc., Ontario,
Canada) with a 6.1mm stainless steel housing and six 200 µm optical fibers (220, 440, 660, 880,
and 1100 µm SDS) was dipped about 5mm deep into the turbid phantoms. The turbid phantoms
were illuminated by the first optical fiber that was coupled to a broadband halogen light source
(AvaLight-Hal LS, Avantes, Apeldoorn, The Netherlands). The backscattered light collected
through the remaining five optical fibers was dispersed onto a camera (acA1920-150um, Basler,
Ahrensburg, Germany) by a fiber-coupled imaging spectrograph (ImSpector V10E, 400-1000
nm, Specim, Spectral Imaging Ltd., Oulu, Finland). The measured spectra were corrected for the
dark response of the sensor array and normalized by the dark corrected reflectance of a standard
diffuse tile (WS-2, Avantes, Apeldoorn, The Netherlands). A more detailed description of the
measurement setup can be found in [29].

3. Results and discussion

The training process of RRMs was repeated 10 times for each dataset size summarized in Table 2
and visualized in Fig. 4. The best RRM was selected based on the mean absolute relative error
between the regressed ERRM,S and simulated ERRM,R SRR datasets. The relative errors of the
RRM as a function of the number of SRR samples in the training set is summarized in Fig. 5.
The SRR regression errors begin to significantly increase if the training dataset is reduced to less
than 225 SRR samples. The error maps in Fig. 6 provide visualization of the reflectance errors as
a function of the optical properties. The relative errors shown in the maps were computed with
respect to the reflectance values obtained by RRMs that were trained by the full size of the training
dataset with 4335 SRR samples. The calculated errors are unbiased and start to significantly
increase only for the two smallest training datasets with merely 135 and 36 SRR samples. To
further validate the performance of the RRMs that map SRR from the simplified to the realistic
PTM, we trained seven sets of inverse models for estimation of optical properties, namely IMS,
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IMR,4335, IMR,1215, IMR,375, IMR,225, IMR,135, IMR,36. The errors of optical properties µa, µ′s
and γ estimated by the inverse models were independently evaluated using the EIM,S dataset for
IMS and EIM,R dataset for IMR,4335 through IMR,36 (Fig. 7). The evaluation results confirm, that
a small training set of merely 225 SRR samples is enough to prepare sufficiently accurate RRMs
and from there inverse models (IMR) for estimation of optical properties.

Fig. 5. Distribution of the relative reflectance errors for the realistic PTM at 5 SDS obtained
by the RRMs as a function of the training dataset size. The total number of SRR samples in
the training datasets varies from 4335 (left) to 36 (right).

To highlight the computational efficiency of the proposed regression framework, we measured
the MC simulation times required to prepare SRRs of comparable quality at 16 points representing
the corners of the TIM,S dataset using the simplified and realistic PTMs. The MC simulations for
the simplified PTMwere terminated when the total weight of the photon packets collected through
the annual ring representing the optical fiber with the largest SDS exceeded 1000. Likewise, the
MC simulations for the realistic PTMwere terminated when the total weight of the photon packets
collected through the optical fiber with the largest SDS exceeded 40000. The two termination
criteria produced reflectance of comparable quality on the most distant optical fiber. The MC
simulations on NvidiaTM Geforce GTX 1070 GPU took 242 s for the simplified PTM and 9533 s
for the realistic PTM. The ratio between the two computational times ≈ 40 tightly follows the
ratio between the surface areas of the optical fiber and of the corresponding annual ring. The
time required by the RRM to map the SRR from the simplified to the realistic PTM was found
negligible. Since an accurate RRM that maps SRR from the simplified PTM to the realistic PTM
can be derived from a small training dataset of merely 225 SRR samples, the total time required
to prepare IMR,225 is further reduced by a factor of 108500/225 ≈ 480 (given that a training
dataset for a simplified PTM is readily available).

From the timing data (Nvidia GTX 1070) we can estimate that the preparation of the datasets
required to deploy the RRM in our study takes 19 days for TIM,S, 1.5 days for TRRM,R and 1 hour
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Fig. 6. Absolute relative error maps of reflectance that was regressed from SRR valid for
the simplified PTM to SRR valid for the realistic PTM as a function of the number of SRR
samples that were used to train the ANN-based RRMs. The relative errors are provided for
three SDS, namely (first row) 220 µm, (second row) 660 µm and (third row) 1100 µm.

for TRRM,S (assuming that the datasets used to train the RRM contain 225 SRR samples). In
contrast, without using the proposed RRM, the simulations of TIM,R dataset, required to prepare
the inverse models for realistic PTM, would take about 748 days.
To demonstrate the additional noise reduction attained with the proposed framework, we

compared the spread of 100 reflectances simulated with the realistic PTM to the spread of
100 reflectances simulated with the simplified PTM and regressed to reflectances valid for the
realistic PTM. The simulations were performed with 107 photon packets for a selection of optical
properties that exhibits the highest simulation noise: µa = 12 cm−1, µ′s = 5 cm−1, γ = 2.12 and
δ = 3.0. The results presented in Fig. 8 show that the spread of reflectances valid for the realistic
PTM is much smaller for the regressed reflectances that benefit from the radially symmetric
detection scheme used in the MC simulations for simplified PTM. Note that the average values of
the simulated and regressed reflectances match almost perfectly.
Finally, we validated the proposed framework experimentally. For this purpose, two sets of

measurements were collected from nonabsorbing and absorbing liquid turbid phantoms with
well-defined optical properties summarized in Table 3. The nonabsorbing liquid phantoms were
prepared using 2.56 µm polystyrene spheres and the absorbing phantoms were prepared using
0.525 µm polystyrene spheres and a green molecular absorber. The calibration factors that map
the MC simulated SRR to the measured SRR were computed by dividing the MC simulated
SRRs of nonabsorbing liquid phantoms and the corresponding measured SRRs. Ideally, the
values of calibration factors at a given SDS should be the same for all the turbid phantoms.
The values of calculated calibration factors for the 5 SDSs are shown in Fig. 9. The top row
shows the calibration factors calculated from reflectance of optical phantoms simulated with the
simplified (left) and realistic PTM (right) at each SDS. The bottom row shows the corresponding
coefficients of variation (CV) for the calibration factors. One can clearly see that the calibration
factors computed from the reflectance simulated with the simplified PTM do not match within
a particular SDS and are biased in comparison to the calibration factors computed from the
reflectance simulated with the realistic PTM. From there it follows that the CV of the calibration
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Fig. 7. Root mean square errors (RMSE) and relative root mean square errors (RRMSE)
of the absorption coefficient µa, reduced scattering coefficient µ′s and SPF quantifier γ,
estimated by inverse models for the realistic PTM as a function of the size (4335, 1215, 375,
225, 135 and 36 SRR samples) of the dataset that was used to train the underlying RRM.
Green line shows the performance of the inverse model for the simplified PTM that does not
depend on the properties of the RRM and thus serves as a baseline.

Fig. 8. Spread of 100 reflectance points simulated with the realistic PTM (red) and spread
of 100 reflectance points simulated with the simplified PTM and regressed to the realistic
PTM (blue). The reflectance points were simulated for optical properties (µa = 12 cm−1, µ′s
= 5 cm−1, γ = 2.12 and δ = 3.0) that were found to produce the noisiest reflectance.



Research Article Vol. 11, No. 7 / 1 July 2020 / Biomedical Optics Express 3886

factors computed from the reflectance simulated with the simplified PTM is nearly 10%, while
the CV of the calibration factors computed from the reflectance simulated with the realistic PTM
is merely 1%. Further analysis and discussion on the sources of the observed mismatch and bias
of the calibration factors computed from the reflectance simulated with the simplified PTM can
be found in [11]. Consequently, the calibration factors at each SDS were smoothed by fitting a
second-order polynomial to the calibration factors as a function of wavelength. The calibrated
measured reflectances of the absorbing liquid phantoms Miea,1 and Miea,2 were passed through
the inverse models IMR,225. The SRR of the absorbing turbid phantoms for the realistic PTM
were also simulated using the expected values of optical properties and the Mie or GK SPFs. The
parameters of GK SPF aGK and gGK were calculated by matching the values of γ and δ of the
Mie SPF that holds for the liquid phantoms. Note, that some pairs of γ and δ values cannot be
attained by the GK SPF and were thus omitted from the SRR simulations. The optical properties
estimated from the simulated SRR served as a baseline for the optical properties estimated from
the measured SRR. The estimated values of optical properties are shown in Fig. 10 and the
estimation errors are summarized in Table 4.The obtained RMSE and RRMSE errors of the
estimated optical properties are similar for the simulated and the measured SRR, which indicates
that the inverse models are unbiased. A slightly higher error of the estimated optical properties
can be observed for the Miea,2 turbid phantom (measured and simulated SRR), in particular at
longer wavelengths, where the values of µ′s drop bellow 9 cm−1. The slightly increased errors
could be explained by the influence of the SPF on the reflectance that is stronger at low µ′s values,
where the GK SPF that was used to simulate the training datasets of the inverse models cannot
sufficiently account for the details of the Mie SPF that holds for the turbid phantoms.

Fig. 9. (top) Reflectance calibration factors for five SDS calculated from reflectance
simulated with the simplified and realistic PTM for three non-absorbing liquid turbid
phantoms Mien,1 , Mien,2 and Mien,3. (bottom) Coefficient of variation (CV) for the
calibration factors at each SDS for the simplified and realistic PTM.

Accurate MC simulation of reflectance for optical fiber probes are challenging and require
careful consideration of all the details in the simulation model, in particular if used for estimation
of optical properties by inverse models [11]. At small SDS that are frequently used with optical
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Fig. 10. Optical properties of the Miea,1 and Miea,2 turbid phantoms, predicted by IMR,225.
Red lines - optical properties estimated from SRR simulated with the Mie SPF using the
realistic PTM, blue lines - optical properties estimated from the measured SRR, black lines -
true/expected values of the optical properties.

Table 4. Root mean square (RMSE) and relative root mean square (RRMSE) errors of optical
properties estimated for the Miea,1 (top rows) and Miea,2 (bottom rows) absorbing turbid phantom

from the SRR simulated with the GK and Mie SPFs using the realistic PTM, and from measured SRR.

Optical property Simulated GK Simulated Mie Measured

RMSE(RRMSE) RMSE(RRMSE) RMSE(RRMSE)

µa (cm−1)
0.023 0.030 0.022

0.032 0.066 0.094

µ′s (cm−1)
0.10 (0.58%) 0.13 (0.71%) 0.30 (1.69%)

0.14 (1.65%) 0.22 (2.60%) 0.25 (2.51%)

γ
0.015 (0.75%) 0.033 (1.53%) 0.027 (1.26%)

0.023 (1.10%) 0.029 (1.38%) 0.050 (2.32%)

fiber probes, the inverse models need to take into account additional scattering phase function
quantifiers such as γ and δ, which are related to second and third Legendre moments of the SPF,
respectively. The additional parameters significantly increase the number of MC simulations
required to prepare inverse models for estimation of optical properties. Furthermore, if a realistic
description of the PTM is also used in the MC simulations, the symmetry of the detection scheme
breaks down and the number of photon packets required for good quality SRRs further increases
by about two orders of magnitude. Consequently, the total simulation time required to prepare
datasets becomes excessively long and impractical even when using the latest generation GPUs.
To overcome these limitations, many existing studies have used a simplified PTM [9,10,30–32],
eventhough it has been shown [1,11,12] that such simplifications lead to large simulation errors
of SRR. The proposed framework overcomes these limitations, and allows simulation of SRR
using a realistic PTM at the speed and quality that matches MC simulations with a simplified
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PTM. The additional computational steps are based on efficient and accurate deep ANN-based
RRMs, with negligible computational overhead. The proposed framework can be particularly
beneficial for applications that utilize a linear layout of optical fibers in the probe, since the effect
of the PTM on the reflectance [11] has been shown to increase with the SDS.

We believe that the presented framework can be applied to different measurement settings and
in general take the efficiency and quality of MC simulations to a new level.

4. Conclusions

In this paper we present an efficient framework for MC simulation of SRR, that accounts for all
the details of the optical fiber probe tip. For this purpose, we used deep neural networks that
map the SRR, simulated with the simplified PTM to SRR, simulated with the realistic PTM. The
results of the RRM were extensively validated through the use of inverse models for estimation
of optical properties from simulated SRR and measured SRR of turbid phantoms. The results
show that 225 SRR samples are sufficient to derive an accurate deep ANN-based RRM, which is
about 480-fold less than the number of SRRs (108500) required to train a typical inverse model
for estimation of optical properties. The remaining SRR samples can be efficiently simulated
with the simplified PTM and rapidly regressed to SRR valid for the realistic PTM. Using the
proposed methodology, it is possible to prepare high-quality inverse models for realistic PTM in
approximately the same time as for simplified PTM.
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