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Lymph node metastasis prediction of papillary
thyroid carcinoma based on transfer learning
radiomics
Jinhua Yu 1,2, Yinhui Deng 1,3, Tongtong Liu1, Jin Zhou4, Xiaohong Jia5, Tianlei Xiao1, Shichong Zhou4,

Jiawei Li4, Yi Guo1, Yuanyuan Wang 1,2✉, Jianqiao Zhou 5✉ & Cai Chang 4✉

Non-invasive assessment of the risk of lymph node metastasis (LNM) in patients with

papillary thyroid carcinoma (PTC) is of great value for the treatment option selection. The

purpose of this paper is to develop a transfer learning radiomics (TLR) model for preoperative

prediction of LNM in PTC patients in a multicenter, cross-machine, multi-operator scenario.

Here we report the TLR model produces a stable LNM prediction. In the experiments of

cross-validation and independent testing of the main cohort according to diagnostic time,

machine, and operator, the TLR achieves an average area under the curve (AUC) of 0.90. In

the other two independent cohorts, TLR also achieves 0.93 AUC, and this performance is

statistically better than the other three methods according to Delong test. Decision curve

analysis also proves that the TLR model brings more benefit to PTC patients than other

methods.
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According to the cancer statistics1, thyroid cancer causes
567,000 cases worldwide, and the incidence rate is ranked
ninth. Global incidence ratio of women is 10.2 per

100,000 people, which is three times that of men. The incidence
of thyroid cancer has continued to increase in many countries
since the 1980s. This is mainly due to the increase of the papillary
thyroid carcinoma (PTC) detection rate through the improve-
ment in detection and diagnosis2.

About 84% of patients with thyroid cancer are PTC, which is
the most common thyroid malignancy3,4. Between 1974 and
2013, the average incidence rate of PTC was about 6.66%, the
incidence-based mortality 0.20% in the United States of Amer-
ica3. Although PTC is regarded as an indolent tumor, a portion of
cancer cells will metastasize to lymph nodes around the thyroid
gland5, mainly including central lymph node metastasis (LNM)
and lateral cervical LNM6. Usually, LNM occurs first in the
central region, followed by the lateral region. LNM is an
important indicator of PTC prognosis, scope and way of surgery,
and is also an important risk factor for high recurrence rate and
low survival rate of patients7,8.

With the continuous progress of diagnostic techniques, espe-
cially the resolution improvement of the ultrasonography, the
detection rate of small thyroid nodules keeps increasing1. Over-
diagnosis of PTC has become a global consensus9. The potential
risk of LNM of PTC has led to a large number of PTC patients
received treatment such as total thyroidectomy and lymph node
dissection (LND), resulting in widespread overtreatment10.
Ultrasound assessment of cervical lymph nodes is recommended
for all patients with confirmed or suspected thyroid nodules5.
Preoperative ultrasound is a valuable tool in assessing lateral
cervical LNM in patients with PTC and can provide relatively
reliable information of the lateral neck to assist in surgical
management11. However, the identification of central cervical
LNM by ultrasound has encountered significant challenges. Pre-
operative ultrasound can only detect 20–31% of central cervical
LNM, and may only change the surgical procedure of 20%
patients12–14. There is an urgent need for a nondestructive and
efficient method for predicting the risk of LNM in PTC patients
and guiding the clinical diagnosis and treatment process.

Several studies have been proposed for the LNM risk assess-
ment of PTC patients. Some manifested that tumor size, tumor
location, tumor extension, microcalcifications, and Hashimoto’s
disease are independent risk factor of LNM9,15–18. Some com-
bined the above risk factors with blood markers such as thyroid
stimulating hormone (TSH) and antithyroglobulin antibodies
(TGAb) to construct LNM prediction models for PTC
patients19,20. In recent years, radiomics has attracted much
attention in the precise diagnosis. Radiomics-based methods were
also proposed for LNM prediction in PTC patients by converting
ultrasound images into mineable data21,22. These methods
extracted features such as intensity, boundary, texture, and
wavelet from the ultrasound images, and established the rela-
tionship between these high-throughput features and LNM status.
Among the above studies, whether based on clinical statistics or
radiomics, since the completeness of the extracted image features
is difficult to guarantee, the LNM prediction performance was not
ideal with the area under the receiver operating characteristic
(ROC) curve (AUC) on independent testing set approximately
ranged from 0.67 to 0.78.

In this study, we establish a transfer learning radiomics (TLR)
model based on B-mode ultrasound images of thyroid lesions to
predict LNM risk of PTC patients. In multicenter, cross-machine,
multi-operator scenario, we comprehensively compare the diag-
nostic performance of clinical statistical model (SM), traditional
radiomics model (RM), nontransfer learning model, and TLR
model. The results show that the TLR achieve stable LNM

prediction performance when the data collection protocol is
inconsistent, which is close to the actual clinical diagnosis
scenario.

Results
Main cohort. We first divided the main cohort into cross-
validation set and testing set in order of diagnosis time with the
ratio of 8:2. Figure 1 illustrated the ROC curves of the LNM
prediction results of the four models on the main cohort. From
the experimental results, the AUCs of the four models on the
testing set were 0.83, 0.64, 0.82, and 0.93, respectively. The cor-
responding quantitative indexes of four models were summarized
in Table 1.

In the main cohort, three types of ultrasound machines (GE,
SuperSonic, and Kretztechnik) collected the most data. In order
to verify the impact of different ultrasound machines on the
prediction results, we extracted the data of these three types of
machines as testing sets and data of other machines as training
sets in turn.

In addition, in order to verify the operator’s impact on the
LNM prediction results, we used the data collected by the three
sonographers, who contributed the most in the main cohort
collection, as independent testing sets, while data collected by
other 21 sonographers as training sets.

When using the data from three machines and three doctors as
the independent testing sets, the average ROC values of TLR was
0.887. The ROC curves of the TLR model were shown in Fig. 2,
and the corresponding quantitative indexes were summarized in
Supplementary Tables 1 and 2, respectively.

Independent testing cohort. In independent testing set 1,
ultrasound image of each nodule of the multifocal-lesion case is
sent to the transfer learning model, and once a nodule is pre-
dicted by the model as LNM, the case is classified as LNM
positive. Another 513 PTC cases acquired from different hospitals
were used independent testing set 2.

The ROC curves and decision curves of the four models in the
two independent testing set were compared in Fig. 3. The
quantitative index comparisons of the four models and the
Delong test results on the three cohorts were summarized in
Table 2.

Figure 4 showed the ultrasound images of 20 cases without or
with LNM, respectively, and the visualization of their corre-
sponding network features. It can be seen that there was no
consistent and significant differences between the case of non-
LNM and LNM in terms of the characteristics of the original
ultrasound images. However, when the original images passed the
transfer learning network, the network features showed obvious
differences.

We also compared the proposed TLR model with VGG,
ResNet, and Inception ResNet in the three cohorts. The
quantitative index comparisons results on the three cohorts were
summarized in Supplementary Table 3.

To further illustrate the effect of transfer learning strategy and
hyperparameter optimization based on simulated annealing
algorithm on the TLR model, an ablation experiment was carried
out. For the convenience of description, we denote the TLR with
or without the transfer learning as T+ and T−, and the TLR with
or without hyperparameter optimization as H+ and H−.
Supplementary Table 4 gives the experimental results.

The used graphics card is TITAN XP with the CUDA core
number as 3840 and the graphic memory as 45008MB. For the
coding of the deep model, the applied TensorFlow is the GPU
version of 1.14.0 and the Keras is utilized with its 2.3.0 version.
For the establishment of one deep model in our study, the model
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training process generally takes 6 days with the utilization of
hyperparametric optimization. For the prediction on one image
data, the time cost of the model inference is around 10 ms.

Discussion
Although PTC is generally an indolent tumor, LNM will occur in
an early stage. The most common site of LNM from the PTC is
the central compartment of the neck. The decision to perform
central LND during a thyroidectomy usually depends on whether
a lymph node suspected of being malignancy can be identified
preoperatively. If the node is known to spread to the central neck
node, the consensus is to delete all nodes in the area. However,

the utility of central LND for prophylactic reasons remains sig-
nificant controversial23. Undoubtedly, unnecessary cleaning of
the central lymph nodes will lead to more injury of recurrent
laryngeal nerve. LND of the lateral neck is involved in the
expansion of the surgery scope, the injury of the spinal accessory
nerve or vagus nerve, and the leakage of the chyle. Therefore,
LND is performed only in patients who are diagnosed as LNM
positive before surgery.

Ultrasound is an important method for lymph node detection.
It is recommended to perform cervical lymph node ultrasound
evaluation on all patients with confirmed or suspected thyroid
nodules5. It is obvious that ultrasound is particularly important
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Fig. 1 Comparison of ROC curves of LNM prediction in the main cohort by four models. a ROC curves in the cross-validation set, b ROC in testing set,
and c decision curves in the testing set. (SM statistical model, RM traditional radiomics model, NTLR nontransfer learning radiomics, TLR transfer learning
radiomics).

Table 1 Quantitative indexes of four models on main cohort data.

Method AUC ACC SENS SPEC PPV NPV MCC F1 score

SM Cross-validation 0.77 0.70 0.77 0.65 0.60 0.81 0.42 0.68
Testing 0.83 0.77 0.72 0.82 0.76 0.78 0.54 0.74

RM Cross-validation 0.67 0.64 0.68 0.62 0.55 0.74 0.29 0.61
Testing 0.64 0.62 0.71 0.57 0.50 0.76 0.27 0.58

NTLR Cross-validation 0.81 0.76 0.64 0.85 0.73 0.78 0.50 0.69
Testing 0.82 0.79 0.75 0.81 0.73 0.83 0.56 0.74

TLR Cross-validation 0.96 0.89 0.94 0.85 0.81 0.95 0.78 0.87
Testing 0.93 0.84 0.94 0.77 0.73 0.95 0.69 0.82
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for the LNM risk evaluation for PTC patients. LNM in the lateral
cervical region often have typical ultrasound features, including
microcalcifications, partially cystic appearance, increased vascu-
larization, and hyperechogenicity5. However, LNM in the central
region lacked these typical ultrasound features. Moreover, there
are anatomic areas of the central region that are not well visua-
lized by ultrasound, such as the posterior tracheal area, posterior

esophageal area, posterior pharyngeal area, and mediastinal area.
Thus, ultrasound has a relatively high accuracy in the detection
and diagnosis of LNM in the lateral region, In the identification of
central cervical LNM, ultrasound has encountered great
challenges24.

Furthermore, the diagnostic accuracy of ultrasound on LNM is
severely affected by operator differences. Therefore, we urgently
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independent testing set 1 and 2, respectively. b, d Decision curves in the independent testing set 1 and 2, respectively. (SM statistical model, RM traditional
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need a means to compensate for the lack of lymph node ultra-
sound evaluation, improve the accuracy of preoperative predic-
tion of cervical LNM, especially in the central region, assist in the
development of surgical procedures, reduce the damage of the
recurrent laryngeal nerve, blood vessels, and lymphatic vessels
in LND.

A number of studies have shown that certain features of
ultrasound examination have strong correlation with LNM, but
the conclusions of these studies were inconsistent and the accu-
racy of LNM prediction was not high. The related research on
LNM evaluation for PTC was divided into two categories: sta-
tistical methods based on clinical experience and computer-aided
diagnosis method.

Some univariate and multivariate analyses have shown that
ultrasound features including tumor size, thyroid invasion, and
microcalcifications are independent indicators of LNM of PTC (P
< 0.05)9,15,16,24–26. Wu et al. used Doppler blood flow imaging to
evaluate LNM, and concluded that tumor size, blood flow, and
occurrence of Hashimoto were independent factors for LNM in
PTC patients (P values were 0.004, 0.118, and 0.016, respectively)17.
Nie et al. compared ultrasound images with computed tomography
images of LNM in PTC patients. They found that tumor size, tumor
invasiveness, and tumor location were significantly associated with
LNM in the univariate analysis (P < 0.05)18.

In recent years, computer-aided diagnostics, especially machine
learning methods, have also been used in LNM prediction for
PTC patients. Jin et al. predicted the lateral LNM by establishing a
logistic regression model. Information of Hashimoto, invasive-
ness, multifocality, tumor number, central LNM number, TSH,
and TGAb serum levels had been included into modeling, and the
AUC of prediction was 0.78 in the cohort of 106 patients20. Liu
et al. introduced the radioimics method into the LNM prediction
of PTC patients. By extracting 614 features from each B-mode
ultrasound image, a prediction model was established by a clas-
sical machine learning method of support vector machine (SVM).
An AUC of 0.78 was obtained on the training set of 300 cases,
and an AUC of 0.73 on the test set of 155 cases22. In addition, Liu
et al. also analyzed the value of strain elastography for LNM
prediction. By performing leave-one-out cross-validation on a
dataset of 75 patients, it was shown that B-mode plus strain

elastography provided improved LNM prediction AUC from 0.81
based on B-mode images to 0.90 based on multimodality
images21.

It should be pointed out that the above machine learning-based
research was carried out under the conditions of single center,
fixed machine, and fixed image acquisition protocol. In the
multicenter, cross-machine, multi-operator scenario, the perfor-
mance of clinical diagnostic models and traditional radiomics
methods was greatly reduced, especially in the independent tests
of multifocal-lesion and cross-hospital sets. The mode based on
clinical information can only reach the AUC of 0.67, while the
traditional radiomics can only reach the AUC of 0.56 in inde-
pendent testing. This revealed several issues. First, the diagnostic
model based on clinical experience is greatly influenced by
observer variances. Second, the contribution of blood indicators
in diagnostic models was limited, indicating that these indicators
may not be the determinants of LNM prediction. Third, the high-
throughput features extracted in traditional radiomics are easily
affected by the imaging parameters. The performance was
degraded in multiple-center scenario, indicating the traditional
RM has poor generalization ability. Fourth, although studies have
verified the value of ultrasound elastography for LNM prediction
in small sample data, in current clinical PTC diagnosis and lymph
node examination, elastography is not a widely accepted mod-
ality. The use of multimodal ultrasound in the LNM prediction of
PTC patients is expected to further improve the performance of
the TLR model, which is what we will continue to do in the
future.

In this study, the main cohort was divided according to the
factor of diagnosis time, machine, and operator. Under different
data partitioning modes, more than 0.90 of AUC can be obtained
in the testing set, indicating that the TLR is robust to data
acquisition machines and data acquisition operator. When the
data collected by a certain device or a sonographer does not
appear in the training set, the TLR can also obtain a stable LNM
prediction performance. There are few studies for LNM predic-
tion in multifocal lesions PTCs because it is not possible to
determine which nodules have LNM among multiple ones. In this
study, we used multifocal lesions PTCs as an independent test set.
If the image of a tumor was determined by the TLR model to have

Table 2 Quantitative index comparisons of SM, RM, NTLR, and TLR on three cohorts.

Method AUC ACC SENS SPEC PPV NPV MCC F1 score

Testing set of the main cohort
SM 0.83 0.77 0.72 0.82 0.76 0.78 0.54 0.74
RM 0.64 0.62 0.71 0.57 0.50 0.76 0.27 0.58
NTLR 0.82 0.79 0.75 0.81 0.73 0.83 0.56 0.74
TLR 0.93 0.84 0.94 0.77 0.73 0.95 0.69 0.82
Independent testing set 1
SM 0.67 0.61 0.43 0.87 0.83 0.52 0.32 0.57
RM 0.55 0.51 0.36 0.72 0.65 0.44 0.08 0.47
NTLR 0.81 0.75 0.71 0.81 0.84 0.66 0.51 0.77
TLR 0.93 0.86 0.83 0.89 0.92 0.78 0.71 0.87
Independent testing set 2
SM 0.67 0.67 0.68 0.67 0.66 0.69 0.35 0.67
RM 0.57 0.60 0.47 0.69 0.53 0.64 0.16 0.50
NTLR 0.79 0.73 0.67 0.78 0.70 0.76 0.46 0.68
TLR 0.93 0.84 0.95 0.75 0.74 0.96 0.70 0.83
Significance level of Delong test for methods compared with TLR
Testing dataset SM RM NTLR
Main cohort 0.0025 <0.0001 0.0012
Independent set 1 <0.0001 <0.0001 <0.0001
Independent set 2 <0.0001 <0.0001 <0.0001

The bold values represent the best value of an index in the comparative experiments.
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LNM, the case was LNM positive. In this scenario, the TLR also
achieved an AUC of 0.93, indicating the validity of the TLR for
LNM prediction of multifocal lesions PTCs. For data from
another hospital that was completely different from the main
cohort in terms of imaging equipment and operators, the TLR
gave an AUC of 0.93 in LNM prediction. Delong test and decision
curve analysis (DCA) proved that the TLR was statistically better
than other methods and could bring consistent and significant
benefit to PTC patients than either the treat-none or treat-all-
patients scheme.

TLR gave stable high LNM prediction performance due to the
following characteristics of the transfer learning27,28. First, when a
deep learning model has shown good performance in a large
dataset, the model already has very strong capabilities in image
characterization. When transferring to a new task, it can avoid
overfitting problem in a new training dataset, which reduces the
amount of data required for modeling, and on the other hand,
improves the generalization capabilities of the modeling. Second,
the establishment of a new diagnostic model from a pretrained
model can greatly reduce the number of training parameters and
make the training process more stable and efficient. Besides, the
hyperparameter optimization based on the simulated annealing
algorithm largely ensures that the TLR converge to an optimal
hyperparameter combination. Experiments manifested the clin-
ical availability of the TLR model in a multicenter, cross-machine,
multi-operator scenario.

The prediction results of TLR can be well incorporated into the
existing PTC treatment guidelines. The 2015 American Thyroid
Association management guidelines for differentiated thyroid
cancer5 recommended that for patients with PTC <4 cm without
clinical evidence of LNM by clinical physical examination and
radiological examination (cN0), thyroid lobectomy alone can be

performed without LND; however, for patients either cytologi-
cally confirmed or highly suspicious for metastatic disease (cN1),
therapeutic LND is recommended5. According to the 2020
National Comprehensive Cancer Network clinical practice
guidelines for thyroid carcinoma28, PTC patients with cN1 need
to undergo total thyroidectomy and LND of involved compart-
ments, while PTC patients without cervical LNM can only
undergo lobectomy when tumor ≤4 cm. Consequently, the TLR
model can assist in clinical decision-making for PTC patients.
The prediction of LNM based on the TLR model can compensate
for the limitations of preoperative clinical and ultrasound
assessment of lymph nodes and allow PTC patients to receive the
most reasonable treatment. For example, for PTC less than 4 cm,
if cervical TNM is not detected by preoperative ultrasound but
predicted by the TLR model, central LND is preferred, or at least,
a second ultrasound examination, or other imaging examination
should be performed to minimize the missed diagnosis of LNM.

The TRL model can also play a role in the selection of active
surveillance strategies for papillary thyroid microcarcinoma
(PTMC) patients. Active surveillance rather than immediate
surgery of low-risk PTMC is receiving increasing attention5. Low-
risk PTMC refers to tumors that do not have the following
characteristics, including located adjacent to the trachea, possibly
invading the recurrent laryngeal nerve, fine-needle biopsy find-
ings suggesting high-grade malignancy, and presence of regional
LNM29,30. Therefore, by predicting the state of cervical LNM, the
TRL model can be used to judge whether the PTMC is suitable for
active surveillance rather than surgical treatment.

Methods
Patients. This study was approved by the institutional ethics committee of the
involved multicenters. Three datasets were included in this study. The first two
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Fig. 4 Visualization of network features of 20 cases with and without LNM, respectively. The left side shows the network features of 20 cases without
LNM, and right side shows 20 cases with LNM.
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datasets were selected from 3172 patients who underwent thyroid examination
from April 2015 to December 2017. Among 3172 patients, 1013 PTC cases with
unifocal lesions were used as the main cohort. The second dataset contained 368
PTC cases with multifocal lesions, which referred as the independent testing set 1.
The third dataset was from 1691 patients at two separate hospitals from October
2008 to September 2018. A total of 513 PTC cases of unifocal lesion were selected
and referred as the independent testing set 2. The data screening process for the
three datasets was illustrated in Fig. 5. Verbal informed consent was obtained from
all patients. The two corresponding authors of this article were authorized by the
ethics committee of Fudan University Shanghai Cancer Center and Ruijin Hospital

Affiliated to Shanghai Jiaotong University to supervise the informed consent. The
patient was informed at the time of ultrasound examination that the ultrasound
data might be used for research purposes. After obtaining the informed consent of
the patient, the patient’s identity information will be recorded in the “included
patients” list.

The inclusion criteria were: (1) patients underwent thyroid ultrasound diagnosis
and had clear B-mode ultrasound images, (2) patients confirmed to be PTC after
thyroidectomy, and (3) patients received LND and the ground truth of LNM was
according to the pathologic evaluation. The exclusion criteria were: (1) there were
measuring lines on the ultrasound images, (2) the nodules were too large to obtain

Patients underwent head
and neck surgery

(n = 3172)

Benign node
(n = 156)

Not PTC
(n = 57)

Malignant tumor
(n = 2959)

Surgery not on thyroid
(n = 204)

PTC with multifocal lesions
(n = 902)

PTC with multifocal lesions
(n = 902)

Incomplete US images
(n = 302)

US images with measuring
line

(n = 227)

Independent testing set 2
(n = 513)

Underwent preoperative
therapy
(n = 5)

Patients underwent head
and neck surgery

(n = 1691)

Independent testing set 1
(n = 368)

PTC with unifocal lesion
(n = 1853)

US images with measuring
line

(n = 794)

Underwent preoperative
therapy
(n = 46)

Main cohort
(n = 1013)

Benign node
(n = 572)

Not PTC
(n = 58)

Malignant tumor
(n = 1061)

Surgery not on thyroid
(n = 156)

PTC with unifocal or
multifocal lesion

(n = 905)

Multifocal lesions or US
images with measuring line

(n = 392)

Fig. 5 Process of the patient enrollment for main cohort and two independent testing sets. The left side shows the patient enrollment process of the
main cohort, the middle is the one of the independent testing set1, and the right side is the one of the independent testing set2.

Table 3 Patient characteristics of three cohorts.

Characteristics Main cohort Independent testing set 1 Independent testing set 2

LNM status P value LNM status P value LNM status P value

Yes No Yes No Yes No

Age (mean ± SD) 39.3 ± 11.5 44.8 ± 11.4 <0.0001 43.1 ± 11.7 46.4 ± 10.5 0.0046 41.7 ± 11.9 45.0 ± 12.3 0.0415
Sex – – <0.0001 – – 0.0022 – – 0.0067
Male 142 145 – 70 34 – 75 68 –
Female 261 465 147 117 143 227

Tumor diameter (mm) 15.0 ± 8.7 9.1 ± 5.3 <0.0001 15.3 ± 9.2 11.5 ± 7.0 <0.0001 12.6 ± 8.4 9.5 ± 6.0 <0.0001
Number of lesions 1 1 – 4.1 ± 2.3 3.9 ± 2.0 0.042 1 1 –
Kwak TIRADS 0.027 0.9404 0.782
4A 6.6% 18.4% 6.3% 9.9% – 3.2% 0.7% –
4B 32.1% 42.8% – 26.4% 36.0% – 5.5% 7.8% –
4C 45.2% 33.7% – 41.4% 45.9% – 64.7% 64.7% –
5 16.1% 5.1% – 25.9% 8.1% – 26.6% 26.8% –

Blood markers
TSH 2.2 ± 1.3 2.3 ± 2.0 0.6149 2.8 ± 5.2 2.3 ± 1.4 0.5437 3.0 ± 6.9 2.6 ± 4.0 0.9104
TGab 49.2 ± 151.9 59.1 ± 162.2 0.1187 106.5 ± 255.9 47.9 ± 151.5 0.0074 63.4 ± 172.0 101.1 ± 217.6 0.5553
TG 35.6 ± 68.0 28.20 ± 66.22 <0.0001 51.4 ± 94.4 30.9 ± 67.7 0.0274 36.4 ± 77.1 16.6 ± 28.8 0.0912
TPOAB 62.5 ± 193.9 59.2 ± 179.5 0.4127 61.2 ± 168.0 74.8 ± 205.1 0.644 56.7 ± 165.9 97.6 ± 236.0 0.5989

Total 403 610 217 151 218 295
1013 368 513
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images covering the complete outline of the nodules even by adjusting the position
of the scanning section, (3) patients received preoperative treatment, and (4)
missing clinical information, such as incomplete ultrasound images for multifocal
lesions and incomplete lymph node information. The patient demographics, the
size, number, and the Kwak TIRADS classification of the tumor, as well as the
blood markers of the main cohort, independent testing set 1, and independent
testing set 2 were summarized in Table 3. For multifocal-lesion cases in
independent testing set 1, every malignant nodule was confirmed by pathological
diagnosis after surgery.

The main cohort was used for the model establishment and the study of the
influence of various factors (diagnostic time, equipment, and operators) on the
modeling performance. Fifteen machines and twenty-two sonographers were
involved in data collection of the main cohort. The information of 15 machines and
22 sonographers were summarized in Supplementary Tables 5 and 6, respectively.
The two independent testing sets were used to evaluate the proposed LNM
prediction model.

Method overview. Each ultrasound radiologist involved in the acquisition of
ultrasound images had more than 5 years of experience in thyroid ultrasound.
Before collecting ultrasound data, all ultrasound radiologists underwent rigorous
training to standardize the imaging parameter adjustment method and the ultra-
sound scanning procedure of the thyroid and cervical lymph nodes according to
the AIUM practice guideline for performing thyroid ultrasound31. It is routinely
required to acquire images of the longitudinal and transverse sections of the target
nodules for subsequent analysis. For the large nodule beyond the display range of
the probe, the image covering the complete outline of the smaller part of the nodule
can be obtained by adjusting the position of the scanning section. All the data of
each subcenter were gathered and reviewed by two senior ultrasound radiologists,
and only the data that passed the quality control examination were included.

The main cohort was divided according to the three factors: diagnosis time,
ultrasound devices, and sonographers. For the diagnosis time factor, the data of
80% patients who were diagnosed earlier was used as the cross-validation set and
the last 20% as the testing set. For the ultrasound device factor, the data of three
types of ultrasound machines, which collected the most data, were used as three
testing sets in turn, and the data of other 14 machines were used as the
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Fig. 6 Structure of transfer learning model and illustrations of middle layer output of an LNM positive case and a negative case. The left side shows the
structure of our model, and the right side shows the middel layer output of two cases.

Table 4 Hyperparameter need to be optimized in model
training.

Index Hyperparameter Option

1 Neurons for top layers 128, 256, 512, 1024
2 Number of top layers range from 2 to 8
3 Neurons for the layer before

the output
32, 64

4 Dropout rate range from 0 to 0.5
5 Batch size 8, 16, 32
6 Epochs 50, 100, 150
7 Activation function in

top layers
softplus, relu, tanh, sigmoid,
linear, elu, softmax

8 Activation function for the
output layer

sigmoid, softmax

9 Kernel initializer uniform, normal
10 Optimizer “SGD,” “RMSprop,” “Adadelta,”

“Adam,” “Adamax,” “Nadam”
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corresponding training set. For the sonographer factor, the data collected by three
sonographers who contributed the most in the main cohort collection were used as
three testing sets in turn, and the data collected by other 21 sonographers as
corresponding training sets. By using different cohort partitioning methods, we aim
to test whether the TLR is robust to different factors in clinical LNM assessment.

When a TLR model was established on the main cohort, we further validated
the model on the two independent testing sets.

Transfer learning. Transfer learning is to improve learning process in new tasks
by transferring knowledge from related tasks that have already been learned32–34.
In recent years, transfer learning has been gradually applied to many fields of
medical image analysis, such as image segmentation, lesion localization, and lesion
pattern recognition35,36.

The transfer learning framework used in this paper was the Inception V3
model, which was well trained with the ImageNet data to realize the natural object
recognition. Figure 6 illustrated the proposed transfer learning model, the base part
of which was the Inception V3 and the top part was with the structure of five layers,
which is determined based on a comprehensive hyperparameter optimization
process. The parameters of the transfer network were further fine-tuned during the
training phase of our study. Ultrasound sonographers with more than 5 years of
experience defined the region of interests (ROIs) as the input to TLR model. The
ROI is a rectangle that covers a tumor lesion and 5% larger than the lesion.

The hyperparametric optimization is the most important part of the training
and determines the performance of the model. The hyperparameters included the
configuration parameters of the top part and the optimizing parameters of the
whole model. The hyperparameters that need to be optimized were summarized in
Table 4. The simulated annealing was used as the hyperparametric optimization
algorithm.

The principle of simulated annealing is based on the similarity between the
annealing process of solid matter and the general combinatorial optimization
problem37,38. The simulated annealing algorithm generally starts at a higher
temperature T, which corresponds to a larger parameter optimization space. The
algorithm repeats the following steps for the solution space determined by the
current hyperparameters: generating new solutions, calculating the difference
among solutions, accepting or discarding the iteration, and gradually decay the
temperature T value. As the temperature gradually decreases, the hyperparameter
space gradually shrinks. The current solution at the end of the algorithm is the
approximate optimal solution. The hyperparameter space of the TLR model shown
in Table 4 contains ten sets of hyperparameters. Among them, the values of
hyperparameters with indexes of 1–6 are ordered, we call them ordered
hyperparameters; the values of hyperparameters 7–10 are discrete and unordered,
called disorder hyperparameters. In hyperparameter optimization based on
simulated annealing, we adopted the strategy of optimizing ordered
hyperparameters first and then optimizing disordered hyperparameters. The
specific operation process is as follows:

Step 1: Based on large T (as large scale in hyperparameter space), first select
30 sets of hyperparameter combinations. For all the hyperparameters, the value
selection is performed by random search in their corresponding value ranges. For
each set of the hyperparameter combination, the deep model is established and the
model performance is evaluated based on the results from the cross-validation. By
collecting all the results of the 30 sets of hyperparameter combinations, the initial
step is completed.

Step 2: Start to reduce the T (as relatively small scale in hyperparameter space)
by narrowing down the value ranges for the ordered hyperparameters relatively
near the selected values with the better results among the 30 results of the previous
model evaluation. The disordered hyperparameters maintain their original options
as their value range. The reduction of the updated hyperparameter space compared
with the previous hyperparameter space is 50%. Based on the updated value ranges
for all the hyperparameters, 30 sets of hyperparameter combinations are selected by
random search and the corresponding deep model are established and evaluated.
Then, this step is repeated until the determination of the values for the ordered
hyperparameters.

Step 3: Once the values for the ordered hyperparameters are determined, the
optimization for the disordered hyperparameters is further performed by grid
search. The total number of the disordered hyperparameter combinations is 168
(7 × 2 × 2 × 6). All the 168 hyperparameter combinations are utilized for the model
establishment. The selection of these hyperparameters are determined based on the
best one among all the results.

Step 4: With the determination of all the hyperparameters by the above
optimization process, the deep model can be optimally established and applied for
the following testing on all the independent testing datasets.

It should be pointed out that, we intentionally made the learning rate manually
optimized. The reason why the learning rate is not included in the hyperparameter
optimization based on simulated annealing is that the learning rate has a wide
range of values, which can be generally from 10−6 to 1. If it is put in, it will cause
the hyperparameter space to expand enormously, resulting in inefficient
hyperparameter searching. In addition, the adjustment of learning rate can be
followed by some general principles. When the model is underfitting, appropriately
increasing the learning rate can accelerate the model convergence; when the model
tends to be overfitting, reducing the learning rate will benefit the modeling process.

The input image size of the base part is determined as 275 × 275 × 3. After the
comprehensive hyperparameter optimization process, the structure of the top
part can be thus determined. The top part consists of five layers. The first layer is
an average pooling layer that connects the output layer of the base part. The
second layer is a dense layer for which the neuron number is 1024 and the
activation function is selected as tanh. After the dense layer, a dropout layer is
applied and the corresponding dropout rate is 0.12. The fourth layer is another
dense layer for which the neuron number is 64 and the activation function is
tanh. The fifth layer is the output layer that is a dense layer with only one
neuron. The sigmoid function is the selected activation function for the output
layer and the kernel initializer is selected as normal. The Adadelta method is
applied as the model optimizer. The used batch size is 16 and the used epoch
number is 50 in our study. The binary cross-entropy is the loss function used in
our study. The applied value of learning rate is 1.0 with the selected optimizer as
Adadelta.

Method evaluation and comparison. In order to comprehensively evaluate the
TLR model under multicenter scenario, we compared the TLR model with other
three methods: (1) SM based on clinical features, (2) traditional RM, and (3) non-
TLR model (NTLR).

According to previous study, the clinical features included in this study were
gender, age, tumor size, microcalcifications, Hashimoto’s disease, TSH, TGAb,
thyroglobulin (TG), and thyroid peroxidase antibody (TPOAB). The Lasso
regression model for LNM prediction was attached in Supplementary Note 1.

Traditional radiomics refers to the extraction of high-throughput features from
images, followed by feature selection and traditional machine learning such as
SVM, adaboost, etc. to establish diagnostic models. According to three wildly
accepted guidelines, including American Association Clinical Endocrinologists,
American College of Endocrinology, and Associazione Medici Endocrinologi, 614
high-throughput features consisting of ten categories (demography information,
size, shape, margin and boundary, orientation, position, echo pattern, posterior
acoustic pattern, calcification, wavelet) have been calculated for each thyroid lesion.
The details of the traditional RM22 has been compared in this paper was described
in Supplementary Note 2.

The nontransfer learning model refers to directly training the deep learning
model with ultrasound image data. In this paper, the Inception V3 model is also
used as the framework for nontransfer learning.

Furthermore, in order to evaluate the performance of adopted Inception V3
models, the propose TLR model is also compared with other deep learning models
including VGG, ResNet, and Inception ResNet.

Statistical analysis. The LNM prediction results were validated by quantitative
indexes including accuracy (ACC), sensitivity (SENS), specificity (SPEC), positive
predictive value (PPV), negative predictive value (NPV), Matthew’s correlation
coefficient (MCC), and F1 score, which are described in Supplementary Note 3.

The Chi-squared test was used to determine whether there was any statistical
difference in patient characteristics. The ROC curve was used to illustrate the
overall performances of different modeling methods. Delong’s test was used to test
whether there is a statistical difference in LNM prediction between TLR and other
methods. The DCA was used to test the clinical usefulness of the TLR model in
LNM prediction.

The statistical analysis was performed by using R language (version 3.4.0, http://
www.Rproject.org), IBM SPSS statistics 20.0 software (SPSS, Chicago, IL, USA),
and Matlab 2017 (MathWorks, USA).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available at the web repository of
“https://pan.baidu.com/s/1Xaf6diOqnJ6KzM5-hlMADA” and its extraction code can be
obtained from the corresponding author upon a separate request.

Code availability
The codes of the proposed method are also available at the web repository of “https://
pan.baidu.com/s/10Gm7JAZ0E3DcWpU08Hqzqw” with the extraction code as 8n49.
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