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SUMMARY

The majority of mosquito-borne illness is spread by a few mosquito species that have evolved to 

specialize in biting humans, yet the precise causes of this behavioral shift are poorly understood. 

We address this gap in the arboviral vector Aedes aegypti. We first collect and characterize the 

behavior of mosquitoes from 27 sites scattered across the species’ ancestral range in sub-Saharan 

Africa, revealing previously unrecognized variation in preference for human versus animal odor. 

We then use modeling to show that over 80% of this variation can be predicted by two ecological 

factors – dry season intensity and human population density. Finally we integrate this information 

with whole genome sequence data from 375 individual mosquitoes to identify a single underlying 

ancestry component linked to human preference, with genetic changes concentrated in a few 

chromosomal regions. Our findings suggest that human-biting in this important disease vector 

originally evolved as a by-product of breeding in human-stored water in areas where doing so 

provided the only means to survive the long, hot dry season. Our model also predicts that the rapid 

urbanization currently taking place in Africa will drive further mosquito evolution, causing a shift 

towards human-biting in many large cities by 2050.

eTOC

Rose et al. demonstrate that the evolution of human biting in Aedes aegypti mosquitoes across 

Africa is associated with long, hot dry seasons and recent increases in human population density. 

This behavioral shift has a shared genomic basis inside and outside Africa, with genetic changes 

concentrated in key chromosomal regions.

INTRODUCTION

Mosquitoes spread pathogens that make approximately 100 million people sick every year 

[1]. There are roughly 3,500 mosquito species worldwide [2], and the vast majority are 

generalists – they bite a variety of vertebrate animals with which they come into contact. 

Most cases of human disease, however, are caused by the bites of just a few species that 

specifically target us [3,4]. Understanding where and why mosquitoes evolve to specialize in 

biting humans is therefore critical for controlling and predicting disease spread.

Why might mosquitoes specialize in biting humans? Most researchers speculate that human-

biting would have posed no particular advantage to mosquitoes before the development of 

agriculture and dense, sedentary human societies approximately 10,000 years ago [5–7]. 

After this time, abundant humans living together may have provided an easy and reliable 

resource. Genomic data is consistent with the idea that key human specialist taxa evolved 

within this time frame [8–10]. Nevertheless, it is not clear why mosquitoes would strongly 

prefer humans over the domestic animals that almost always accompany us in domestic 

environments unless behavioral, physiological, or morphological trade-offs exist between 

traits required for biting humans and those that allow efficient use of non-human animals.
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Human-specialist mosquitoes don’t just bite humans; they also tend to breed in human 

habitats. Mosquitoes lay their eggs in water, and humans are unique among animals in the 

ways that we manipulate water, channeling it into ditches for irrigation and bringing it into 

our homes for drinking, cooking, and washing. Many authors have thus speculated that 

dependence on human sources of water for breeding, particularly in arid regions, may also 

play a role in mosquito specialization [6,7,11].

Aedes aegypti provides an excellent opportunity to investigate these possibilities. The 

globally invasive subspecies, Ae. aegypti aegypti, thrives in urban habitats across the 

American and Asian tropics, where its proclivity for biting humans makes it the primary 

vector of dengue, Zika, chikungunya, and yellow fever [12]. Host-seeking females take up to 

95% of their blood meals from humans in nature [3]. This human-biting specialist is thought 

to have evolved from generalist ancestors in Africa 5,000–10,000 years ago, possibly in 

northern Senegal or Angola [8,13]. However, in at least a few places in East Africa, the 

contemporary African subspecies Ae. aegypti formosus remains a generalist [14]. Little is 

known about the host-seeking behavior of Ae. aegypti in other parts of Africa, and no work 

to date has explicitly examined the ultimate drivers of human-biting in mosquitoes. Here we 

use a combination of field collection, laboratory behavior assays, ecological modelling, and 

genome sequencing to infer the historical and contemporary evolutionary forces that shape 

mosquito preference for humans in this important disease vector.

RESULTS

We first set out to assemble a set of Ae. aegypti colonies representing diverse populations 

across the species native range in sub-Saharan Africa. We used ovitraps to collect mosquito 

eggs from multiple outdoor sites in each of 27 locations (Figure 1A–C, Table S1). The 

collections spanned a wide range of human population densities, with some egg traps placed 

among assemblages of plastic and concrete in large cities with over 2,000 people per square 

kilometer and others placed among trees and undergrowth in wild areas where mosquitoes 

rarely encounter humans (Figure 1A,C). They also spanned a wide range of climates, from 

highly seasonal, semi-arid habitats in the northwest to forest ecosystems with year-round 

rain in Central Africa (Figure 1B–C). We used Ae. aegypti eggs from independent traps to 

establish two replicate laboratory colonies for each of 23 populations, and a single colony 

for the remaining 4 populations (n=50 colonies total, Table S2).

Preference for human odor varies widely across sub-Saharan Africa

Mosquitoes choose hosts based largely on body odor [4]. Ae. aegypti females from human-

biting populations show a robust preference for human odor, while those from generalist 

populations tend to prefer the odor of non-human animals [15]. We tested the odor 

preference of colony females from each population in a two-port olfactometer (Figure 1D 

inset) and estimated preference using a beta-binomial mixed model that accounts for trial 

structure (Figure 1D, Figure S1A–B, Table S2, see STAR Methods). A single human and 

one of two guinea pigs provided the stimuli in most trials, but results were generalizable in 

follow-up tests with a different human and second animal species (Figure S1C).
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Preference for humans varied significantly among sites (likelihood ratio test P<2.2×10−16), 

and the behavior of replicate colonies from the same site was strongly correlated (R2=0.60, 

linear model P=1.5×10−5, Figure S1D). Most populations preferred animals, but one 

population from Central Africa stood out as having an extreme animal preference 

(Franceville, Gabon; FCV), and three from West Africa showed either no preference 

(Ouagadougou, Burkina Faso; OGD) or clear human preference (Thies and Ngoye, Senegal; 

THI, NGO) (Figure 1D). As seen in previous work, overall response rates mirrored 

preference, with females from animal-preferring colonies being less likely to choose either 

host in the assay (Figure S1E–F) [15,16]. These females might respond more strongly to an 

untested animal species, but they are known to bite a wide variety of taxa in at least some 

locations [14]. Alternatively, animal-preferring mosquitoes may be less aggressive and/or 

motivated to seek hosts in enclosed spaces.

Preference variation is largely explained by two ecological factors

Variation in mosquito preference may be explained by local differences in human 

abundance. For example, we expected Ae. aegypti from towns to be more human-preferring 

than those from nearby forests. Such a pattern was previously documented in the Rabai 

region of Kenya where behaviorally divergent ‘domestic’ and ‘forest’ forms coexisted from 

at least the mid-1900s to early 2000s. However, the ‘domestic’ form from Rabai likely 

originated from a localized reintroduction of non-African Ae. aegypti aegypti mosquitoes 

rather than in situ evolution, and it could not be found when the field work for this study was 

carried out in 2017. We instead observed no effect of native habitat on behavior in a 

systematic comparison of forest and town mosquitoes across six paired sites, including one 

from Rabai (Figure 1E).

Gene flow might homogenize the behavior of mosquitoes in adjacent habitats despite 

divergent selection. We therefore took a broader perspective and asked whether human 

population density could explain preference variation on a regional scale. Linear modelling 

of behavior across all locations supported this prediction. The number of humans living 

within a 20–50km radius around collection localities was a strong predictor of preference 

(Figure 2A, likelihood ratio test all P≤0.002; compare grey and black lines in Figure S1G). 

This effect helped explain why mosquitoes from cities in Burkina Faso (Ouagadougou, 

OGD), Ghana (Kumasi, KUM), and Gabon (Libreville, LBV) were all more responsive to 

human odor, on average, than those from less populated areas of the same countries (Figure 

1D).

The population density model included latitude and longitude as covariates to control for 

clear geographic trends in the data (higher preference for humans in the northwest, Figure 

1C). We wondered whether climate might explain some of this additional variation. 

Remarkably, when we used stepwise model selection to replace latitude and longitude with 

ecologically relevant climate variables (Bio1-Bio19 from the WorldClim 2 dataset; Figure 

S1H–I; see STAR Methods) [17], the best climate variables explained much more behavioral 

variation than human population density itself. In the final model, human population density 

explained 18% of variation (Figure 2A, likelihood ratio test P=1.0×10−5, density measured 

within 20 km radius). The strongest climate predictor was precipitation seasonality (Figure 
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S1H), a measure of how variable rainfall is from month to month. A third-degree polynomial 

provided the best fit (Figure 2B, likelihood ratio test P=1.2×10−8), helping to explain the 

abrupt emergence of preference for humans in the Sahel ecoclimatic zone of West Africa, 

where it is dry for up to 9 months of the year and all rainfall comes during a short, intense 

rainy season (Figure 1C). A second climate variable, level of precipitation during the 

warmest quarter of the year, also contributed significantly to our model (Figure 2C, Figure 

S1I, likelihood ratio test P=0.014) and helped explain behavior across populations in the 

animal-preferring range. Mosquitoes were more attracted to human odor in places with less 

rain at the hottest time of year.

Taken together, these two climate variables capture the challenges mosquitoes face during 

the dry season. Ae. aegypti lay their eggs on wet substrate just above the water line in tree 

holes, rock pools, or artificial containers [18]. If the eggs remain wet, they can hatch 

immediately. However, eggs laid in wild areas at the end of the rains must pause 

development and survive the duration of the dry season until rain returns – a particularly 

difficult challenge when the dry season is long (i.e. precipitation seasonality is high) and hot 

(i.e. precipitation is low at the warmest time of year) [18,19]. Human water storage helps 

Ae. aegypti in harsh environments by providing a year-round aquatic niche for larval 

development. We put the two climate variables together into a single index of dry season 

intensity that explains 65% of variation in host odor preference across Africa (Figure 2D, 

likelihood ratio test P=2.3×10−9). These findings point to long, hot dry seasons as the key 

selective factor driving Ae. aegypti specialization on human hosts, likely as a by-product of 

dependence on human-stored water for breeding [7,11,20].

Preference for humans within and outside Africa has a single genomic origin

Females of the globally invasive human specialist subspecies are characterized by light 

scaling on the back of the abdomen (first tergite, Figure 3A inset) [21,22], and previous 

work documented this trait in the Sahel of northern Senegal where we observed preference 

for humans [20,23]. We therefore wondered whether it might be linked to behavior in a 

continuous way across our full sample set. Indeed, abdominal scaling was strongly 

correlated with preference for humans across Africa (R2=0.78, linear model P=1.3×10−8, 

Figure 3A,D). The trend was driven not only by the most extreme phenotypic variation in 

Senegal but also by modest variation in other regions (R2=0.46, linear model P=0.002, 

Senegal excluded).

The morphological resemblance of human-preferring mosquitoes within and outside Africa 

suggests shared ancestry. To test this hypothesis, we sequenced the genomes of ~15 field-

collected individuals (see STAR methods) from 24 sites in our current study plus one site in 

South America and one in Asia (n=366 genomes after exclusion of relatives, ~15x 

coverage). We also sequenced 9 previously collected individuals of the human-biting 

domestic form from Rabai [15]. Analyses of overall population structure were consistent 

with earlier work [13,24]. ADMIXTURE [25] and principal components analysis (PCA) 

revealed strong support for a model with three genomic clusters or ancestry components 

corresponding to coastal East Africa, West/Central Africa, and globally invasive human 

specialists (Figure 3B–C). The Rabai (RAB) domestic form was the only African population 
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to group unambiguously with non-African human specialists, consistent with its putative 

origin as a localized reintroduction of the global subspecies [24]. However, many 

populations across sub-Saharan Africa showed some level of ancestry from the human 

specialist component (red in Figure 3B, PC2 in Figure 3C), and like abdominal scaling, this 

signal was strongly correlated with preference for humans (Figure 3E, R2=0.76, linear model 

P=2.7×10−8; Figure 3D inset).

The shared ancestry of human-preferring mosquitoes within and outside Africa has two 

potential explanations – contemporary admixture due to back-to-Africa gene flow or 

ancestral population structure present before the species left Africa. Admixture has almost 

certainly occurred in Kenya, where the reintroduced domestic form once thrived. However, a 

recent exome study suggested that a supposedly highly ‘admixed’ population from the West 

African Sahel may instead be ancestral to bottlenecked, non-African populations [8]. 

Consistent with this interpretation, the three most human-seeking Sahelian populations in 

our dataset (NGO, THI, OGD) formed a unified genomic cluster, distinct from both the 

globally invasive subspecies and nearby animal-preferring populations, in an ADMIXTURE 

analysis with six clusters (orange in Figure 3B, K=6).

Loci associated with specialization are clustered in the genome

Mosquito preference for human odor likely has a complex genetic basis. Moreover, its 

strong association with a single human specialist ancestry component suggests that the 

underlying causal variants covary across populations with those that regulate other traits 

important for survival and reproduction in human environments [7,22]. To identify candidate 

loci and genomic regions underlying adaptation to humans, we used the program PCAdapt 
to look for single nucleotide variants that were more strongly associated with human 

specialist ancestry than would be expected under genetic drift alone [26]. Significant 

variants were scattered across the entire genome (Figure 4A–B, n=16,782 SNPs at 

Bonferroni-adjusted P<0.05), but particularly concentrated in a few genomic regions (grey 

shading in Figure 4B, permutation false discovery rate<0.001). These included a large area 

at the distal end of the first chromosome containing an odorant receptor (Or4) previously 

linked to preference for humans [15]. This example reinforces the idea that outlier regions 

harbor loci important for specialization on humans. We emphasize, however, that the pattern 

almost certainly extends beyond a single locus or behavior. Each outlier region likely 

contains multiple variants that regulate diverse human-adaptive traits. The highest peak in 

the chromosome 1 outlier region, for example, falls not in Or4, but near an unannotated gene 

10 Mb upstream (AAEL019513; see Table S3 for full list of genes containing outlier SNPs).

The outlier regions identified above come from a holistic analysis of genomic variation 

associated with human specialist ancestry across Africa. We can also look more narrowly at 

patterns of genomic variation in the most strongly human-seeking populations from the 

Sahel (Figure 1C). Here we expect selection to drive and maintain divergence at human-

adaptive loci despite gene flow from nearby animal-seeking mosquitoes. Outlier regions 

should therefore show enhanced divergence from other African populations and increased 

sharing of derived alleles with non-African human specialists. Our data support both 

predictions. Using the Population Branch Statistic (PBS) [27], we confirmed that divergence 
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along the branches leading to human-seeking mosquitoes from Ngoye (NGO), Thies (THI), 

and Ouagadougou (OGD) was greatest in outlier regions (Figure 4C, Fisher’s exact test, all 

P<2.2×10−16). In contrast, branches leading to two animal-seeking populations showed 

uniform divergence across the genome (Figure 4C, blue traces). Using the fD statistic [28], 

we also found that human-seeking populations were more likely to share derived alleles with 

non-African populations in outlier regions (Figure 4D; Fisher’s exact test, all P<2.2×10−16). 

Separate analyses of absolute differentiation between populations (dxy), diversity within 

populations (π), and the site frequency spectrum (Tajima’s D, and Fay and Wu’s H) were 

also consistent with the idea that PCAdapt outlier regions have been affected by strong 

selection during the establishment of human specialist ecology, followed by the 

accumulation of sequence differences via subsequent selection against gene flow (Figure S2) 

[29–31].

The conflict between selection and gene flow should be greatest at the transition zone where 

behaviorally divergent populations live in close proximity. Animal-preferring mosquitoes in 

Mindin, Senegal (MIN), for example, live just 100 km from human-preferring mosquitoes in 

Ngoye (NGO) (Figure 1C, Figure S3A). Interestingly, mosquitoes from Mindin exhibited a 

pattern of genomic variation in the prominent chromosome 1 outlier region that was 

discretely different from that seen in animal-preferring populations located farther from the 

transition zone. They showed elevated divergence in this region from both human-preferring 

mosquitoes (Figure S3B) and other animal-preferring mosquitoes (Figure S3C). They also 

showed reduced nucleotide diversity (Figure S3E), and decreased values of both Tajima’s D 
and Fay and Wu’s H (Figure S3F–G). These patterns suggest a recent sweep, possibly driven 

by selection for maintenance of animal preference in the face of gene flow from nearby 

human-biting populations. Moreover, the discrete plateau of altered population genetic 

statistics on a genomic backdrop that is otherwise typical of animal-preferring populations 

could potentially be explained by a chromosomal inversion specific to the ecological 

transition zone. Long-range sequencing and higher-resolution sampling across the Sahel are 

needed to test this hypothesis. Previous work provided evidence for inversions in Aedes 
aegypti [32–34], but not in exactly this position.

Rapid urbanization may drive a shift towards human biting by 2050

Both climate and human population density are changing rapidly in Africa [35,36]. We 

therefore incorporated publicly available climate and human population projections into our 

model to explore how the behavior of African Ae. aegypti mosquitoes might be expected to 

evolve over the next 30–50 years (see STAR Methods). Projected changes in relevant 

precipitation variables are modest and unlikely to drive substantial shifts in preference 

(Figure 5A, Figure S4). Rapid urbanization, in contrast, is expected to result in dramatic 

increases in human population density, and may trigger transitions to human biting in many 

cities across the continent by 2050 (Figure 5, Figure S4). As noted below, this prediction 

comes with the important caveat that the highest projected population densities are well 

above those used to fit our model.
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DISCUSSION

In this study, we used field collections, colony generation, and laboratory behavioral tests to 

show that preference for human odor varies widely in Ae. aegypti mosquitoes across sub-

Saharan Africa (Figure 1). A remarkable 83% of this geographic variation can be explained 

by two ecological factors – dry season intensity and regional human population density 

(Figure 2). Genome sequencing further showed that preference variation is tightly correlated 

with levels of ancestry from a single human specialist ancestry component (Figure 3), 

involving shared derived alleles concentrated in a few key chromosomal regions (Figure 4). 

Application of our ecological model to projected future conditions suggested that near-term 

climate change will not drive selection for major changes in mosquitoes preference, but that 

rapid urbanization may drive a shift to human-biting in many cities across sub-Saharan 

Africa by 2050 (Figure 5).

The strong association between preference for humans and dry season intensity provides the 

first concrete support for speculation that human specialization in Ae. aegypti was driven by 

reliance on human-stored water for breeding [7,11]. Laying eggs in human-stored water may 

be the only way for Ae. aegypti to survive a long, hot dry season. Once dependent on 

humans for breeding sites, mosquitoes may evolve preference for humans as a form of 

habitat fidelity, or due to trade-offs between traits that promote effective use of locally 

abundant human targets and those necessary for finding and biting animals [37]. There are 

other indications that human biting in Ae. aegypti is intertwined with the ability to breed at 

dry times of year. A decades-old study found that globally invasive specialists from Asia and 

the Americas, as well as a single population from the African Sahel, were all more resistant 

to desiccation than strains from other parts of Africa [38]. Moreover, human-biting is 

accompanied by a genetically based preference for laying eggs in human water-storage 

vessels in at least some areas [7].

While the hypothesis outlined above is compelling, we cannot rule out other selective links 

between climate and the evolution of human-biting. For example, the sparsity of natural 

breeding sites (trees) and alternative hosts (wild animals) in highly seasonal environments 

may contribute to reliance on humans even during the rainy season. It would also be helpful 

to further refine our model of the underlying climate-preference association by 

characterizing additional Ae. aegypti populations. The link between behavior and 

precipitation variables was present across our entire sample (Figure 2C), but the abrupt 

emergence of strong human preference in the most extreme seasonal environments was 

driven largely by two populations in Senegal (Figure 2B). Sampling across the central and 

eastern Sahel would help test this feature of the model. We expect human-preferring 

populations to extend into these areas unless selective barriers associated with human 

cultural variation (e.g. nomadism or lack of consistent water storage) prevent establishment. 

Our model does not predict strong human preference in any non-urban area of southern 

Africa, but this would also be worth investigating.

Beyond climate, human population density explained an additional 18% of contemporary 

variation in mosquito preference for humans across Africa, presumably because selection 

favors use of locally abundant hosts. However, the effect involved population densities 
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(thousands of people per square kilometer, see Figure 2A) that almost certainly did not exist 

during initial specialization on humans thousands of years ago [39]. Instead, human density 

effects on mosquito host preference are likely to be a more recent phenomenon associated 

with urbanization, a process that continues to accelerate across sub-Saharan Africa. Indeed, 

our model predicts that the rapid growth of many African cities will drive a further shift 

toward human-biting over the coming decades (Figure 5). There are several important 

caveats to this prediction. First, future population densities are expected to exceed those 

observed in this study, and thus used to generate our model (compare arrowheads to circles 

along the y-axis of Figure 5A). Extrapolation of the linear trend seen across contemporary 

sites (Figure 2A) suggests mosquitoes in these large cities will evolve strong preference for 

humans. Alternatively, the effect of human density could plateau at intermediate preference 

(willingness to bite humans) without driving the true specialization we see in highly 

seasonal environments. In addition, limits to gene flow (e.g. across the Congolian basin or 

the Great Rift Valley) could prevent the establishment of human specialists in some eastern 

cities where our model suggests they will be favored. Despite these ambiguities, the speed 

and scale of ongoing urbanization argue strongly for careful monitoring of potential shifts in 

Ae. aegypti behavior (or correlated morphology/genetics) across Africa.

Our genomic data are consistent with the hypothesis that human specialization is not only 

favored in the seasonal Sahel, but also first arose there before seeding globally invasive 

populations [7,8,11]. While climates have fluctuated substantially over the millenia, a zone 

similar to the Sahel, on the southern edge of a shifting Saharan Desert, has likely existed in 

some form for the past 5,000 years [40]. Further work is needed to determine exactly where 

and when human specialists arose, incorporating genome-wide data from a wider range of 

global populations. Ae. aegypti from Angola [13] and northern Argentina [24], for example, 

show similar patterns of ancestry to populations in the Sahel, and present day distributions 

may not reflect those at the time when human specialization first occurred.

Regardless of origins, specialization on humans in this mosquito clearly involves shifts in 

the frequency of a large number of variants, scattered throughout the genome but particularly 

concentrated in a few key regions. These regions contain large numbers of genes, many of 

which likely contribute to adaptation to human hosts and habitats. More broadly, the tight 

correlations between ancestry, behavior, and environment reveal a dynamic situation playing 

out across the continent as a whole, with selection and gene flow fine-tuning the frequency 

of human-adaptive alleles, and thus levels of attraction to human hosts, according to local 

climate and human population density. We urgently need to incorporate such 

environmentally-structured variation into epidemiological models and other efforts to predict 

and manage the transmission of Ae. aegypti-borne disease in Africa.

STAR METHODS:

RESOURCE AVAILABILITY

Lead Contact—Correspondence and requests for materials should be addressed to Lead 

Contact, Carolyn McBride (csm7@princeton.edu).

Materials Availability—This study did not generate new unique reagents.
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Data and Code Availability—Raw genomic data is available in the NCBI SRA under the 

accession code PRJNA602495 (https://www.ncbi.nlm.nih.gov/sra/PRJNA602495). Other 

raw data and scripts are available at github.com/noahrose.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Ethics and regulatory information—Mosquito eggs were collected and exported with 

permission from local institutions and/or governments as required (Kenya SERU No. 3433; 

Uganda permit 2014-12-134; Gabon AR0013/16/MESRS/CENAREST/CG/CST/CSAR and 

AE16008/PR/ANPN/SE/CS/AEPN) and imported to the USA under USDA permit 129920. 

The use of non-human animals in olfactometer trials was approved and monitored by the 

Princeton University Institutional Animal Care and Use Committee (protocols 1998–17 and 

2113–17). The participation of humans in olfactometer trials was approved and monitored 

by the Princeton University Institutional Review Board (protocol 8170). All human subjects 

gave their informed consent to participate in work carried out at Princeton University. 

Human-blood feeding conducted for colony maintenance did not meet the definition of 

human subjects research, as determined by the Princeton University IRB (Non Human-

Subjects Research Determination 6870).

Field collections—We collected mosquito eggs in each African sampling location by 

distributing 20–60 ‘ovitraps’ at regular intervals across the landscape. Ovitraps consisted of 

32 oz black plastic cups (The Executive Advertising), each lined with a 38 × 15 cm piece of 

76 lb (34.5 kg) seed germination paper (Anchor Paper Co.) and filled with 3–8 cm of water. 

In all locations except coastal Kenya, the water was infused with a mixture of fresh or dry 

mango leaves collected from the leaf litter (n=~20 leaves per 10 liters of water) for 1–2 days 

before use. In coastal Kenya and Uganda, we used tap water or made a similar infusion with 

twigs, bark, and leaves from unidentified broad-leafed trees. Anecdotally, water source did 

not appear to affect egg numbers. Each ovitrap had a hole in the side at a height of ~3 inches 

to allow rainwater to drain from the trap. We attempted to spread ovitraps at approximately 

100 meter intervals, but placed them at intervals as small as 10 meters in areas with limited 

access. We left ovitraps in the field for two nights before returning to collect egg-

impregnated seed papers. We then dried the papers slowly on beds of paper towels over the 

course of 24 hours and stored them in airtight, whirl-pak bags during transport back to the 

laboratory. The only exception to this approach was at Bantata, Senegal (BTT), where we 

collected Saba senegalensis husks from the forest floor, flooded them with water, and 

collected hatchling larvae over the following few days. Most collections were carried out in 

2017 and 2018, but Ugandan collections were carried out in 2015.

Generation and maintenance of laboratory colonies—We hatched egg-impregnated 

papers from each ovitrap in separate pans of hatch broth, made by dissolving finely ground 

Tetramin Tropical Tablets fish food (Spectrum Brands, Inc.) in deoxygenated water (¼ 

tablet/liter). We continued to feed larvae Tetramin ad libitum through to pupation, and 

transferred pupae from each seed paper to separate 32 oz HDPE plastic cages (VWR). 

Eclosing males and females were able to mate with each other in the cages and had access to 

10% sucrose solution. Other mosquito species sometimes hatched from papers alongside Ae. 
aegypti and were eventually removed from cages without hindering our breeding efforts. 
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However, Ae. albopictus males are known to satyrize Ae. aegypti females, rendering them 

infertile [41]. In areas where Ae. albopictus was present (Nigeria and Gabon), we therefore 

separated the male and female pupae reared from any given seed paper and let them eclose 

separately before identifying adults to species and recombining Ae. aegypti males and 

females only. We set aside 2–20 g0 (i.e. raised from field-collected eggs) adults from each 

population for genome sequencing, using only a single individual per ovitrap/cage where 

possible to reduce the probability of sequencing siblings (n=10–20 individuals for each of 20 

locations; n=2–9 for each of 4 additional locations).

We used mosquitoes from independent ovitraps to establish two replicate laboratory colonies 

for 23 locations and a single colony for the remaining 4 locations (Table S2). Each colony 

was founded using eggs from 4–43 females, except the Lope Forest colony which was 

founded with eggs from a single female (Table S2). Founding females were fed on human 

volunteers (see ethics subsection) and allowed to lay eggs individually on wet filter paper 

cones (Whatman 55 mm Grade 1 filter paper) in small shell vials (Applied Scientific 

Drosophila Vials, 28.5 mm diameter, 95 mm height). We gave females multiple 

opportunities to feed in order to ensure high feeding rates (typically >90%) and thus reduce 

the potential for selection on host preference. However, it was sometimes difficult to coax 

recalcitrant females to lay eggs in the lab. Oviposition rates ranged from 35 to 100% in the 

first generation. In subsequent generations, we maintained population sizes of 300–600 

individuals per colony, continued to ensure blood-feeding rates >90%, and tried to maximize 

oviposition by forcing females into contact with wet, potting soil-infused, seed germination 

paper cones in small 8.5 oz HDPE plastic cups (VWR) for 2 days (30 females/cup). Eggs 

were dried and stored at 16°C, 80%RH for up to 6 months between generations. The only 

exception to these breeding procedures applied to the first 2 generations of the colony from 

Zika, Uganda (ZIK), which was fed on a membrane and laid eggs on cups of water placed 

inside a large breeding cage.

We included two reference colonies of non-African origin in behavioral and morphological 

studies (Table S2). These were a colony from Thailand (T51) generated as described above 

and a laboratory colony originally maintained at the USDA labs in Orlando, Florida (ORL) 

that is of uncertain origin but was most likely supplemented for decades with local Floridian 

mosquitoes [42].

METHOD DETAILS

Behavior—We tested the host odor preference of 7–14 day old females that had been 

housed over night with access to water only (no sucrose). Different colonies were hatched on 

the same day, females mated freely with males after eclosion, and females were matched for 

age on testing days. We used a two-port olfactometer as previously described (Figure 1D 

inset) [15,16], with small modifications. Instead of using a large box fan to pull air through 

the device from the back of the olfactometer, we used a smaller fan to pull air through an 

10.2 × 10.2 cm opening in the back panel. Instead of pulling air from the room, carbon-

filtered, conditioned air was supplied to the two olfactometer ports from an independent 

building source. Inflow and outflow was balanced to achieve a rate of approximately 0.3m/s 

as measured at the traps. In each trial, 25–110 females were allowed to acclimate for 5 
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minutes in the large holding chamber before turning on the fan and opening a sliding door to 

expose them to streams of air coming from two alternative cylindrical traps and host 

chambers. One host chamber contained an awake guinea pig (Cavia porcellus, pigmented 

breed) or button quail (Coturnix coturnix). The other contained a section of the arm of a 

human volunteer (middle of forearm to middle of upper arm; silicone sheeting used to seal 

the holes through which the arm was inserted). The breath of the animal mixed with its odor 

in the animal odor stream. To add human breath on the human side, we asked the human 

subject to breathe gently through a nasal mask into the host chamber every 30 seconds. 

Trials lasted 10 minutes, and mosquitoes choosing to fly upwind towards either host odor 

stream during this time were trapped in small ports and counted at the end.

We carried out host preference trials in two main waves, with a 28-year old, European-

American male serving as the human subject and one of two female guinea pigs serving as 

the animal subject. In the first wave, we tested second-generation colonies from Kenya and 

Gabon. In the second wave, we tested second generation colonies from Nigeria, Ghana, 

Burkina Faso, and Senegal, eighth- or ninth-generation colonies from Uganda, and two 

reference colonies of non-African origin. We also repeat tested a representative set of first 

wave Kenyan and Gabonese colonies (RAB, VMB, FCV, LBV; by then in their fourth 

generation) in the second wave to ensure that results were comparable between waves. At 

least one of two colonies from every population included in a given wave was tested on 

every experimental day in order to balance random day-to-day variation with the population 

effects we were trying to estimate (Figure S1A–B). Overall, we carried out 3–4 trials for 

each colony, except one of two replicate colonies from BTT, KED, and KUM, which were 

tested only twice. This resulted in a total of 7 trials for most populations, 3–6 trials for the 

six populations represented by only a single colony or for which one of two colonies had 

fewer trials, and 14 trials for the four populations tested in both waves. In total, we carried 

out 206 trials including 17,856 female mosquitoes, of which 7,385 responded to one or the 

other host odor.

After the two main waves, we carried out a smaller set of trials with one colony from each of 

four representative African populations (FCV, OGD, AWK, NGO) and a wider array of host 

comparisons. In one set of trials, we substituted a 22-year old Nigerian-American female for 

the original 28-year old European-American male, and in another set we substituted a button 

quail for the guinea pig (Figure S1C, n=3–5 trials per colony x host combination).

Whole genome resequencing and variant calling—As part of an ongoing 1200 

Aedes aegypti genomes project, we extracted gDNA from 480 field-collected mosquitoes 

using the Chemagic DNA tissue protocol and sequenced them to 15x coverage with PE 

151bp reads using the Illumina HiSeqX platform. The sequenced mosquitoes included 397 

individuals from 24 sub-Saharan African populations collected for this study, 29 additional 

individuals from sites in Uganda, Kenya, and Burkina Faso that were not included in the 

main study, 12 individuals of the domestic form collected in 2009 or 2011 in Rabai, Kenya 

[15], 20 individuals from Bangkok, Thailand, 18 individuals from Santarem, Brazil, and 4 

Ae. mascarensis mosquitoes for use as an outgroup.
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We initially mapped all sequence data to the L5 reference genome [43]. We identified and 

removed close relatives from our sample as follows. First, we generated a matrix of 

relatedness coefficients using the --relatedness2 subprogram from VCFtools [44] with a set 

of randomly selected 109,267 biallelic SNPs (MAF>0.05, >1 read in 90% of individuals) 

preliminarily called with bcftools. Second, we hierarchically clustered the coefficients using 

the R function hclust (method=‘average’). Third, we grouped close relatives using the R 

function cutree, with a relatedness cutoff of 0.05 for African samples (corresponding to first 

cousin or closer relationships) and 0.2 for non-African populations (corresponding to 

siblings). The more permissive cutoff was used for non-African populations because they are 

more inbred/bottlenecked, with many individuals showing cousin-like relationships. Finally, 

we removed all but one randomly-chosen individual from each group of relatives. This left 

us with 345 sub-Saharan African Ae. aegypti genomes from our 24 focal study sites, 14 Ae. 
aegypti from other sites in sub-Saharan Africa, 30 Ae. aegypti genomes from outside 

continental Africa and 4 Ae. mascarensis genomes. Most relatives came from the same 

ovitrap (we sequenced more than one individual from a single ovitrap when ovitrap/egg 

limited). A smaller number came from nearby ovitraps in the same general location. The 14 

Ae. aegypti genomes from non-focal sites were used for variant discovery and included in 

ADMIXTURE and PCA-based analyses (see below) in order to ensure we were sampling as 

much diversity as possible, but they are not plotted in figures.

We then used three iterative mapping steps to construct an updated African reference based 

on data from a geographically distributed (Africa only) set of 100 unrelated male mosquitoes 

(Figure S5). We chose to use males for the update because the L5 reference was constructed 

using data from males. In each of three iterative mapping steps, we (1) mapped sequence 

data from the mapping set to the reference using bwa mem (MAPQ cutoff of 10), (2) called 

consensus biallelic SNP genotypes using bcftools (“bcftools mpileup −BI | bcftools call 
−vmOu | bcftools view −v snps -q 0.5:alt1 | bcftools norm −Ou -m - | bcftools norm −Oz −d 
snps”), and (3) substituted the consensus base into our reference sequence using bcftools 
consensus [45,46]. We used PicardTools [47] to characterize read mapping quality after each 

iteration on a set of individuals not used for alternate reference construction (20 individuals; 

male-female pairs from 10 African populations) (Figure S5). We used a permissive MAPQ 

cutoff of 10 for the mapping steps because analyses suggested that high levels of sequence 

divergence from the L5 reference were disrupting initial alignments (Figure S5A–D). 

Finally, we remapped data from all 480 genomes to the updated third-iteration reference; 

this included non-African and outgroup samples, which also mapped well to the updated 

reference (Figure S5E–F). Males and females mapped similarly, except in the region around 

the sex-determining M-locus (Figure S5G–H). After remapping, we realigned reads near 

insertions and deletions to improve variant discovery in these regions using GATK 

IndelRealigner [48].

We took two different approaches to variant calling, both of which were confined to regions 

of the genome we inferred to be non-repetitive (repeat masked using the RepeatMasker 

intervals from the L5 genome) and single copy (mean coverage between 5–30X across 

individuals). We used the program ANGSD [49] to calculate population-level allele 

frequencies and genetic diversity, as well as to carry out genotype-likelihood based analyses 

(see below) for 161,713,099 biallelic single nucleotide polymorphisms (SNPs, P<10−6). We 
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also called individual genotypes for a filtered set of 14,045,728 high quality biallelic SNPs 

using bcftools. These SNPs were filtered for coverage across the entire sample (covered by 

at least 1 read in 90% of individuals) and then called for any individual with sample depth > 

8 reads and genotype quality score >30. After individual genotype calling we implemented a 

further filter for the fraction of individuals genotyped (>75% at any given SNP) and minor 

allele frequency (MAF>1%). We used the same permissive MAPQ cutoff of 10 for variant 

calling as used for generating the updated reference genome (see above) in order to 

minimize potential problems with aligning alternate haplotypes. Note that our additional 

MAF and genotyping filters help protect against SNP calls from false positive alignments. 

Hard genotype calls (or subsets thereof) were used for ADMIXTURE, principal components 

analyses (PCA), PCAdapt, and Dsuite analyses (see below).

QUANTIFICATION AND STATISTICAL ANALYSIS

Behavior—We used a beta-binomial mixed generalized linear model as implemented in the 

R [50] package glmmTMB [51] to model the probability of choosing a human versus animal 

host for each population. This model assumes independence of individual females within 

trials but accounts for trial structure and the fact that preference varies more from trial to 

trial than is expected for a binomial model (is overdispersed) due to random sources 

variation (e.g. exact starting position of females within the acclimation chamber at the start 

of a trial, small differences in airflow between right and left ports, uncontrollable trial-to-

trial variation in live host stimuli etc.). Replicate colonies and trial day were included as 

random factors, while population was modelled as a fixed factor. We switched the guinea pig 

used and the side of the human versus animal host between days such that these effects 

would be subsumed under the trial day random factor. We used the R package emmeans [52] 

to extract from our glm the fitted probability of choosing a human host with 95% confidence 

intervals. For purposes of data visualization, we transformed each probability (p) into a 

preference index (PI) ranging from −1 to 1 using the formula PI=2p-1. An index of zero 

means the mosquitoes were equally likely to choose either host (no preference), while an 

index above or below zero means the mosquitoes were more likely to choose the human or 

animal, respectively. We used a likelihood ratio test to compare our glm to a null model 

accounting for day-to-day variation but not population of origin. The same beta-binomial 

mixed generalized linear model was used to model the probability of responding to either 

host (overall response rates, Figure S1F).

Ecological modeling—We first compared the behavior of mosquitoes from paired forest 

and town populations within 5–60km of each other. In one case, a single town population 

(KED) was paired with two forest sites (BTT and PKT). We estimated the effect of forest 

habitat using a linear model that estimated preference for each pair (or group for KED, BTT, 

and PKT) and a coefficient for forest or town habitat. This is conceptually very similar to 

carrying out a paired t-test, except it allowed us to take into account the two different forest 

sites near KED.

We next explored the ecological factors associated with preference for humans across all 

populations in the sample set, again using a linear modelling framework. In this set of 

analyses, each population was represented by a single logit-transformed preference 
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probability (generated by the beta-binomial model described in the previous section) and a 

single estimate of each ecological descriptor extracted from public datasets using the mean 

latitude and longitude of the ovitraps that contributed to the corresponding colony (or the 

mean of the two independent colony means for populations with two colonies).

While immediate habitat had no effect on behavior, we hypothesized that human population 

density might be relevant when calculated across a larger spatial scale. We therefore used a 

2.5-minute resolution population density raster from the United Nations World Population 

Prospects (UNWPP, 2015 population densities adjusted to country totals) [53] to compare 

the effect of density across buffers of the following radiuses: 5, 10, 15, 20, 25, 30, 35, 40, 

45, 50, 60, 70, 80, 90, 100, 200, and 300 km. In a simple human population density model 

that also takes regional variation into account (logit(prob) ~ human_pop_density + 

Latitude*Longitude), human population density had a significant effect across a wide range 

of spatial scales, but was strongest with ~20–50km buffers (black line in Figure S1G).

To better understand the regional drivers of variation in preference, we used the WorldClim 

2 bioclimatic variables (Bio1–19) as a set of candidate predictors [17]. Because some of 

these variables are correlated, we also considered the predictive value of the first three 

principal components from a PCA analysis of Bio1–19 variation across our populations. In 

preliminary tests, Bio15 (precipitation seasonality) clearly showed the strongest single-

variable association with preference. This was true both in a comparison of simple 

correlations between each variable and preference (Bio15 r=0.65) and when we included 

each variable in a linear model with human population density (20km buffer) (red circles in 

Figure S1H). However, the relationship with Bio15 appeared to be strongly nonlinear, if still 

monotonic (Figure 2B). We therefore used a two-step procedure to model the nonlinearity. 

We first used the R package MonoPoly [54] to fit monotonic polynomials of different 

degrees to logit-transformed preference probabilities, and then included the fitted values as 

an offset (i.e. removed their effects before fitting) in the linear model (logit(prob) ~ 

human_pop_density_20km + offset(fitted(monotonic polynomial Bio15))). We found that a 

third-order monotonic polynomial significantly improved model performance, minimizing 

the Akaike Information Criterion (AIC). Rechecking the performance of different human 

population density buffers in this new model context showed that 20km yielded a much 

lower AIC than other buffers (light blue line in Figure S1G). Note that this buffer most likely 

reflects the balance between selection and dispersal, and is not a direct reflection of adult 

dispersal patterns per se.

We were concerned that nonlinear relationships could have obscured another better predictor 

in our initial survey of single-variable correlations. However, after fitting monotonic 

polynomials of degree 1–4 for all 19 bioclim variables and the first three PC axes, a third-

order monotonic polynomial fit for Bio15 still had the lowest AIC (Figure S1H).

To check whether additional climate variables could further improve our model, we 

regressed logit-transformed preference and the other bioclimate variables on our third-order 

fit for Bio15 and tested if residual variation in preference could be explained by the other 

variables. We again used a two-step procedure to model these effects. We used the R 
package MonoPoly to fit monotonic polynomials of different degrees to logit-transformed 
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preference probability residuals, and then included the fitted values as an offset (i.e. removed 

their effects before fitting) in the linear model (logit(prob) ~ human_pop_density_20km + 

offset(fitted(monotonic polynomial Bio15)) + offset(fitted(monotonic polynomial BioX))). 

We found that including a linear Bio18 (precipitation in the warmest quarter) term further 

reduced AIC (Figure S1I). Because Bio18 and our fitted Bio15 polynomial relationship were 

modestly correlated (r=−.29) and we had selected the variables in a stepwise way, we 

wondered if including them in a single linear model would change our estimates of their 

effects. In this full, final model (logit(prob) ~ human_pop_density_20km + fitted(monotonic 

polynomial Bio15) + Bio18), the estimated coefficient for the fitted Bio15 component was 

close to 1 (1.04), indicating that fitting the effects sequentially or together didn’t make a 

major difference, but we used the model where both were fit together going forward. Using 

both Bio15 and Bio18 as covariates, we again found that using a buffer of 20km for 

calculating population density yielded a much lower AIC than other buffers (Figure S1G).

Bio15 and Bio18 both have clear connections to the length and temperature of the dry 

season - an important factor in survival of dormant Aedes aegypti eggs. We therefore 

combined them into a single Dry Season Intensity Index by adding together the fitted Bio15 

and Bio18 terms for each location. This simple transformation yields a single linear climate 

term that predicts the host odor preference of mosquitoes from a given location.

Morphological analyses—We pinned 7–29 female mosquitoes from each location (field-

collected [AWK, BOA, FCV, KED, KIN, KUM, LBV, LPV, MIN, NGO, OGD, OHI, PKT, 

THI] or lab colony [ABK, BTT, ENT, GND, KAK, KBO, KWA, LPF, ORL, RAB, SHM, 

T51, VMB, ZIK]) as previously described [15] and captured light microscope images of the 

dorsal abdomen under constant lighting and magnification (3X) on a Nikon SMZ1270 

microscope. We then estimated the proportion of white scales on the first abdominal tergite 

by converting each image to 8-bit grayscale in ImageJ, selecting the region of interest, and 

calculating the area with brightness values above 128. Area estimates were only weakly 

sensitive to the precise cutoff since the white and black scales differ markedly in brightness; 

we therefore chose a value in the middle of the range. We used the R function lm to fit a 

linear model with logit-transformed scaling proportion as the response variable and 

population of origin as the predictor. We then used the R package emmeans to calculate 95% 

confidence intervals for each population.

Population structure analyses—We characterized population structure using two 

alternative approaches based on a set of 1,000,000 unlinked SNPs selected in PLINK (step 

size 100, cutoff 0.1, --thin-count 1000000) [55]. First, we used ADMIXTURE [25] to assign 

individuals to variable numbers of population clusters for K=2–10, with K=3 minimizing 

cross-validation error. Second, we used PLINK to carry out principal components analysis 

(PCA). One sample from Ngoye, Senegal (NGO) was a clear outlier in ancestry, showing 

strong affinity with West African generalist populations while all other individuals from this 

population showed consistent affiliation with human specialists (Figure 3B); we excluded 

this putative recent migrant from subsequent FST, PBS, ABBA-BABA, π, and dxy analyses 

involving Ngoye (see below).
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Gene flow and divergence analyses—We used PCAdapt [25] to test whether specific 

SNPs were associated with specialist ancestry (represented by PC2, see Figure 4A) across 

the subset of high-quality, biallelic SNPs from our hard-called set that had minor allele 

frequency >0.05 (n=5,369,564 SNPs) (PCAdapt parameters: K=3, method 

“componentwise”, and LD clumping with a size of 200 and a cutoff of 0.1). We used a 

permutation testing approach to identify outlier regions with a significantly increased 

concentration of outlier SNPs as follows: First, we counted the number of outlier and non-

outlier SNPs in each 100kb window across the chromosomal scaffolds. We then calculated 

the proportion of outlier SNPs in a 10Mb sliding window with a 100kb step across the 

genome. This represents our observed distribution. To generate a null distribution, we 

shuffled the genomic position of 100kb windows (thus preserving local linkage patterns) 

across the genome 100 times. We only permuted windows among coordinates matched for 

the same decile of nucleotide diversity (calculated across all populations), since variation in 

diversity levels across the genome could affect the propensity of windows to harbor outliers. 

We then used these permuted windows to calculate an empirical cumulative distribution 

function for the proportion of outlier SNPs in a 10Mb window using the R function ecdf. 

Comparison of the observed distribution to this null distribution allowed us to identify 

≥10Mb regions with an elevated proportion of outlier SNPs at a two-tailed false discovery 

rate of 0.001. The choice of a 10Mb window restricts us to larger regions that are either 

relatively new (giving recombination limited time to break up divergent chromosomal 

regions) or contain several tightly linked loci. However, using smaller regions (e.g. 1Mb or 

100kb) gave similar results.

We used ANGSD (subprogram realSFS) to calculate pairwise FST between populations and 

a custom script to turn these FST values into the Population Branch Statistic (PBS, 

essentially polarized FST) for NGO, THI, OGD, KED, and OHI, using BTT as a nearby 

generalist reference population and FCV as an outgroup [27]. Using alternative reference 

and outgroup populations yielded similar results.

We used ABBA-BABA-related statistics to further explore patterns of divergence between 

populations. These statistics test for an excess of shared derived variation between lineages 

in order to distinguish gene flow or ancestral population structure from the incomplete 

lineage sorting (ILS) that can occur during a simple tree-like branching process. For more on 

expected genome-wide and locus-specific patterns of derived allele sharing under ILS and 

gene flow, see [28]. First, we used Dsuite [56] to confirm that the populations in our dataset 

did not conform to the strict tree-like model, which is expected since all populations belong 

to the same species and almost certainly exchange genes. Indeed, we strongly rejected the 

null tree-like hypothesis (block jacknife P<10−7) for all three-population trees with Ae. 
mascarensis as an outgroup.

We then explored potential heterogeneity in gene flow across the genome using the fD 

statistic (calculated in 10Mb windows with a 100kb step). The fD statistic uses shared 

derived genetic variation to estimate the fraction of ancestry at a specific locus derived from 

gene flow between branches in a specified tree [28]. We calculated fD from ANGSD 
population allele frequencies using a custom python script for the tree (BTT, X; BKK, 

mascarensis) to identify regions of the genome showing elevated levels of shared derived 
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variation between the focal population (X=NGO, THI, or OGD) and non-African human 

specialists (BKK). We do not think such shared derived variation is necessarily derived from 

introgression back to Africa from non-African populations. Instead, it may reflect 

relationships present in ancestral populations, before Ae. aegypti left Africa. Differentiating 

between these two hypotheses is out-of-scope for this study but will be addressed in a future 

study incorporating much more genomic data from outside Africa. Regardless, we expect 

shared derived variation between human-preferring populations within and outside Africa to 

be present in regions that code for human-adaptive traits and thus experience reduced gene 

flow between human- and animal-preferring populations within Africa. We tested whether 

high PBS and high fD windows (defined as 100kb windows in the top 10% of genome-wide 

values for each statistic in turn) were significantly concentrated in PCAdapt outlier regions 

using Fisher’s exact test.

To help interpret measures of between-population divergence (i.e. FST and PBS), we used 

ANGSD to estimate levels of genetic diversity (π), Tajima’s D, and Fay and Wu’s H [30,31] 

across the genome for focal populations, and we used the perl script getDxy.pl (modified to 

skip variant sites not covered in one population) from ngsTools [57] to calculate dxy (Figure 

S2A–F). We also calculated normalized dxy (Figure S2G) by dividing dxy for a given 

population pair by mean dxy for all pairs of NGO, THI, OGD, BTT, and FCV. We calculated 

normalized π (Figure S2G) by dividing population π by mean π across all populations.

Climate and population projections—We predicted future changes in host odor 

preference at each sampling location by plugging climate and human population density 

change projections for 2050 into our final, fitted, ecological model – including human 

population density (calculated within 20km radius), precipitation seasonality (Bio15, third 

degree monotonic polynomial) and precipitation in the warmest quarter (Bio18, linear).

Climate change projection data came from the Coupled Model Intercomparison Project 

Phase 5 (CMIP5) based on Representative Concentration Pathway 8.5 (RCP8.5) scenarios 

[36]. RCP8.5 is considered the business-as-usual scenario for future greenhouse gas 

concentrations, reflecting minimal mitigation efforts. The CMIP5 effort contributed to the 

International Panel on Climate Change (IPCC) Fifth Assessment Report. A new modeling 

effort, CMIP6, is currently underway but complete data are not yet available. Projected 

climate data from a global climate model (GCM) cannot be directly compared to present-day 

observational climate data due to model biases and measurement error. Failing to account for 

these biases can result in misinterpreting structural differences between the two datasets as 

potential climate change effects. Instead, the projection data must first be bias-corrected by 

calculating the relative or absolute change between current and future climates for the 

variable of interest, using solely the GCM output. This relative or absolute change can then 

be applied to observational data. Depending on the resolution of the observational climate 

data, projections may also be downscaled – i.e. the resolution of the model output improved. 

The Worldclim projection data has undergone both downscaling and bias-correction 

processes such that it can be compared with the observational data used in our present-day 

analysis. Absolute changes were used for temperature and relative changes were used for 

precipitation. Further details of these processes are available at https://www.worldclim.org/
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downscaling. There is relatively high agreement across models in terms of the spatial 

distribution of projected Bio15 and Bio18 changes (Figure S4).

Population projection data came from the United Nations medium-variant scenario [53]. 

This scenario assumes existing high fertility populations will experience a fertility decline 

over the coming century, as economic development increases. Despite falling fertility, sub-

Saharan Africa is expected to see an increase in the total number of births over the next 

several decades relative to the recent past. High birth numbers coupled with increasing life 

expectancy will lead to 1.05 billion increase in population in sub-Saharan African countries 

by 2050, 52% of the additional global population in this timeline [58]. We used urban and 

rural, medium-variant projections for each country and calculated growth rates by 

comparing 2050 numbers with those from 2015. Note, our field collections were conducted 

between 2015 and 2018 (mostly 2017–2018) making 2015 numbers more applicable than 

any other available estimates. We then applied these growth rates to the baseline population 

data for each location. Urban and rural locations were considered separately because urban 

populations are expected to grow at a faster rate than rural populations over this time period. 

Urban populations were defined as those with current population density > 400 humans/km2 

calculated with a 20km buffer (Table S1). These populations were all from areas that we 

observed to be dominated by human structures and activities (Table S1). A few intermediate 

density locations fell below this cutoff and were classified as rural. More specifically, KWA, 

OHI and NGO are rural towns, while ABK and SHM are wild areas on the far outskirts of 

what most would consider urban areas (densities 173–288 humans/km2; Table S1). The 

other sites classified as rural had much lower densities (1–67 humans/km2; Table S1).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• African populations of Ae. aegypti vary in preference for human vs. animal 

odor

• Preference for humans is associated with intense dry seasons and urbanization

• Preference for humans has a single, shared genomic basis inside and outside 

Africa

• Rapid urbanization may further increase human biting in many African cities 

by 2050

Rose et al. Page 23

Curr Biol. Author manuscript; available in PMC 2021 September 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Preference for human odor varies widely in Aedes aegypti mosquitoes across Africa.
(A-B) Satellite images or photographs of mosquito collection localities with different human 

population densities (A) or levels of precipitation seasonality (B). Satellite images are from 

Google Earth, copyright Maxar Technologies and CNES/Airbus. (C) Map of collection 

localities. Diagonal hatched lines mark the Sahel ecoclimatic zone. Table S1 has full 

location names. (D) Host preference measured in a two-port olfactometer (inset) for all 

African localities plus a reference colony from Thailand (T51) and a lab colony most likely 

to have originated in the United States (ORL) (n=3–14 trials with 25–110 females per trial; 

details in Table S2). Bars indicate 95% confidence intervals. Circle sizes and bar colors 

show population density and precipitation seasonality, respectively, as in (C). Grey boxes 

around location names highlight adjacent forest-town pairs (forest in green text). (E) 

Females from adjacent forest and town habitats did not differ in preference (linear model 

P>0.05, ns=not significant). See also Figure S1A–F.
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Figure 2. Human population density and dry season intensity explain variation in preference.
(A) Preference for humans increases significantly with human population density, which 

explains 18% of variation in the final model (linear fit, density calculated within 20km 

radius, likelihood ratio test [LRT] P=1.0×10−5). (B-D) Preference for humans increases in 

habitats with highly seasonal rainfall (B, cubic monotonic polynomial fit, LRT P=1.2×10−8) 

and decreases in habitats with more rain at the warmest time of year (C, linear fit, LRT 

P=0.016 for model that already includes seasonality). (D) Climate variables in (B-C) can be 

combined in an index of overall dry season intensity, which explains 65% of variation in 

mosquito preference in the final model (LRT P=3.0×10−9). All analyses were carried out 

with logit-transformed preference indices subsequently back-transformed for plotting. Point 

color and size correspond to precipitation seasonality (scale in Figure 1C), and human 

population density (proportional to scale in Figure 1C), respectively. See also Figure S1G–I.
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Figure 3. Specialization on humans has a single genomic origin.
(A) Percentage of the first abdominal tergite of adult females (red in inset, right) covered in 

white scales. Dots and lines show mean and 95% confidence intervals, respectively, for n=7–

29 females from the populations listed in panel (B). (B) ADMIXTURE analysis of 

population structure. Bar plots show ancestry proportions for 375 mosquitoes when 

specifying K=3–6 ancestry components. K=3 minimized cross-validation error. (C) Principal 

components analysis of population structure. Points in the main plot represent individuals 

and are colored according to primary ancestry assignment from the K=6 ADMIXTURE 

analysis in (B). Points in the inset represent population means and are colored according to 

host preference. (D-E) Preference for humans is tightly correlated with both population 

mean abdominal scaling (D, linear model P=1.3×10−8) and mean proportion ancestry 

assigned to the red component in the K=3 ADMIXTURE analysis (E, linear model 

P=2.7×10−8). Point colors are as in the main plot of (C), except they represent primary 

ancestry assignment for each population rather than individual. Open grey circles in (D) 

show non-African reference populations (not included in correlation analysis).
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Figure 4. Specialization on humans is associated with changes concentrated in a few key 
chromosomal regions.
(A-B) Results from a PCAdapt scan for genomic variants associated with human specialist 

ancestry in African genomes. (A) Preference for humans was tightly correlated with the 

mean population value of the second principal component (PC2) from a principal 

components analysis, indicating that this component captures genomic variation associated 

with specialization (linear model P=6.1×10−11). See Figure 3C inset for a similar pattern in a 

PCA that also included non-African genomes. (B) Thousands of SNPs were more strongly 

associated with PC2 than expected under neutral evolution (n=16,782 SNPs in red, 

Bonferroni-adjusted P<0.05), suggesting positive selection. Blue line shows the percentage 

of SNPs that were outliers in a sliding 10 Mb window. Grey shading indicates >=10 Mb 

regions where significant SNPs were concentrated (false discovery rate<0.001). Points with 

unadjusted P>0.01 not plotted. Grey triangle marks the position of Or4, an odorant receptor 

previously linked to preference for human odor [15]. (C) Polarized genomic divergence 

(Population Branch Statistic, PBS, 10 Mb sliding window) along the lineages leading to 

three human-seeking populations (top; NGO, THI, OGD) and two animal-seeking 

populations (bottom; KED, OHI) from the Sahel region. (D) Proportion of derived variation 

(fD, 10 Mb sliding window) shared by Sahelian human-seeking populations (NGO, THI, 

OGD) with non-African human specialists from Bangkok, Thailand (BKK). See also Figure 

S2, Figure S3, and Table S3.
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Figure 5. Rapid urbanization may favor a shift towards human-biting in large African cities by 
2050.
(A) Current (circles) and projected (arrows) dry season intensity and human population 

density for each site. Circle colors indicate current host preference. Plot background color 

indicates the host preference predicted by the model described in Figure 2 for the given 

combination of environmental parameters. (B) Map from Figure 1C showing projected 

(rather than current) human population densities (circle size), precipitation seasonality (map 

background color), and host odor preference (circle color) for the year 2050. See also Figure 

S4.
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Key Resource Table

REAGENT or RESOURCE SOURCE IDENTIFIER

Critical Commercial Assays

Chemagic DNA Tissue extraction PerkinElmer CAT# CMG-1423

TruSeq PCR-Free Library Kit Illumina CAT# FC-121–3003

Deposited Data

Raw genomic data NCBI SRA PRJNA602495

Behavioral and processed genomic data This paper https://github.com/noahrose/aaeg_adaptation_human_hosts

Experimental Models: Organisms/Strains

Aedes aegypti laboratory colonies (see Table S2) This paper N/A

Software and Algorithms

ADMIXTURE [25] http://software.genetics.ucla.edu/admixture/

PCAdapt [26] https://cran.r-project.org/web/packages/pcadapt/

VCFtools [44] https://vcftools.github.io

BWA-MEM [45] http://bio-bwa.sourceforge.net

bcftools [46] http://samtools.github.io/bcftools

PicardTools [47] https://broadinstitute.github.io/picard/

GATK [48] https://gatk.broadinstitute.org/

ANGSD [49] http://www.popgen.dk/angsd

R [50] https://www.r-project.org/

glmmTMB [51] https://cran.r-project.org/web/packages/glmmTMB

Emmeans [52] https://cran.r-project.org/web/packages/emmeans

MonoPoly [54] https://cran.r-project.org/web/packages/MonoPoly

PLINK [55] http://zzz.bwh.harvard.edu/plink/

Dsuite [56] https://github.com/millanek/Dsuite

ngsTools [57] https://github.com/mfumagalli/ngsTools

Other

Custom data analysis scripts This paper https://github.com/noahrose/aaeg_adaptation_human_hosts
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