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Automated thermal imaging 
for the detection of fatty liver 
disease
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Olga Tepper‑Shaihov1,2, Nili Naftali‑Shani1,2, Nora Balint‑Lahat6,9, Michal Safran7,9, 
Ziv Ben‑Ari7,9, Ehud Grossman8,9, Jonathan Leor1,2* & Oshrit Hoffer5

Non-alcoholic fatty liver disease (NAFLD) comprises a spectrum of progressive liver pathologies, 
ranging from simple steatosis to non-alcoholic steatohepatitis (NASH), fibrosis and cirrhosis. A 
liver biopsy is currently required to stratify high-risk patients, and predicting the degree of liver 
inflammation and fibrosis using non-invasive tests remains challenging. Here, we sought to develop 
a novel, cost-effective screening tool for NAFLD based on thermal imaging. We used a commercially 
available and non-invasive thermal camera and developed a new image processing algorithm to 
automatically predict disease status in a small animal model of fatty liver disease. To induce liver 
steatosis and inflammation, we fed C57/black female mice (8 weeks old) a methionine-choline 
deficient diet (MCD diet) for 6 weeks. We evaluated structural and functional liver changes by serial 
ultrasound studies, histopathological analysis, blood tests for liver enzymes and lipids, and measured 
liver inflammatory cell infiltration by flow cytometry. We developed an image processing algorithm 
that measures relative spatial thermal variation across the skin covering the liver. Thermal parameters 
including temperature variance, homogeneity levels and other textural features were fed as input 
to a t-SNE dimensionality reduction algorithm followed by k-means clustering. During weeks 3,4, 
and 5 of the experiment, our algorithm demonstrated a 100% detection rate and classified all mice 
correctly according to their disease status. Direct thermal imaging of the liver confirmed the presence 
of changes in surface thermography in diseased livers. We conclude that non-invasive thermal 
imaging combined with advanced image processing and machine learning-based analysis successfully 
correlates surface thermography with liver steatosis and inflammation in mice. Future development of 
this screening tool may improve our ability to study, diagnose and treat liver disease.

Non-alcoholic fatty liver disease (NAFLD) represents the hepatic manifestation of metabolic syndrome and 
is considered the leading cause of chronic liver disease1. NAFLD encapsulates a spectrum of progressive liver 
pathologies, ranging from simple steatosis to non-alcoholic steatohepatitis (NASH), fibrosis, and cirrhosis2. 
Approximately one quarter of the world’s population is diagnosed with simple liver steatosis and this number is 
projected to increase dramatically with the upward trend of obesity worldwide1.

Currently, a liver biopsy is required to confirm the presence of NASH. Moreover, accurately assessing liver 
inflammation and fibrosis using non-invasive tests remains challenging3. Cost-effective monitoring strategies of 
liver pathology are critical for both clinical decision-making and research of new therapeutic targets for NAFLD 
associated diseases.
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Thermal infrared imaging is a non-invasive tool that does not require exposure to ionizing radiation4. Recent 
developments of commercially available thermal imaging products have attracted considerable attention for use 
of infrared thermography in biomedical imaging5–7. We have recently demonstrated that non-invasive thermal 
imaging combined with advanced image processing algorithms and machine learning-based analysis can cor-
relate surface thermography with structural changes in internal organs of mice such as the heart8. The anatomical 
proximity of the liver to the skin surface and its vast vascular bed might enable the detection of changes in surface 
thermography through the use of non-invasive thermal imaging9.

Here, we sought to use a novel thermal image processing algorithm to automatically diagnose and monitor 
liver steatosis and inflammation in a small animal model of fatty liver disease in mice fed a methionine-choline 
deficient (MCD) diet. We aim to develop a new cost-effective screening modality for patients with liver steatosis 
and other animal models of chronic liver disease (Fig. 1).

Results
MCD diet induced liver steatosis and inflammation over time.  To assess the ability of our imaging 
technique to detect liver pathology associated with NAFLD, we first sought to establish a robust model of liver 
steatosis and inflammation10,11. A 6-week course of an MCD diet induced severe liver steatosis, evident in both 
ultrasound and histopathological evaluation of the liver (Fig. 2A,B). Liver steatosis was present after just one 
week of MCD-diet, and steatosis increased over time (Fig. 2A,B).

Next, we sought to evaluate liver inflammation and characterize the immune cell populations in the liver 
over time. We measured inflammatory cell surface markers by flow cytometry at baseline and after each week of 
the MCD diet. MCD diet-fed mice showed a significant increase in monocytes (CD11b+ ly6c+) in the liver over 
time. Specifically, we saw a time-dependent increase in the amount of pro-inflammatory monocytes (CD11b+ 
LY6Chigh) in MCD diet-fed mice (Fig. 3).

Finally, we assessed liver injury and function by measuring serum liver enzymes and lipids. MCD diet-
fed mice demonstrated a significant elevation in the liver enzymes aspartate transaminase (AST) and alanine 

Figure 1.   Research design. A graphic scheme describing our research design to develop a new, quick and easy-
to-handle tool to image fatty liver disease. (Drawings  adapted from BigMouse/Shutterstock.com; Julia Pankin/
Shutterstock.com; nexusby/Shutterstock.com; grmarc/Shutterstock.com; bsd/Shutterstock.com; unlimicon/
thenounproject.com; TheIcon Z/thenounproject.com).
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transaminase (ALT) along with increased total bilirubin levels. Lactate dehydrogenase (LDH) levels were also 
elevated, albeit not statistically significant (Fig. 4). Total cholesterol levels decreased from baseline concentra-
tions, while ALP concentrations did not change significantly.

Taken together, we conclude that an MCD diet for a course of 6 weeks recapitulated key features of fatty liver 
disease, including significant structural changes, inflammation and impaired liver function.

Steatosis and inflammation altered the thermal energy emitted by the liver.  To determine 
whether structural changes and inflammation lead to distinct changes in the liver’s surface thermography, we 
captured intra-abdominal direct thermal images of the liver in situ in live (sedated) mice after 6 weeks of an 
MCD/regular diet. Thermal images were analyzed by our image processing algorithm and the 9 extracted fea-
tures were compared between the two groups.

Figure 2.   A methionine-choline deficient diet induced liver steatosis and inflammation in mice. (A) We 
performed serial ultrasound studies throughout a 6-week course of MCD diet. Presented are representative 
pictures of the kidney and liver (labeled). The liver tissue displayed elevated echogenicity over time, a key feature 
of liver steatosis in ultrasound. Visually, the liver transformed to appear brighter than kidney tissue throughout 
the course of the diet. (B) We dissected livers for histopathological staining at each time point. The H&E 
staining displayed accumulating fatty infiltrates (white vesicles) over time. MCD methionine-choline deficient, 
H&E hematoxylin and eosin.

Figure 3.   MCD diet increased the levels of pro-inflammatory monocytes in the liver. We dissected livers from 
mice after each week of MCD diet and measured inflammatory cell surface markers by flow cytometry. We saw 
an increase in the amount of pro-inflammatory monocytes throughout the progression of the disease (CD11b+ 
LY6Chigh). Displayed is a box-and-whisker plot with individual values. P-values by Kruskal–Wallis and Dunn’s 
test for multiple comparisons.
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Livers of mice fed an MCD diet demonstrated distinct changes in their thermographic profile which indicated 
elevated levels of heterogeneity across the thermal image. Temperature variance, entropy, and contrast were 
significantly elevated in MCD diet-fed mice (Fig. 5). Accordingly, both homogeneity and energy values were 
lower in MCD mice compared with regular diet controls.

Combined with our histopathological and ultrasound findings, these results indicate that the presence of liver 
steatosis and inflammation is associated with distinct changes in tissue surface thermography, and that these 
changes can be successfully monitored by thermal infrared imaging.

Figure 4.   MCD-diet altered blood liver enzymes and lipid profile. We drew blood from the hearts of mice at 
baseline and after 6 weeks of MCD diet and ran a chemistry panel. The liver enzymes AST and ALT increased 
from baseline along with total bilirubin and LDH. Total cholesterol levels slightly decreased from baseline 
concentrations, while ALP concentrations did not change significantly. Displayed are box-and-whisker plots 
with individual values. P-values by Mann–Whitney test. MCD methionine-choline deficient, ALT alanine 
transaminase, AST aspartate transaminase, ALP alkaline phosphatase, LDH lactate dehydrogenase.



5

Vol.:(0123456789)

Scientific Reports |        (2020) 10:15532  | https://doi.org/10.1038/s41598-020-72433-5

www.nature.com/scientificreports/

Non‑invasive thermal image processing detected liver disease status.  Finally, we sought to 
determine whether the changes in surface thermography of diseased livers could be used to automatically diag-
nose and monitor liver pathology with non-invasive thermal imaging. Our image processing algorithm meas-
ures relative spatial temperature variation across the skin covering the liver. The algorithm extracts 9 features out 
of each thermal image captured throughout the experiment (Fig. 6).

We applied a k-means clustering algorithm to automatically predict the assigned diet (MCD/regular) for each 
mouse. During week 2 of the experiment, 8 of 10 mice were classified correctly by our model. During weeks 3, 
4, and 5, our algorithm demonstrated a 100% detection rate: 10 of the 10 mice were associated to homogeneous 
clusters of distinct types (MCD/ regular diet). A t-SNE plot representing the diagnostic yield of our model is 
presented in Fig. 7.

Figure 5.   Thermal imaging of livers in situ. We captured direct thermal images of the livers in situ in live 
(sedated) mice fed an MCD vs regular diet for 6 weeks. (A) Thermal image of the liver tissue. (B) Presented 
are multiple texture features extracted from the thermal image by our image processing algorithm. Livers 
of mice fed an MCD diet demonstrated elevated levels of heterogeneity across the thermal image measured 
by temperature variance, entropy, and contrast, combined with decreased homogeneity and energy values. 
Displayed are box-and-whisker plots with individual values. P-values by Mann–Whitney test.
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These findings indicate that our image processing tool and machine learning algorithm successfully correlated 
skin surface thermography with liver pathology.

Discussion
Our findings suggest, for the first time, that non-invasive thermal imaging could potentially be used to study 
liver disease in mice. We show that a thermal camera using a novel image processing algorithm and downstream 
machine learning analysis can automatically distinguish between animals with and without liver pathology. 
To our knowledge, this is the first report to describe the effect of liver steatosis and inflammation on the liver’s 
thermal properties in vivo.

Current non-invasive imaging modalities that monitor the progression of steatohepatitis and fibrosis are 
limited3. The potential imaging tool developed here has several critical advantages. First, the capturing of images 
is simple, quick, and does not require technical training, unlike abdominal ultrasound. Second, our image pro-
cessing algorithm is compatible with any commercially available thermal camera, making it potentially more 

Figure 6.   Non-invasive thermal image processing. (A) Non-invasive thermal images (IRON scale) of the mice 
were captured weekly. (B, C) Thermal images were processed by our algorithm which extracts multiple features 
from the selected region of interest (ROI) covering the liver. Displayed are the ROI (B) and the Graphical User 
Interface (C) we developed. (D) Output parameters were fed as input into a t-SNE dimensionality reduction 
algorithm, followed by k-means clustering. t-SNE t-distributed stochastic neighbor embedding.
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affordable and scalable for use in various research settings. Finally, the thermal camera used here, like similar 
available products, is portable and connects directly to smartphones. Therefore, future development of this model 
in humans could enable rapid and close monitoring of disease progression and various treatments, with reduced 
effort and time. This new imaging modality could be especially relevant for out-of-hospital settings.

Attempts to use thermal imaging to monitor liver disease have been previously reported. The majority of 
these attempts captured thermal images of ex vivo perfused liver samples. Thermal image analysis was able to 
correlate liver thermography with liver viability in transplanted livers12, and identify liver fibrosis and steatosis 
when combined with chemical imaging techniques13 or other advanced spectroscopy methods14. Several reports 
have also described the utility of thermal imaging in monitoring tissue damage during various liver ablation 
procedures15–17.

Our study is the first report that describes the potential use of non-invasive thermal imaging of skin surface 
thermography to monitor steatohepatitis. Moreover, our use of direct intra-abdominal thermal imaging of the 
liver in situ in live (sedated) mice, supports our hypothesis that cellular and molecular mechanisms of liver 
pathology lead to distinct changes in the liver’s emitted thermal energy.

A major strength of our study is the extensive characterization of the mouse model we used to recapitulate 
key features associated with NAFLD (the MCD diet model), including ultrasound studies, histopathological 
analysis, flow cytometry, and measurement of serum liver enzymes and lipids.

Non-invasive thermal imaging of the skin surface has already been suggested as an alternative method to 
assess liver pathology in newborns over 40 years ago9,18,19. However, no notable progress towards clinical use 
has been reported since. Our image processing algorithm and machine learning-based techniques provide an 
evolved approach to process thermal images, focusing not only on absolute temperature measurement across 
the tissue, but also on texture parameters of various region of interests. Future clinical studies using our thermal 

Figure 7.   Machine learning-based analysis of non-invasive thermal image processing. t-SNE plots representing 
the diagnostic yield of our model are presented. During weeks 3, 4, and 5, our algorithm demonstrated a 100% 
detection rate and clustered 10 of the 10 mice correctly (MCD diet vs regular control diet). t-SNE t-distributed 
stochastic neighbor embedding.
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imaging technique are needed in order to identify the most relevant thermal features that correlate with disease 
progression. Identifying these thermal texture parameters of the skin covering the liver could possibly be used 
to calculate new risk scores for patients with NAFLD. Implementing this technique could also lead to improve-
ments in thermal-based imaging in other fields of medicine.

Our study is limited by the relatively low levels of fibrosis induced by the MCD diet model. Furthermore, the 
MCD diet does not induce obesity that often accompanies NAFLD in humans. We chose this model because it 
is reliable and robust—the primary advantage of the MCD diet being that it consistently replicates NAFLD and 
NASH histological features observed in humans in a relatively shorter feeding time than other dietary models. 
Nevertheless, future studies that asses the effectiveness of thermal imaging in other models of NASH that induce 
obesity, elevated fibrosis and lobular inflammation are needed20. Furthermore, we did not correlate between ther-
mal imaging parameters and laboratory measurements because we performed the initial measurements, includ-
ing flow cytometry and blood tests, in a different group of mice than the ones imaged by the thermal camera in 
the final setting. Finally, thermal imaging has numerous limiting aspects. Notably, it is strongly influenced by 
environmental factors such as room and working surface temperature, as wells as manual handling of the animal. 
Accordingly, future experiments should include test settings that standardize these factors as much as possible.

We conclude that non-invasive thermal imaging of the skin covering the liver combined with advanced image 
processing and machine learning-based analysis is potentially suitable for the monitoring of fatty liver disease 
in mice. Future development of this technique in humans could lead to important advancements in the field on 
non-invasive imaging of patients with chronic liver disease.

Methods
Methionine‑choline deficient diet model.  To assess the ability of our thermal imaging technique to 
detect liver steatosis and inflammation we used a robust model of steatohepatitis in mice fed with a methionine-
choline deficient diet10,11.

C57BL/6 female mice (8 weeks old) were fed an MCD diet (TD.90262, Envigo) for 6 weeks. Control mice 
were fed a standard rodent diet (2018SX, Envigo) for the same period of time. Mice were housed in cages (up to 
5 mice in each cage) with a 12-h light/dark cycle and were given food and water ad libitum. Whole body weight 
was measured on a weekly basis. All animal experiments complied with the standards stated in the Guide for the 
Care and Use of Laboratory Animals (Institute of Laboratory Animal Resources, National Academy of Sciences) 
and were approved by the Sheba Medical Center Institutional Animal Care and Use Committee.

Abdominal ultrasound.  To assess liver structural changes over time, we performed serial abdominal ultra-
sound studies with a special small animal ultrasound system (Vevo 2100 Imaging System; VisualSonics, Toronto, 
Ontario, Canada) equipped with a 22- to 55-MHz linear-array transducer (MS550D MicroScan Transducer, Vis-
ualSonics, Toronto, Ontario, Canada). Ultrasound studies were performed on mice fed with MCD/regular diet 
at week 1, 3 and 5. Light anesthesia was induced by inhalation of 2% isoflurane and 98% O2, and subsequently 
maintained by 0.5% to 1% isoflurane. All measurements were performed by an experienced technician who was 
blind to the intervention groups. Qualitative assessment of liver steatosis was determined by an expert clinician 
in hepatology who was also blind to the experiment.

Histopathological evaluation.  To determine the presence of liver steatosis and immune cell infiltration, 
we performed histopathological evaluation of the liver at baseline and after 1, 2, 3, 4, 5 and 6 weeks of MCD diet. 
At each time point, mice (n = 4) were euthanized by an over-dose inhalation of isoflurane. Livers were harvested 
and fixed with 4% buffered formalin (Biolab) and then sectioned into slices. Each slice was embedded in paraffin, 
sectioned into 5-μm slices, and stained with hematoxylin and eosin (H&E).

Flow cytometry.  To characterize the phenotype of inflammatory cell infiltration to the liver, we analyzed 
total cell populations isolated from the liver for common mouse monocyte and macrophage markers by flow 
cytometry. We isolated cells from the livers of mice at baseline and following 1, 2, 3, 4, 5 and 6 weeks of MCD diet 
(n = 4 for each time point). Cells were extracted with an enzymatic digestion mixture as previously described21 
using 2 cycles of incubation at 37 °C for 10 min. We analyzed the cells by flow cytometry using the fluorescent 
antimouse antibodies targeted towards CD11 and Ly6C (Biolegend, San Diego, CA, USA). All samples were 
stained with the related isotype controls. We analyzed cells with a FACS Calibur cytometer (BD Bioscience) 
using the FlowJo Software (Tree Star).

Blood work and chemistry panel.  To determine the effects of the MCD diet on blood liver enzymes and 
lipid profile, we collected blood samples for mice at baseline and following 6 weeks of MCD diet. Mice were 
euthanized by an over-dose inhalation of isoflurane. We sampled roughly 1 ml of whole blood via direct cardiac 
puncture using a 20G needle. Blood samples were kept on ice for 30 min. To separate the serum, samples were 
centrifuged at 2000 g for 10 min at 4 °C. A chemistry panel was performed to measure the following param-
eters: total and direct bilirubin, total cholesterol, liver enzymes including alanine transaminase (ALT), aspartate 
transaminase (AST), alkaline phosphatase (ALP), blood albumin and lactate dehydrogenase (LDH).

Thermal imaging.  We captured thermal images on a weekly basis. Anesthesia was induced as described 
above for ultrasound studies. To avoid contact-induced interference with skin temperature, we removed hair 
covering the abdominal region of the mice one day prior to image acquisition. Images were captured using a 
FLIR One thermal camera device (FLIR Systems, Inc. Wilsonville, OR, USA)22. FLIR One utilizes the following 
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functions: a frame rate frequency of 8.7 Hz, an object temperature range of − 20 °C to 120 °C, and thermal sen-
sitivity of 100 mK. The wavelength sensitivity, over which the camera interpolates temperature, is 8–14 µm and 
the emissivity value considered appropriate for the animal for accurate temperature readings was 0.98. Images 
were taken at a distance of 10 cm, immediately after the mouse was fixed to an echocardiogram platform. We 
acquired 3–5 images per mouse which were all processed for downstream analysis.

For intra-abdominal thermal images of the liver in situ, mice after 6 weeks of MCD/regular diet (n = 5) were 
sedated by inhalation of 4% isoflurane and 96% O2. The abdomen was opened by gentle dissection in order to 
expose the liver. A total of 3–5 thermal images of the liver were captured before mice were euthanized by an 
over-dose inhalation of isoflurane.

Image processing.  The program first read a matrix containing the temperatures in the entire region shown 
by the thermal image. This temperature map was then displayed and a region of interest (ROI) was selected from 
it by the user. All textural parameters were computed from the part of the temperature matrix representing this 
ROI.

First, the algorithm computed the mean temperature in the ROI and its variance.
To compute additional textural parameters using MATLAB commands, the set of temperatures was trans-

formed into non-negative integers with a difference of 0.1 ∘C between adjacent values. The temperatures were 
first rounded to a precision of 0.1 ∘C (one digit after the decimal point). Finally, the minimal temperature in the 
ROI was subtracted from all values, and the shifted temperatures were multiplied by 10.

Several textural parameters were extracted from the obtained normalized temperature map. The entropy of the 
ROI and two moments of the temperature distribution namely its skewness and its kurtosis were computed. Then, 
the algorithm computed the cooccurrence matrix of the temperature map for the case of a horizontal distance 
of 20 pixels. From this cooccurrence matrix, the contrast, homogeneity, energy, and correlation were extracted.

To summarize, our algorithm computed and stored nine statistical parameters of the temperature distribution 
in the selection ROI: four moments of the distribution (mean, variance, skewness, kurtosis), its entropy, and four 
second-order parameters obtained from the cooccurrence matrix (contrast, homogeneity, energy, correlation).

Statistical analysis and machine learning techniques.  Variables are expressed as median and 95% 
confidence interval. Specific statistical tests are detailed in the Figure legends. In brief, differences between val-
ues were tested by an unpaired t-test. If values were not normally distributed (tested by the D’Agostino Pearson 
omnibus normality test), we used the non-parametric Mann–Whitney test. We used the Kruskal–Wallis Test 
along with Dunn’s test for multiple comparisons to assess the significance of measurements between mice at 
baseline and mice following 1, 2, 3, 4, 5, and 6 weeks of MCD diet.

All statistical analyses were performed with GraphPad Prism version 8.00 (GraphPad Software, La Jolla, CA, 
USA) and MATLAB software (Mathworks Inc. Natick, MA, USA).

Machine learning‑based analysis.  The machine learning analysis was composed of two steps. The first 
step relied on the computed features from the image processing algorithm, as described above. The dimension 
of the feature set was reduced by applying a dimensionality reduction method named t-SNE, which compactly 
describes that data by two new coordinates and allows visualization. The second step was the application of the 
k-means clustering algorithm in the reduced space. We sought to find k = 2 data-driven clusters that separate the 
mice into two groups. The clustering results were compared with the true mice`s condition.

T-distributed Stochastic Neighbor Embedding (t-SNE) is a nonlinear dimensionality reduction technique, 
which allows visualization of high-dimensional data by embedding it into a low-dimensional space23. The low-
dimensional embedding coordinates preserve the data’s original probability distribution. In particular, pairs of 
high-dimensional points that are likely to lie close to one another stay close in the computed embedding. Given 
the dataset X = {x1, x2, . . . xN }, where xi ∈ R

D ,  the similarity between pairs of points is computed by using a 
Gaussian kernel and denoted by pj|i , where  pj|i = e

−�xi−xj�
2/2σ2i

∑

k �=i e
−�xi−xk�

2/2σ2i
 . The kernel’s bandwidth σi is adapted to the 

density around the each point xi .  The symmetric distribution is defined by pij =
pi|j+pj|i
2N , where pi|i = 0. Let 

Y =
{

y1, y2, . . . , yN
}

, yi ∈ R
d denote the low-dimensional map of X , which reduces the dimension D of the 

original space to d ≪ D. The goal is to preserve the pairwise distances in the new coordinates. In an earlier 
algorithm, named Stochastic Nearest Neighbors (SNE)24, the conditional probabilities qj|i in the low-dimensional 
space obtained qj|i = e

−�yi−yj�
2

∑

k �=i e
−�yi−yk�

2   . In t-SNE, a t-students distribution, given by qij =
(1+�yi−yj�

2)
−1

∑

k �=i (1+�yk−yi�
2)

−1  is 

defined instead of the last Gaussian distribution. This modification simplifies the computational complexity. The 
new coordinates 

{

yi
}N

i=1
 are computed by minimizing the Kullback–Leibler divergence between the distributions 

P and Q. This is defined by C = KL(P||Q) =
∑

i

∑

j pijlog
pij
qij
.

The second algorithm that was employed in this work is the k-means clustering technique25. Given N data 
points, the algorithm divided the dataset into k clusters by minimizing the within-cluster variance. K-means is 
an iterative clustering algorithm. In each iteration k cluster centers (centroids) are computed and each data point 
is associated with its nearest centroid point forming a new partition to clusters. The process is stopped when the 
partition to clusters (or, alternatively, the cluster centers) ceases to change.

In this study, the high-dimensional points were the features extracted from the thermal images, as described 
in “Image processing” denote the dataset of features that was computed from the baseline thermal images by  
Xbase =

{

xb1 , x
b
2 , . . . , x

b
10

}

 , where  xbi ∈ R
9  , 1 ≤ i ≤ 10. Each point is a 9-dimesional vector that holds the com-

puted features of a single mouse. In a similar manner, the feature sets that describe the images from weeks 1–6 
are denoted by  Xweek1, . . . ,Xweek6.
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The t-SNE algorithm was applied to reduce the dimension of the set Xweek2 =
{

xw21 , xw22 , . . . , xw210

}

 
from its original dimension D = 9 to the reduced dimension d = 2. The resulted coordinates were given by 
Yweek2 =

{

yw21 , yw22 , . . . , yw210

}

 where yw2i ∈ R
2, 1 ≤ i ≤ 10, and plotted in the top-left image in Fig. 7. Then, the 

k-means clustering algorithm was applied with k = 2 to identify two cluster centroids. The computed centroids 
were marked by an x (see Fig. 7) and the mice associated with each cluster were circled. It can be seen that 8 out 
of 10 mice were classified correctly. Next, t-SNE was applied on a concatenated dataset, which was formed by 
unifying the data from  Xweek2 and Xweek3. Each point in this set is of dimension D ∗ 2 = 9 ∗ 2 = 18. The resulting 
low-dimensional coordinates Yweek3 =

{

yw31 , yw32 , . . . , yw310

}

 are plotted in the top-right part of Fig. 7. The applica-
tion of k-means to Yweek3 yielded a correct classification for all 10 mice. In a similar manner, t-SNE was applied 
to the concatenated sets Xweek2,Xweek3 and Xweek4  (bottom left image in Fig. 7) and last to the concatenated sets  
Xweek2, . . . ,Xweek5 (bottom right image in Fig. 7). It can be seen that the k-means clustering algorithm achieved 
correct classification for all mice in both settings.
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