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Purpose. The aim of this study is to identify hub genes and miRNAs by the miRNA-mRNA interaction network in dilated
cardiomyopathy (DCM) disease. Methods. The differentially expressed miRNAs (DEMis) and mRNAs (DEMs) were selected
using data of DCM patients downloaded from the GEO database (GSE112556 and GSE3585). Gene Ontology (GO) pathway
analysis and transcription factor enrichment analysis were used for selecting DEMis, and the target mRNAs of DEMis were
filtered by using miRDB, miRTarBase, and TargetScan. Cytoscape software was used to visualize the network between miRNAs
and mRNAs and calculate the hub genes. GO and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were
used to analyze the mRNAs in the regulatory network. Results. A total of 9 DEMis and 281 DEMs were selected, from which we
reconstructed the miRNA-mRNA network consisting of 7 miRNAs and 51 mRNAs. The top 10 nodes, miR-144-3p, miR-363-
3p, miR-9-3p, miR-21-3p, miR-144-5p, miR-338-3p, ID4 (inhibitor of DNA binding/differentiation 4), miR-770-5p, PIK3R1
(p85α regulatory subunit of phosphoinositide 3-kinase (PI3K)), and FN1 (fibronectin 1), were identified as important regulators.
Conclusions. The study uncovered several important hub genes and miRNAs involved in the pathogenesis of DCM, among
which, the miR-144-3p/FN1 and miR-9-3p/FN1 pathways may play an important role in myocardial fibrosis, which can help
identify the etiology of DCM, and provide potential therapeutic targets.

1. Introduction

Dilated cardiomyopathy (DCM) is a primary cardiac disease
involving genetic or postinflammatory etiology [1]. Left ven-
tricular (LV) or both ventricular dilatation and systolic dys-
function are the main physical signs, coupling with cardiac
remodeling and fibrosis. In clinical practice, these manifesta-
tions cannot be easily interpreted by volume overload follow-
ing hypertension or valve disease or by coronary artery
disease (CAD) causing global systolic dysfunction [2],
despite the typical phenotype, the diversity of DCM patho-
physiology, the adverse consequences of myocardial biopsy,
and the lack of marker protein for making a definite diagno-
sis call for innovation to identify pathophysiology mecha-
nism, which can provide clinical decision support [3].

In recent years, the microRNA (miRNA) has gained
more and more attention from researchers in cardiovascular
disease study. Several reports have revealed the critical roles

of miRNA and targeted message RNA (mRNA) in the devel-
opment of various diseases, including cardiovascular disor-
ders [4, 5]. By using a rodent cardiomyopathy model
induced by doxorubicin, Tao et al. revealed that miR-144-
3p and miR-451a were downregulating and miR-21-5p was
upregulating [6]. Gioffre et al. also proved a close connection
between miR-34a-5p and miR-451a to DOX-induced cardio-
myopathy [7]. Chen et al. suggested that miR-223-3p regu-
lates immune tolerance of dendritic cells in autoimmune
myocarditis [8]. mRNAs also serve as a diagnostic biomarker
for DCM [9, 10] and can value the progression of myocardial
fibrosis and ventricular remodeling in heart failure [11–13].
However, few researches have been done to clarify the
miRNA-mRNA regulatory network in DCM disease.

In this study, we retrieved microarray data of miRNAs
and mRNAs in heart chamber samples from DCM patients
for heart transplant and compared them with control data
of donor hearts. After screening the differential expression
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of miRNAs and mRNAs in the two groups, we reconstructed
the miRNA-mRNA network according to the miRNA
sponge theory [14]. The study discriminated human DCM-
related miRNAs with high credibility and provided a novel
approach to identify pathological mechanisms and potential
targets for DCM.

2. Materials and Methods

2.1. Data Download and Screening Strategy. Microarray data
sets of DCM were downloaded from Gene Expression Omni-
bus (https://www.ncbi.nlm.nih.gov/geoprofiles). The miRNA
expression profile data GSE112556 [6] performed on Plat-
form GPL18402 contained myocardial tissues from three
healthy people and three dilated cardiomyopathy patients.
The gene/mRNA expression profile GSE3585 [15] was per-
formed on Platform GPL96, with biopsy from seven DCM
patients and five donor hearts.

We used the limma package in R studio to get the differ-
entially expressed miRNAs (DEMis) and mRNAs (DEMs)
between the DCM cases and healthy controls. Bayesian
methods corrected the batch effect. If more than one probe
mapped into the same gene, the average expression value
was used to equal the expression value of that gene. The
t-test was applied to filter the differentially expressed genes.
The DEMis and DEMs were screened by the P values <
0.05 and log FC > average ðlog FCÞ + 2 ∗ SD ðlog FCÞ [16].
To show the differential expression of DEMis and DEMs
in different samples, volcano maps and heat maps were
drawn by applying the plot and pheatmap packages in
the R studio.

2.2. GO Enrichment Analysis for the Targets of Transcription
Factors. The DEMis were uploaded to FunRich (3.1.3), which
is a commonly used tool for GO functional enrichment anal-
ysis of enriched targets (genes/mRNAs) of transcription fac-
tor pathways. GO enrichment analysis was also applied to
develop the interaction network analysis between miRNAs,
gene/mRNA, and transcription factors (already integrated
the explored information of miRNA and potentially targeted
gene/mRNAs) [17–19]. The enriched targets of DEMis and
involved pathways were explored by previous methods [20].

2.3. Prediction of the Targeted mRNAs of DEMis. The miRDB
(http://www.mirdb.org), miRTarBase (http://mirtarbase.mbc
.nctu.edu.tw), and TargetScan (http://www.targetscan.org)
databases were used to predict the targeted mRNAs of DEMis
gained above. After that, the predicted mRNAs of DEMis
were further filtered by matching the DEMs selected before,
and then we got the DEMi-DEM pairs.

2.4. Construction of the miRNA-mRNA Regulatory Network.
The miRNA-mRNA network was constructed by putting all
the DEMi-DEM pairs selected above together, and Cytoscape
software (version 3.7.2) was used to visualize it at the same
time. All the node degrees, closeness, and betweenness of
the regulatory network were calculated simultaneously.

2.5. GO and KEGG Enrichment Analyses on mRNAs in the
Network. We used enrichplot and ggplot2 packages in the R
studio to perform Gene Ontology (GO) and Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) pathway analyses on
mRNAs in the network. P value < 0.05 was considered statis-
tically significant.

2.6. Statistical Analysis. The significant differences between
the two groups were analyzed by Student’s t-test. To further
control the error rate, the Benjamini and Hochberg method
was used to calculate the adjusted P value. A value of P <
0:05 or adjusted P value < 0.05 was considered to be signifi-
cant. All authors had full access to and take full responsibility
for the integrity of the data.

3. Results

3.1. The DEMi Screening Results in DCM. According to the
filtering criterion described before, the cutoff value for log
FC of miRNAs was 1.5. We identified nine dysregulated
DEMis, including 2 upregulated miRNAs: miR-770-5p and
miR-21-3p, and 7 downregulated miRNAs: miR-144-3p,
miR-144-5p, miR-9-3p, miR-451a, miR-551-3p, miR-363-
3p, and miR-338-3p. All the nine DEMis are presented in
Table 1. The distribution of differential miRNA expressions
between DCM and healthy controls was intuitively illustrated
by the volcano map on the correlation of −log10 (P value)
and log (FC) (Figure 1(a)). The heat map was also drawn to
show the differences between DCM and healthy groups
(Figure 1(b)).

3.2. Transcription Factor Enrichment and GO Enrichment
Analyses. A total of 4297 genes were mapped into 55 tran-
scription factors. By exploring the enrichment of targets of
transcription factors, we filtered the top 10 transcription
factors which had strong closeness to miRNAs, including
SP1, EGR1, SP4, LHX3, CUX1, POU2F1, HOXD8, MEF2A,
HOXA9, and NKX6-1 (Figure 2(a)), suggesting these
transcription factors being in regulatory relationships with
DEMis.

As to the molecular function (MF) terms by GO
enrichment analysis, most of the genes were involved in
transcription factor activity, transcription regulator activ-
ity, ubiquitin-specific protease activity, lipid phosphatase
activity, and protein threonine/tyrosine kinase activity

Table 1: All nine differentially expressed miRNAs (DEMis) in
dilated cardiomyopathy samples.

Name Log FC P value Adjusted P value

miR-144-3p -7.7311 <0.001 <0.001
miR-144-5p -6.7954 <0.001 <0.001
miR-9-3p -6.1527 <0.001 <0.001
miR-451a -2.8682 <0.001 <0.001
miR-551b-3p -2.3371 <0.001 <0.001
miR-363-3p -1.7493 <0.001 <0.001
miR-338-3p -1.7096 <0.001 <0.001
miR-770-5p 4.331 <0.001 <0.001
miR-21-3p 4.9264 <0.001 <0.001
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Figure 1: Volcano map of DEMis. Red spots represent upregulated genes; green spots represent downregulated genes (a). Heat map of
DEMis. The left three samples were from the control group, and the right three samples were from the DCM group. Red color: high
expression; blue color: low expression (b).
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Figure 2: Continued.
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Figure 2: The transcription factor enrichment for DEMis (a); genes/mRNAs involved in molecular function terms for DEMis (b);
genes/mRNAs involved in biological process terms for DEMis (c); genes/mRNAs involved in cellular component terms for DEMis (d).

5BioMed Research International



(Figure 2(b)). GO enrichment analysis also revealed that the
top 5 biological progress (BP) terms with the most enriched
targets of DEMis include regulation of nucleobase, nucleo-
side, nucleotide, and nucleic acid metabolism; regulation of
cell cycle, cell growth, translation, learning, and memory; cell
communication and negative regulation of enzyme activity;
endosome transport; and regulation of gene expression, epi-
genetic, and signal transduction (Figure 2(c)). The top 5 of
the cellular component (CC) terms with the most enriched
targets of DEMis were proved to be the nucleus cytoplasm,
collagen type I, MLL5-L complex, actin cytoskeleton, and
ubiquitin-conjugating enzyme complex (Figure 2(d)).

3.3. Results of the DEM Screening in DCM. In this study, the
expression levels of mRNAs from 7 DCM patients and 5
healthy controls were explored. The threshold value for log
(FC) of mRNAs is 0.47; 154 (54.8%) upregulated and 127
(45.2%) downregulated mRNAs were confirmed. The top
20 of upregulated and downregulated genes are shown in
Table 2. Both the volcano plot and the heat map are shown
in Figures 3(a) and 3(b), respectively.

3.4. Reconstruction of the miRNA-mRNA Network in DCM.
As showed in Figure 4, a miRNA-mRNA regulatory net-
work bearing 51 mRNAs and 7 miRNAs was constructed
to further exhibit the interaction between DEMis and
DEMs, which is beneficial to understand the role of miR-
NAs in DCM. The parameters of degree, closeness, and
betweenness in the network were calculated by the plugin
cytoHubba in Cytoscape (version 3.7.2). The top 10 nodes,
including miR-144-3p, miR-363-3p, miR-9-3p, miR-21-3p,

miR-144-5p, miR-338-3p, ID4, miR-770-5p, PIK3R1, and
FN1, could be selected as hub nodes (Table 3). Three miR-
NAs (miR-144-3p, miR-363-3p, and miR-9-3p) were consid-
ered to have the most node degrees, suggesting which might
play critical roles in the genesis and development of DCM as
the key miRNAs. In the top 10 nodes, ID4 were the target
mRNAs ofmiR-144-3p andmiR-9-3p; PIK3R1were the target
mRNAs of miR-363-3pa andmiR-9-3p; and FN1 were the tar-
get mRNAs of miR-144-3p and miR-9-3p. These 6 pathways
could be involved in the development of DCM.

3.5. Functional Enrichment Analysis of mRNAs in the
Regulatory Network. GO analysis of the mRNAs in the regu-
latory network showed that BP terms were significantly
enriched in the growth hormone receptor signaling pathway,
cellular response to growth hormone stimulus, response to
growth hormone, phosphatidylinositol phosphorylation,
and lipid phosphorylation. The cell component (CC) terms
were enriched in phosphatidylinositol 3-kinase complex, col-
lagen trimer, banded collagen fibril, collagen-containing
extracellular matrix, endoplasmic reticulum lumen, and
complex of collagen trimers. The molecular function terms
included insulin receptor substrate binding, extracellular
matrix structural constituent, cytokine receptor binding, col-
lagen binding, and hormone receptor binding (Figure 5(a)).
The relationships between mRNAs and enriched pathways
are also shown in Figures 5(b)–5(d). The most important 5
pathways by KEGG are also shown in Figure 6(a). Including
the AGE-RAGE signaling pathway in diabetic complications,
the prolactin signaling pathway, growth hormone synthesis
and secretion, and signaling pathways regulating pluripotency

Table 2: Top 40 differentially expressed mRNAs, half upregulated, half downregulated.

Name Log FC P value Adjusted P value Name Log FC P value Adjusted P value

Top 20 upregulated mRNAs Top 20 downregulated mRNAs

NPPB 4.5 2.50E-06 6.58E-03 RARRES1 -2.07 1.15E-04 1.69E-02

NPPA 2.24 1.97E-05 9.24E-03 S100A8 -2.02 3.51E-04 3.00E-02

CTGF 1.92 8.89E-05 1.52E-02 CORIN -1.84 8.04E-03 1.17E-01

CFH 1.76 3.63E-06 6.58E-03 CCL2 -1.48 9.68E-04 4.55E-02

FRZB 1.63 3.99E-04 3.11E-02 MYH6 -1.33 8.71E-03 1.22E-01

ACE2 1.39 8.37E-04 4.55E-02 FCN3 -1.27 7.57E-03 1.15E-01

SPOCK1 1.34 1.70E-04 2.02E-02 C1orf105 -1.22 2.28E-04 2.43E-02

AEBP1 1.32 5.76E-04 3.68E-02 ETNPPL -1.21 2.03E-03 6.45E-02

ASPN 1.28 5.23E-04 3.44E-02 G0S2 -1.16 4.24E-04 3.16E-02

LTBP2 1.27 8.50E-04 4.55E-02 DLK1 -1.13 1.38E-02 1.48E-01

PHLDA1 1.25 7.49E-06 6.58E-03 B3GALT2 -1.07 3.83E-03 8.38E-02

SFRP4 1.25 9.66E-04 4.55E-02 CD14 -1.05 7.00E-03 1.13E-01

OGN 1.19 6.45E-03 1.10E-01 PPP1R1A -1.05 1.33E-03 5.36E-02

ELN 1.19 1.31E-03 5.32E-02 LYVE1 -0.96 3.12E-03 7.63E-02

POSTN 1.18 1.42E-02 1.50E-01 F13A1 -0.94 1.47E-02 1.51E-01

ODC1 1.17 2.56E-06 6.58E-03 CCDC69 -0.93 1.53E-04 2.02E-02

RRAS2 1.15 2.52E-02 1.91E-01 PTP4A3 -0.91 2.39E-05 9.69E-03

COL1A1 1.13 4.30E-03 8.98E-02 NR4A3 -0.9 3.83E-02 2.29E-01

COL1A2 1.13 1.39E-03 5.54E-02 SELENBP1 -0.89 9.77E-05 1.64E-02

NAP1L3 1.13 3.43E-03 7.99E-02 SIK1 -0.88 3.67E-03 8.25E-02
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Figure 3: Volcano map of DEMs. Red spots represent upregulated genes, and green spots represent downregulated genes (a). Heat map of
DEMs. The green color represents low expression, and the red color represents high expression (b).
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of stem cells were involved in the pathological development
of DCM. The relationships between mRNAs and enriched
KEGG pathways are shown in Figure 6(b).

4. Discussion

DCM is one of the main reasons for sudden death and heart
failure globally, with an estimated prevalence of 1 in 2500

people and an incidence of 7 in 100,000 people annually
[21]. However, the etiology of DCM is still unclear. Infection,
noninfectious inflammation, poisoning, endocrine and meta-
bolic disorders, familial inheritance, and trauma are all
included. A major understanding of cardiomyopathies stem-
ming from the frequent identification of underlying genetic
causes involves mutations in myocardial proteins, cell-cell
communication, and the cytoskeleton. These, in turn, lead
to abnormal contraction and relaxation or dysregulated ion
transportation across cell membranes. As a structural heart
disease, DCM causes the dilatation of the heart ventricle
and the damage of systolic function, leading to heart failure
as the final stage [22]. Despite some progress in the treatment
and diagnosis, the prognosis of DCM patients remains poor
at the current stage.

The pathological process of DCM is dominated by the
enlargement of the cardiac chamber, following visible ven-
tricular dilatation, a variable and thin ventricular wall, the
formation of a fibrous scar, and often with the mural throm-
bus. Histologically, nonspecific hypertrophy and degenera-
tion of cardiomyocytes and especially different degrees of
fibrosis were mixed together. A variety of inflammatory cell
infiltration could also be observed in the inflammatory
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Table 3: The top 10 nodes in the regulatory network.

Node name Degree Closeness Betweenness

miR-144-3p 17 27.0 1196.7

miR-363-3p 15 24.5 799.3

miR-9-3p 14 24.35 741.1

miR-21-3p 7 7.0 42.0

miR-144-5p 4 16.23 178.9

miR-338-3p 4 14.78 258

ID4 3 20.67 257.9

miR-770-5p 3 3.0 6.0

PIK3R1 2 18.62 59.3

FN1 2 19.5 79.9
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process. The interactions of miRNAs and mRNAs are
involved in almost all biological processes. Various studies
proved that miRNAs play an important role in the process
of pathology relating to DCM. The impact of miR-1 in car-
diac hypertrophy targeting was clearly described [23]; the
miR-133a level was observed to be correlated with macro-
phage infiltration, cardiac injury, and clinical outcome in
DCM patients [24]. Duisters et al. found that miR-133 and
miR-30 could downregulate the connective tissue growth fac-
tor and the key fibrosis-related protein, playing an important
role in the structural changes in the extracellular matrix of
the myocardium [25].

In this study, we reconstructed the miRNA-mRNA reg-
ulatory network composed of 7 miRNAs and 51 mRNAs.
We also calculated the degree, closeness, and betweenness
of genes in the network. The top 10 nodes, including
miR-144-3p, miR-363-3p, miR-9-3p, miR-21-3p, miR-144-
5p, miR-338-3p, miR-770-5p, ID4, PIK3R1, and FN1, were
selected as hub nodes in the development of DCM. In the
regulatory network, miR-144-5p, miR-144-3p, miR-9-3p,
miR-363-3p, and miR-338-3p were downregulated in
DCM samples compared with the healthy controls. Mean-
while, miR-770-5p and miR-21-3p were upregulated in
DCM samples.

In order to better understand the mechanisms of target
mRNAs in DEMis, the present study filtered out possible
transcription factors. Specificity Protein 1 (SP1) is the most
common transcription factor. SP1 was an important regula-
tor in the development of neonatal cardiomyocytes. In this
work, we filtered miR-144 as a hub node in the regulation
of DCM. miR-144/451 was found to be tightly clustered
and evolutionally conserved. By targeting the CUGBP2-
COX2 signaling pathway, the upregulated miR-144/451 clus-
ter can protect the heart from hypoxic stress [26]. Yuan et al.
found that in the myocardium infarct zone, the expression
level of miR-144-3p was increased, and the decreased expres-
sion levels of miR-144-3p were accompanied with the
decreased mRNA and related protein levels of the fibrosis-
related genes [27]. Similarly, the expression level of miR-9
was upregulated in H9C2 cells subject to hypoxia, and the
hypoxia-induced cardiomyocyte apoptosis was inhabited by
the miR-9 knockdown procedure [28]. The expression level
of miR-9-5p decreased in the ischemic myocardium [29].
Jin et al. established the rodent myocardial infarction model
and proved that compared with the sham group, the rats in
the miR-9 group had substantially decreased type I and type
III collagen, suggesting that miR-9 can alleviate the myocar-
dium fibrosis process in cardiomyopathy [30]. According to
existing literatures, miR-144 and miR-9 might play an
important role in the hypoxic stress, apoptosis, and fibrosis
process in DCM.

Meng et al. proved that inhibition of miR-363 could
protect the cardiomyocyte against hypoxia-induced apopto-
sis through the regulation of Notch signaling [31]. miR-338
was involved in the development of cardiac hypertrophy
[32]. However, few studies revealed the role of miR-338
in DCM. miR-770 exerts its role more in cancer [33] and
diabetes [34], suggesting that it has potential to be an
entirely new target in DCM. At the same time, miR-21

has been improved to participate in various pathophysiolog-
ical mechanisms of cardiovascular diseases, such as inflam-
matory infiltration [35], apoptosis, oxidative stress [36], and
cardiac fibrosis [37].

PIK3R1, ID4, and FN1 were selected as the key genes in
the miRNA-mRNA network. The mutation of PIK3R1 relat-
ing to insulin resistance can affect both cardiac metabolism
and contractile function. Young et al. and Chen et al. [38,
39] found that PIK3R1 was involved in circadian rhythms,
glucose utilization, physiologic, metabolic stress, and cardiac
contractile function. In our study, PIK3R1 is the target gene
of miR-9 and miR-363, which may broaden our understand-
ing of the relationship between DCM and metabolism. ID4
encodes a member of the inhibitor of the DNA binding
(ID) protein family, which also takes part in the mammalian
circadian system [40]. FN1 encodes fibronectin, which plays
essential roles in cell adhesion and migration, including the
formation of the embryo, healing, blood clotting response,
and host defense. The role of FN1 in DCM focuses on extra-
cellular cellular matrix (ECM) remodeling [41]. As the target
gene of miR-144 and miR-9, it can be concluded that the
miR-144/FN1 and miR-9-3p/FN1 might be necessary in the
progresses of myocardial fibrosis in DCM.

To assess the strength of the miRNA-mRNA network
analysis, we filtered 10 mRNAs and genes including miR-
144-3p, miR-144-5p, miR-9-3p, miR-363-3p, miR-338-3p,
miR-770-5p, miR-21-3p, ID4, PIK3R1, and FN1, which are
believed to play critical roles in the development and patho-
logical mechanisms of DCM. Among which, miR-9-3p and
miR-144-3p were verified to be the most important
functional miRNA, being recognized as the most important
signaling pathways in DCM.

This study had some limitations. Firstly, the underlying
mechanisms of DCM have to be further explained, calling
for an establishment of the triplex network for genes, miR-
NAs, transcription factors, and mRNAs. Furthermore, due
to the lack of experimental verification, these conclusions
need to be further explored.

5. Conclusion

In this study, we constructed the miRNA-mRNA network in
DCM pathogenesis and identified that the miR-144-3p/FN1
and miR-9-3p/FN1 pathways could be involved in the path-
ogenesis of myocardial fibrosis in DCM, providing potential
therapeutic targets in DCM disease.
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