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Redox homeostasis is regulated by critical molecules that modulate antioxidant and redox signaling (ARS) within the cell.
Imbalances among these molecules can lead to oxidative stress and damage to cell functions, causing a variety of diseases.
Brahma-related gene 1 (BRG1), also known as SMARCA4, is the central ATPase catalytic subunit of the switch/sucrose
nonfermentable (SWI/SNF) chromatin remodeling complex, which plays a core role in DNA replication, repair, recombination,
and transcriptional regulation. Numerous recent studies show that BRG1 is involved in the regulation of various cellular
processes associated with ARS. BRG1, as a major factor in chromatin remodeling, is essential for the repair of oxidative stress-
induced DNA damage and the activation of antioxidant genes under oxidative stress. Consequently, a comprehensive
understanding of the roles of BRG1 in redox homeostasis is crucial to understand the normal functioning as well as pathological
mechanisms. In this review, we summarized and discussed the role of BRG1 in the regulation of ARS.

1. Introduction

Brahma-related gene 1 (BRG1), also known as SMARCA4, is
the central catalytic ATPase of the switch/sucrose nonfer-
mentable (SWI/SNF) chromatin remodeling complex, which
alters the structure of reconstituted chromatin particles in an
ATP-dependent manner and makes genomic regions more
accessible to transcription factors and the transcription
machinery [1]. As a major factor in chromatin remodeling,
BRG1 plays a pivotal role in DNA replication, repair, recom-
bination, and transcriptional regulation by interacting with
various nuclear proteins, including nuclear receptors, tran-
scription factors, and chromatin modifying enzymes [2, 3].
Consequently, BRG1 is involved in a range of cellular pro-
cesses, including cell proliferation, apoptosis, and differentia-
tion [4–6], and is involved in a diversity of diseases, such as
cancer [7], liver fibrosis [8] and heart disease [9]. Accumulat-
ing evidence indicates that BRG1-mediated chromatin
remodeling is essential for the repair of oxidative stress-
induced DNA damage and the activation of antioxidant
genes under oxidative stress [10–13]. In view of the impor-
tance of BRG1 in oxidative stress, in this review, we critically
discuss the potential role of BRG1 in redox regulation, oxida-

tive stress, and reactive oxygen species- (ROS-) induced
disease.

2. BRG1

The BRG1 gene is located in chromosomal region 19p13.2
[14]. A gene enrichment analysis of the regions of the
genome occupied by BRG1 showed that BRG1 occupied the
promoter regions of the hypoxia-inducible factor (HIF)2α
transcription factor and of metabolic regulators in several
key pathways including the glycolytic pathway [15]. Interest-
ingly, this study also found that oxidative stress-induced
BRG1 could bind to the promoter of the antioxidant defense
gene and induce its transcription, thus protecting cells from
oxidative damage. Sena et al. further reported that BRG1
can promote the expression of HIF1α and HIF2α genes and
promote hypoxic induction of a subset of HIF1 and HIF2 tar-
get genes to regulate the hypoxia response [16]. HIF1α,
HIF2α, and many other key metabolic regulators are major
regulators of survival pathways activated by various cellular
stresses (such as hypoxia) [17, 18]; therefore, it is reasonable
to assume that BRG1 also plays a key role in regulating oxida-
tive stress. Moreover, recent studies showed that BRG1
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overexpression mitigated hypoxia-induced cell damage,
while BRG1 suppression contributed to hypoxia-induced cell
damage [19]. Taken together, these studies suggest that
BRG1 is involved in oxidative stress and may have an antiox-
idant effect.

3. BRG1 and Oxidative Stress

Redox species, the primary forms of which include ROS and
reactive nitrogen species (RNS), have dual roles in living sys-
tems, having beneficial or deleterious effects [20]. Normal
levels of redox species are essential to trigger many important
reactions and signaling cascades [21]. However, when pro-
duced in excess or combined with other redox species, they
can have serious deleterious effects on cellular function
(reviewed in references [22, 23]), which can be counteracted
by enzymatic and nonenzymatic antioxidant systems. The
delicate balance between the beneficial and deleterious effects
of redox species, known as redox homeostasis, is achieved
through a series of regulatory mechanisms and is an impor-
tant aspect of healthy organisms [20]. Imbalanced redox
homeostasis caused by inappropriate biochemical reactions
in cells and/or external factors may result in oxidative stress
[24], which is a pivotal cause of many diseases, such as cancer
[25], cardiovascular disease [26], neurodegenerative diseases
[27], and diabetes [28].

Numerous studies show that oxidative stress can induce
DNA damage, leading to single- or double-strand breaks,
which can be fatal to cells if not repaired [29]. The most com-
mon lesion generated by intracellular oxidative stress is 8-
hydroxydeoxy guanosine (8-oxodG) [30]. During oxidative
stress, the processing and repair of 8-oxodG in nucleosomes
requires ATP-dependent chromatin remodeling [10]. BRG1,
as a major factor in chromatin remodeling, takes part in pro-
tecting against DNA damage induced by oxidative stress and
regulating redox homeostasis. Moreover, the formation of
BRG1-promoter complexes in response to oxidative stress
is essential to protect antioxidant gene promoters from oxi-
dative damage [15]. The specific mechanisms by which
BRG1 chromatin remodeling complexes mediate these redox
and antioxidant signals are a current focus of research.
Therefore, below, we discuss the diverse ways that BRG1
and ARS molecules associate and how this knowledge can
be applied to the treatment of related diseases.

4. BRG1 in Oxidative Stress Signaling

Accumulating evidence associates ARS events with the BRG1
chromatin remodeling complex. The relationship between
ARS events and BRG1 is complex and multifaceted, involv-
ing multiple mechanisms that regulate antioxidant and redox
signaling pathways and that affect redox homeostasis. Below,
we categorically describe the regulation of BRG1 in redox sig-
naling and its role in oxidative stress-mediated diseases.

4.1. BRG1 in Keap1/Nrf2 Signaling. One of the most studied
transcription factors activated by oxidative stress is nuclear
factor E2-related factor 2 (Nrf2), which is responsible for
inducing the expression of several antioxidant defense genes

and is the main regulator of cellular defense against oxidative
stress [31]. In response to oxidative stress, Nrf2 is activated by
dissociation from the inhibitor Kelch-like ECH-associated
protein-1 (Keap1) and transferred into the nucleus, where it
binds to the antioxidant reaction element (ARE), thereby pro-
moting the expression of antioxidant genes, such as heme
oxygenase-1 (HO-1) and signal transducer and activator of
transcription 3 (STAT3) [32].

4.1.1. BRG1 in Keap1/Nrf2/HO-1 Signaling. Early studies
showed that Nrf2 binding to AREs requires BRG1 recruit-
ment to induceHO-1 gene activation. Hyperphosphorylation
of BRG1 prevents HO1-induced oxidative damage and is
considered to be a key mechanism of darinaparsin-induced
apoptosis [33]. Upon oxidative stress, BRG1 interacts with
Nrf2 to activate HO-1 gene expression by promoting the for-
mation of Z-DNA and subsequently recruiting RNA poly-
merase II to the promoter of HO-1 [34, 35]. Therefore,
activation of HO-1 by the interaction between BRG1 and
Nrf2 may be a key regulatory checkpoint in the regulation
of disease states caused by oxidative stress.

BRG1-mediated Nrf2/HO-1 signaling has been reported
in diverse pathological processes. The expression of BRG1
was significantly decreased in the myocardium of diabetic
rats, which was at least partly related to the decreased expres-
sion of HO-1 and impaired diastolic function [36]. Similarly,
the depletion of BRG1 caused by high blood sugar signifi-
cantly blocked the cardioprotective effects of sevoflurane
postconditioning, or emulsified isoflurane postconditioning,
because of impaired Nrf2/HO-1 signaling [37, 38]. Further-
more, adiponectin promotes HO-1 expression by simulta-
neously activating Nrf2 and BRG1, thereby inhibiting
hyperglycemic-induced oxidative stress, myocardial cell apo-
ptosis, cardiac hypertrophy, and cardiac dysfunction [39].
These studies may provide a new way to treat diabetic
cardiomyopathy.

BRG1-mediated Nrf2/HO-1 transcriptional activation is
important for oxidative stress injury induced by ischemia/re-
perfusion (I/R) or hypoxia/reoxygenation (H/R). Propofol
alleviates oxidative stress in anoxia/reoxygenated hepato-
cytes through the lncRNA-TUG1/BRG1 pathway [40].
Knockdown of BRG1 inhibited HO-1 expression, thereby
weakening the protective effect of propofol postconditioning
on hepatic ischemia/reperfusion injury (HIRI) [41]. Consis-
tent with these results, overexpression of BRG1 alleviates
hepatic I/R injury by activating the Nrf2/HO-1 signaling
pathway [42]. Furthermore, under BRG1 overexpression,
the upregulation and nuclear translocation of Nrf2 alleviates
acute lung injury caused by hepatic I/R via activation of the
antioxidant enzyme system, including NAD (P) H quinone
dehydrogenase 1 (NQO1), superoxide dismutase (SOD),
glutamate-cysteine ligase catalytic subunit (GCLC), and glu-
tathione S-transferase alpha 1 (GSTα1) [43]. This suggests
that BRG1 may also play a key role in promoting the activa-
tion and expression of antioxidant enzymes.

Deng et al. found that under oxidative stress, the number
of damaged and dead neurons in BRG1 knockout (KO) mice
increased significantly, which may be related to the regula-
tion of NR2B-NR2A by BRG1 [44]. Overexpression of
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BRG1 increases the activity of neurons, weakens apoptosis,
and reduces the production of ROS, thus producing a protec-
tive effect on oxygen-glucose deprivation/reoxygenation-
(OGD/R-) induced injury [45]. Additionally, further evi-
dence indicates that inhibition of miR-144-3p or miR-199a-
5p can alleviate OGD/R-induced neuronal injury by upregu-
lating BRG1 to activate Nrf2/HO-1 signaling [46, 47].

From the above studies, it can be inferred that BRG1
can protect tissues from I/R-, H/R-, or OGD/R-induced
oxidative injury through Keap1/Nrf2/HO-1 signal transduc-
tion (Figure 1). BRG1 is therefore a potential target for the
treatment of I/R-, H/R-, or OGD/R-induced injury. Paradox-
ically, Naito et al. suggested that BRG1, in ischemic stress,
induces tumor necrosis factor-α (TNF-α) expression (TNF-
α promotes the production of ROS, reviewed in reference
[48]) in renal epithelial cells, exacerbating renal injury [49].
Furthermore, Liu et al. reported that BRG1 regulated endo-
dermal IL-33, which aggravated renal injury and fibrosis
induced by ischemia-reperfusion in mice [50]. Therefore,
the role of BRG1 in ischemia-reperfusion is controversial
and deserves further study.

4.1.2. BRG1 in Keap1/Nrf2/STAT3 Signaling. Myocardial
STAT3 is a crucial transcription factor in the SAFE pathway
(i.e., Janus kinase (JAK)2/STAT3 signaling cascade), espe-
cially during myocardial ischemia reperfusion injury [51].
STAT3 restores the expression of endothelial nitric oxide
synthase (eNOS) and maintains the transcription of eNOS
in endothelial cells to cope with hypoxia injury [52]. Upon
exposure to oxidative stress, BRG1 interacts with Nrf2 and
subsequently participates in Nrf2-mediated STAT3 gene
activation [38]. BRG1 also provides protection against
ROS-induced cardiomyopathy by activating STAT3 [53].
Furthermore, a study by Wang et al. showed that the cardiac

protective effect of emulsified isoflurane postconditioning
was lost in diabetic rats because of impaired Nrf2/STAT3 sig-
nal transduction [38]. These results indicate that BRG1 plays
a vital role in antioxidant damage through Keap1/Nrf2/-
STAT3 signaling (Figure 1).

4.2. BRG1 in Other ROS-Mediated Signaling Pathways. In
addition to the Keap1/Nrf2 signaling pathway, BRG1 is
involved in a number of other ROS-mediated pathways that
are closely related to oxidative stress.

4.2.1. BRG1 in NF-κB and p65 Signaling. There is a strong
mutual relationship between ROS and nuclear factor kappa
B (NF-κB) signaling. ROS affects activation of NF-κB signal-
ing mainly by inhibiting the phosphorylation of IκBα. In
turn, NF-κB signaling can also affect ROS levels by upregulat-
ing the expression of antioxidant proteins, such as SOD and
glutathione peroxidase (GPX) [54, 55]. Moreover, p65 exac-
erbates hypoxia stress-mediated endothelial cells [56]. Under
hypoxia, p65 at least partially induces endothelial dysfunc-
tion by activating a series of cell adhesion molecule (CAM)
genes [57]. Fang et al. showed that BRG1 and Brahma
(BRM) interact with NF-κB/p65 and fine-tune the binding
of p65 to target promoters, which indicates a strong correla-
tion between BRG1 and oxidative stress signals related to
ROS [58] (Figure 2).

4.2.2. BRG1 in p53 and PTEN/PI3K-AKT Signaling. p53 is
the main modulator of a cell’s response to various stresses,
including oxidative stress. Under physiological conditions
or exposure to transient and mild oxidative stress, p53
has an antioxidant function and contributes to maintain-
ing low levels of ROS (reviewed in reference [59]). Phos-
phatase and tensin homolog (PTEN)/phosphatidylinositol
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Figure 1: The figure illustrates interaction of BRG1 with Nrf2 that regulates the expression of several antioxidant genes. Under oxidative
stress, the Keap1-CUL3 ubiquitination system is disrupted, resulting in the dissociation of Nrf2 and its translocation into the nucleus
where it binds ARE, thereby promoting the expression of antioxidant genes. In response to oxidative stress, BRG1 also has a protective
effect on mitochondrial function and regulates the UPR and ER stress by maintaining the basal level of Ire1 activity. ARE: antioxidant
reaction element; ER: endoplasmic reticulum; CUL3: cullin 3; Keap1: Kelch-like ECH-associated protein-1; Nrf2: nuclear factor E2-related
factor 2; UPR: unfolded protein response.
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3-kinase (PI3K)-AKT signaling also mediates ROS damage
to cells [60, 61]. Notably, BRG1 has a direct effect on p53
[62] and may inhibit the expression of PTEN at mRNA
and protein levels, thereby upregulating the PI3K-AKT
signaling pathway [63, 64] (Figure 2). These results further
support the important role of BRG1 in the regulation of
oxidative stress.

4.2.3. BRG1 in SHH Signaling. The Sonic hedgehog (SHH)
signaling pathway protects cell homeostasis by regulating
antioxidant defense mechanisms and maintaining mitochon-
drial dynamics to resist oxidative stress [65]. BRG1 is
required for the transcriptional activation of Gli in the SHH
pathway [66]. Moreover, SHH, activated by BRG1-recruited
NF-κB, can in turn activate BRG1 expression through Gli
to sustain a positive feedback loop [67] (Figure 2). The rela-
tionship between BRG1 and SHH signaling may be an
important basis for BRG1 to participate in the regulation of
redox homeostasis.

4.2.4. BRG1 in TGF-β and WNT Signaling. The level of ROS
is closely related to the transforming growth factor beta
(TGF-β) [68] and WNT signaling pathways [69]. Impor-
tantly, BRG1 not only enhances TGF-β signaling as a cofac-
tor of SMADs [70], but also participates in theWNT pathway
by controlling the bioavailability of signaling molecules (such
as ligands, receptors, and signal adapters) and by directly
activating the target gene, β-catenin [71, 72] (Figure 2). There-
fore, BRG1 may be involved in the management of redox sig-
nals by regulating TGF-β signaling and WNT signaling.

In short, BRG1 can affect intracellular ROS levels by par-
ticipating in a number of ROS-related signaling pathways.
However, the specific mechanism by which BRG1 influences
the redox signal through these pathways needs to be clarified.
Further investigation is expected to reveal many new roles of
BRG1 in redox homeostasis.

4.3. BRG1 andMitochondrial Function. It has been established
that more than 90% of ROS are generated by mitochondria in
eukaryotic cells [73]. Mitochondrial dysfunction is one of the

main reasons for the accumulation of ROS and oxidative-
damaged proteins in cells [74]. BRG1 takes part in mitochon-
drial oxidative pathways and therefore affects the production
of ROS. During the heat shock response, BRG1 recruited by
heat shock factor 1 (HSF1) helps to maintain mitochondrial
membrane potential and cell survival by activating transcrip-
tion of the gene encoding mitochondrial chaperone, such as
heat-shock protein (HSP) 60, HSP10, and mtHSP70 [75].
BRG1 and BRM can maintain cardiomyocyte homeostasis
in vivo by regulating mitochondrial dynamics and mitotic
phagocytosis. In the BRG1-BRM double-knockout mouse
heart, mitochondria were small and fragmented, with a
decrease in both number and size [76].

Increased mitochondrial respiration was observed in
BRG1-deficient tumor cells. This was because the expression
of several important genes in the oxidative phosphorylation
(OXPHOS) pathway increased, including the master mito-
chondrial biogenesis coactivator, PGC1-α, mitochondrial
ATP synthase F0 complex subunit (ATP5L), and oxidative
stress response genes, such as glutathione S-transferase
omega 7 (GSTO7) and GSTO1. The level of several metabo-
lites that play a key role in the pentose-phosphate pathway
(PPP) was also elevated [77]. It is worth noting that, under
hypoxic conditions, mitochondrial complex I (CI) dysfunction
causes high levels of ROS, triggering a signal transduction
pathway involving BRG1 downregulation [78]. Furthermore,
deletion of BRG1 caused a significant upregulation in the
expression of genes related to mitochondrial degradation,
which may lead to an imbalance in redox homeostasis [79].

In general, these studies indicate that BRG1 plays an active
role in protecting mitochondrial function and that BRG1 may
protect organisms from metabolic damage through mecha-
nisms that depend on oxidative stress (Figure 1).

4.4. BRG1 and ER Stress. Accumulation of unfolded and mis-
folded proteins or excessive protein transport in the endo-
plasmic reticulum (ER) can cause ER stress and trigger the
unfolded protein response (UPR). UPR is modulated by the
ER and the redox system in the ER [80]. In the presence of
ER stress, the UPR uses evolutionarily conserved signaling
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Figure 2: Pathways that are closely related to ROS levels implicated in BRG1 function in oxidative homeostasis. The summary diagram is
simplified (see text for details).
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pathways to restore normal cell function and inhibit apopto-
sis, which are necessary and sufficient to alleviate protein
aggregation and ER stress [81]. BRG1 maintains the basal
level of inositol-requiring enzyme 1 (Ire1) activity by reduc-
ing oxidative stress in the ER network, which promotes
UPR regulation and the clearance of cytoplasmic protein

aggregates to maintain ER homeostasis [82]. These data indi-
cate that BRG1 plays a critical role in oxidative stress by
maintaining ER homeostasis (Figure 1).

4.5. BRG1 and Autophagy. Autophagy, a lysosomal degrada-
tion pathway, is responsible for the removal of aggregation-
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oxidative stress by activating CAV1 to limit eNOS activity and NO bioavailability. CAV1: caveolin-1; eNOS: endothelial nitric oxide
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prone proteins, the disposal of excessive or damaged organ-
elles, and the renewal of long-lived proteins, to achieve the
metabolic needs of the cell and the turnover of certain organ-
elles [83]. Autophagy is believed to be the main mechanism
for removing oxidized proteins from cells [84], and impaired
autophagy causes oxidative stress [85]. The transcription of
central autophagy regulatory genes, such as Atg16l1,Ambra1,
Atg7, and Wipi2, was directly modulated by BRG1. Autoph-

agy defects in BRG1-deficient intestinal epithelial cells (IECs)
lead to overproduction of ROS, resulting in a defect of barrier
integrity [86]. Therefore, it is reasonable to believe that BRG1
participates in redox signaling by regulating autophagy
(Figure 3).

4.6. BRG1 and NOX. ROS play a wide range of physiological
and pathophysiological roles in various processes. The

Table 1: The nucleic acid and protein modulators of BRG1. This list summarizes the current research on the nucleic acid and protein
modulators of BRG1. ARE: antioxidant reaction element; BAF: BRG1/BRM-associated factor; BRG1: Brahma-related gene-1; BRM:
Brahma; CK2: casein kinase 2; HO-1: heme oxygenase 1; lncRNA: long noncoding RNA; MiR: microRNA; ncRNA: noncoding RNA;
NKTCL: natural killer/T-cell lymphoma; Nrf2: nuclear factor E2-related factor 2; OGD/R: oxygen-glucose deprivation/reoxygenation;
PPARγ: peroxisome proliferators-activated receptor γ; SWI/SNF: switch/sucrose nonfermentable; UCA1: urothelial carcinoma-associated 1.

Modulators Known actions Ref.

Nucleic acids

Btr Under anaerobic conditions, Btr can increase the expression of BRG1 in E. coli by three times. [102]

LncRNA Evf2 Evf2 directly inhibits BRG1 ATPase and chromatin remodeling activities. [103]

LncRNA UCA1 UCA1, as a suppressor of BRG1, promotes bladder cancer cell proliferation by inhibiting BRG1. [104]

MiR-101, miR-199,
and miR-155 BRG1 expression is controlled by miR-101, miR-199, and miR-155 through binding to 3′UTRs. [105]

MiR-155
There is a negative correlation between miR-155 level and BRG1 in normal NK, as well as two

NKTCL cell lines and the MOLT4 cell line.
[106, 107]

MiR-139-5p
MiR-139-5p promotes apoptosis and suppresses proliferation of human airway smooth muscle

cells by decreasing the BRG1.
[108, 109]

MiR-144-3p
MiR-144-3p promotes OGD/R-induced neuronal injury by negatively regulating

BRG1/Nrf2/ARE signaling.
[46]

MiR-199a-5p
Downregulation of miR-199a-5p can protect neurons from OGD/R-induced neuron damage by

upregulating BRG1 to activate Nrf2/HO-1 signaling.
[47] [110]

MiR-21 BRG1 is a direct target of miR-21. [111]

MiR-221/222
BRG1 is the most likely target affected by miR-221/222 during LPS tolerance, and increased

expression of miR-221/222 reduces BRG1 expression.
[112]

MiR-206 BRG1 may be an important gene target of miR-206 during carcinogenesis and osteogenesis. [113]

MiR-302 MiR-302 binds the 3′UTRs and directly regulates the BRG1 complex subunits BAF53a and BAF170. [114]

MiR-99a BRG1 is positively regulated by miR-99a and is involved in hypoxia-induced cell injuries in H9C2 cells. [19]

NcRNA Xist
Xist binding inhibits BRG1’s nucleosome-remodeling activity and results in expulsion of the SWI/SNF

complex from the Xi.
[115]

Proteins

Angiotensin II
Expression of BRG1 is increased in vitro when cardiomyocytes are stimulated with angiotensin II

or a β-adrenergic agonist.
[116]

Calcineurin
Calcineurin (Cn) regulates the ability of BRG1 and other SWI/SNF enzyme subunits to stably

associate with myogenic promoters during differentiation.
[117]

Camk2a Camk2a-Cre-mediated conditional deletion of BRG1 leads to perinatal hydrocephalus. [118]

CK2 CK2-mediated phosphorylation of BRG1 regulates myoblast proliferation. [119]

Cdx
Cdx transcription factors regulate target gene expression, in part, through recruitment of

BRG1-associated SWI/SNF chromatin remodeling activity.
[120]

Gcn5
In vivo and in vitro, the Snf2 subunit of the SWI/SNF complex is acetylated directly by the

Gcn5-containing complexes.
[121]

NRG1
BRG1 expression is inhibited in the NRG1Δ mutant and BRG1’s induction was blocked by

overexpression of NRG1.
[122]

p63 P63 directly modulates the expression of BRG1. [123]

PPARγ PPARγ activation-mediated inhibition of BRG1 activity through NF-κB pathway. [124]

SCF FBW7 SCF FBW7-mediated degradation of BRG1 inhibits gastric cancer metastasis. [125]

SRG3
SRG3 protects the major components of the SWI/SNF complex from proteasomal degradation

by interacting directly with them.
[126]
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production of ROS is catalyzed by a group of specialized
enzyme families, of which the NADPH oxidase (NOX) family
is the most studied [87, 88]. Since its discovery in the late
1970s [89], NOX—as a main source of ROS production—has
been demonstrated to be involved in a variety of ROS-
mediated physiological and pathophysiological processes [90].

NOX4-catalyzed ROS generation in endothelial cells
promotes tissue fibrosis by directing endothelial cells
toward a myofibroblast-like phenotype in a process known
as endothelial-mesenchymal transition [91]. A very recent
study by Li et al. showed that BRG1 interacts with KDM3A
to activate NOX (1, 2, 4) transcription in endothelial cells.
Endothelial-derived ROS, generated by increased NOX
expression, may promote cardiac ischemia-reperfusion
injury [92]. Similarly, Liu et al. reported that BRG1 relied
on lysine acetyltransferase 8 (KAT8) to activate the transcrip-
tion of NOX genes (NOX1, NOX2, and NOX4), to promote
intracellular ROS production in a mouse model of nonalco-
holic steatohepatitis [93]. Moreover, according to Li et al.,
BRG1 interacts with SMAD3 and AP-1 to upregulate histone
demethylase JMJD2B, histone acetyltransferase p300, and
ASH2 (a key regulatory subunit of the H3K4 methyltransfer-

ase complex), which mediates TGF-β-induced transcription
of NOX4 in endothelial cells and stimulates the production
of ROS, to promote endothelial-mesenchymal transition
and liver fibrosis [94].

In general, BRG1 regulates NOX transcription to pro-
mote ROS production and aggravate oxidative stress-
induced damage. However, these observations are contradic-
tory to a series of findings that suggest BRG1 protects against
oxidative damage. It is of high interest to explain the dual role
of BRG1 in oxidative stress.

4.7. BRG1 and eNOS. Under normal physiological conditions,
eNOS is the main source of nitric oxide (NO) in the vascular
system [95]. However, instead of producing NO, dysfunc-
tional eNOS can produce a superoxide anion radical (O2−),
resulting in decreased NO bioavailability and increased
oxidative stress, causing and exacerbating endothelial dys-
function [96, 97]. Fish et al. reported that BRG1 helped to
restore eNOS expression during the anoxia/reoxygenation
cycle by preventing the ejection of acetylated H3 and H4 his-
tones on eNOS promoters in endothelial cells [52]. It can be
inferred that BRG1 protected endothelial function under

Table 2: The chemical modulators of BRG1. This list summarizes the current research on the chemical modulators of BRG1. BRG1: Brahma-
related gene-1; BRM: Brahma; CDK: cyclin-dependent kinase; ENT: entinostat; HO-1: heme oxygenase 1; H/R: hypoxia/reoxygenation;
IsoPostC: isoflurane postconditioning; NAC: N-acetylcysteine; Nrf2: nuclear factor E2-related factor 2; PPC: propofol postconditioning;
SPostC: sevoflurane postconditioning; STAT3: signal transducer and activator of transcription 3; SWI/SNF: switch/sucrose nonfermentable.

Modulators Known actions Ref.

Chemicals

17β-estradiol 17β-estradiol antagonizes both the expression and activity of BRG1/BRM. [58]

Adiponectin
Adiponectin promotes HO-1 induction by simultaneously activating Nrf2 and BRG1 to reduce cardiac
oxidative stress, improve cardiac hypertrophy, and prevent left ventricular dysfunction in diabetic

patients.
[39]

β-Adrenergic agonist
In vitro stimulation of myocardial cells with angiotensin II or a β-adrenergic agonist results in increased

BRG1 expression.
[116]

CDK inhibitors CDK9 inhibition dephosphorylates the SWI/SNF protein BRG1, which contributes to gene reactivation. [127]

Darinaparsin
Darinaparsin inhibits HO-1 transcription by causing BRG1 phosphorylation through G2/M cell cycle

arrest.
[33]

ENT
At the protein level, ENT reduces BRG1 protein abundance in Rh30 and U23674 cells, notably to an

undetected level.
[128]

IsoPostC Emulsified IsoPostC protects the heart through BRG1/Nrf2/STAT3 signaling. [38]

NAC
The enhanced expression of BRG1 may be a new mechanism by which antioxidant NAC provides

cardiac protection.
[36]

Oridonin Oridonin inhibits proliferation of Jurkat cells via the downregulation of BRG1. [129]

PFI-3 PFI-3 is a highly potent, selective, and cell-permeable inhibitor for the BRG1/BRM.
[130,
131]

Phosphoaminoglycosides
Preparations of phosphoaminoglycosides were identified as inhibitors of the in vitro activities of three

SWI2/SNF2 family members.
[132]

PPC PPC provides protection to H/R-induced L02 cells by activating Nrf2 and BRG1. [41]

Propofol
Propofol alleviates oxidative stress in anoxia/reoxygenated hepatocytes by upregulating lncrna-

TUG1/BRG1 pathway.
[40]

Rosiglitazone
The expression of BRG1 was significantly increased in cardiac remodeling heart, and the change can be

reversed by rosiglitazone.
[124]

SPostC
SPostC prevents hypoxia-reoxygenation-induced cardiomyocyte damage and oxidative stress by

activating Nrf2/BRG1/HO-1 signaling.
[37]

Tetrandrine Tetrandrine upregulated BRG1 expression in a dose- and time-dependent pattern in Hep-2 cells. [133]
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oxidative stress by restoring eNOS expression. In contrast,
Shao et al. found that endothelial BRG1 limited eNOS activ-
ity and NO bioavailability by activating caveolin-1 (CAV1)
transcription, contributing to thioacetamide-induced liver
fibrosis in mice [98] (Figure 3). Hence, the exact effect of
BRG1 on eNOS expression and activity needs further study.

4.8. BRG1 andMTs.Metallothioneins (MTs), encoded byMT
genes, are a group of low molecular weight, cysteine-rich
metal-binding proteins that act as antioxidants to prevent
DNA damage and apoptosis by maintaining intracellular
metal homeostasis and redox balance [99, 100]. Through a
chromatin immunoprecipitation assay, Datta et al. revealed
that ATP-dependent chromatin remodeling of BRG1 pro-
duced a significant inhibitory effect onMT-1 promoter activ-
ity in mouse lymphosarcoma cells [101]. Therefore, BRG1
may play a key role in the regulation of antioxidant mole-
cules, even if not by direct regulation of BRG1 itself.

5. Conclusion

BRG1 plays an important role in redox regulation and regu-
lating cellular homeostasis by establishing specific gene
expression patterns and maintaining the transcriptional
state. The maintenance of redox homeostasis is required for
various feedback mechanisms, mainly related to transcrip-
tional modulation, to function at different levels. As dis-
cussed above and summarized in Figure 4, BRG1 regulates
many of the pivotal genes and molecules related to redox
homeostasis and oxidative stress. The majority of studies
show that BRG1 protects cells from oxidative stress damage
by promoting the formation of antioxidants, or suppressing
the production of ROS, or both. However, a minority of stud-
ies show that BRG1 aggravates oxidative stress damage by
inducing ROS generation. Overall, the obvious protective
effects of BRG1 against oxidative stress damage support the
theory that BRG1 synergistically maintains cellular homeosta-
sis via distinct mechanisms. This may provide the mechanistic
basis for the development and discovery of antioxidants and
BRG1 regulators for the management of oxidative stress-
related diseases. Tables 1 and 2 summarize BRG1 regulators
and their known actions. Further in-depth studies are required
to identify and clarify the exact roles and the dual function
of BRG1 in regulating redox homeostasis. Further research
addressing these issues, with focus on BRG1 as a drug target,
may provide therapeutic strategies for the treatment of cancer,
ischemia-reperfusion injury, and other redox-related diseases.
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