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Abstract

Background: Horizontal gene transfer contributes to bacterial evolution through mobilising genes across various
taxonomical boundaries. It is frequently mediated by mobile genetic elements (MGEs), which may capture, maintain,
and rearrange mobile genes and co-mobilise them between bacteria, causing horizontal gene co-transfer (HGcoT).
This physical linkage between mobile genes poses a great threat to public health as it facilitates dissemination and
co-selection of clinically important genes amongst bacteria. Although rapid accumulation of bacterial whole-genome
sequencing data since the 2000s enables study of HGcoT at the population level, results based on genetic
co-occurrence counts and simple association tests are usually confounded by bacterial population structure when
sampled bacteria belong to the same species, leading to spurious conclusions.

Results: We have developed a network approach to explore WGS data for evidence of intraspecies HGcoT and have
implemented it in R package GeneMates (github.com/wanyuac/GeneMates). The package takes as input an allelic
presence-absence matrix of interested genes and a matrix of core-genome single-nucleotide polymorphisms,
performs association tests with linear mixed models controlled for population structure, produces a network of
significantly associated alleles, and identifies clusters within the network as plausible co-transferred alleles. GeneMates
users may choose to score consistency of allelic physical distances measured in genome assemblies using a novel
approach we have developed and overlay scores to the network for further evidence of HGcoT. Validation studies of
GeneMates on known acquired antimicrobial resistance genes in Escherichia coli and Salmonella Typhimurium show
advantages of our network approach over simple association analysis: (1) distinguishing between allelic
co-occurrence driven by HGcoT and that driven by clonal reproduction, (2) evaluating effects of population structure
on allelic co-occurrence, and (3) direct links between allele clusters in the network and MGEs when physical distances
are incorporated.

Conclusion: GeneMates offers an effective approach to detection of intraspecies HGcoT using WGS data.
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Background

Horizontal gene transfer (HGT) or lateral gene trans-
fer accelerates bacterial genome innovation and evolution
[1]. It contributes to gene flows across taxonomic bound-
aries and thus variation in accessory gene content both
within and between species [2, 3]. Mobile genetic ele-
ments (MGEs), such as plasmids, bacteriophages, and
transposons, are common vectors of acquired genes in
HGT [4]. Particularly, when acquired genes are physi-
cally linked (namely, co-localised in an MGE or otherwise
physically close in DNA molecules), they can be hori-
zontally co-transferred between bacteria, causing positive
gene-gene associations known as genetic linkage [5, 6].

The rapid accumulation of bacterial whole-genome
sequencing (WGS) data in the most recent two decades
[7] enables us to study horizontal gene co-transfer
(HGcoT) at the population level. Since bacteria repro-
duce asexually and HGT can occur across different lev-
els of taxonomic boundaries [2], gene-gene associations
that cannot be completely explained by bacterial pop-
ulation structure (which determines the distribution of
co-inherited genes) suggests HGcoT [8]. Consequently,
it is usually trivial to identify candidates of interspecies
HGcoT using simple association tests (such as chi-
squared tests and simple logistic regression), whereas for
detecting intraspecies HGcoT, we must overcome two
related challenges arising from the presence of popula-
tion structure within a species: (1) how to control for
population structure in association tests; and (2) how to
accurately estimate or represent the population structure
to be controlled for.

Univariate linear mixed models (LMMs), which have
been widely used in human genome-wide association
studies (GWAS) [9] and recently applied to bacterial
GWAS [10], provide a solution to address both chal-
lenges. Each model explains a response variable using a
fixed effect of an independent variable and mixed random
effects of population structure and environmental factors.
For each LMM, the population structure is represented
by a relatedness matrix, whose principal components
(PCs) can be used for an orthonormal transformation of
genetic variation underlying the population structure [11].
McVean demonstrates that not only do these PCs simplify
computations, but also correlate with bacterial genealo-
gies [12]. Compared to phylogeny-based association tests,
such as phylogenetically independent contrasts and phy-
logenetic generalised least squares [13], LMMs do not rely
on specific phylogenetic models nor assume that mutation
rather than recombination dominates genetic variation.

Here, we introduce R package GeneMates, which imple-
ments a novel network approach to the identification of
HGcoT within a bacterial species. This approach takes as
input specific information extracted from bacterial WGS
data and produces a network showing allele-level evidence
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of HGcoT. We validated GeneMates using published WGS
data from two bacterial species, Escherichia coli and
Salmonella enterica, with which we identify horizontally
co-transferred antimicrobial resistance (AMR) genes. We
also provide helper scripts to assist users in preparing nec-
essary input files from standard formats. Since GeneMates
is theoretically applicable to any kind of acquired genes in
bacteria, it has the potential to also be used for investi-
gating structures and dissemination of other mobile gene
clusters of interest, such as physically linked virulence
genes.

Implementation

GeneMates consists of R functions performing network
construction, topological analysis, and data visualisation.
It works at the allele level to track recent HGcoT. Par-
ticularly, we assume that bacterial isolates under study
will typically be collected in a period that is too short to
accumulate any mutation in recently acquired genes of
interest, such as AMR genes. In addition, for convenience
we assume that every one of these acquired genes has at
most one allele in each genome because it is not possible
to reliably resolve co-occurring alleles of the same gene
using short reads, which by far account for the majority of
WGS data.

We developed a network approach to integrate and
visualise evidence of physical linkage between alleles of
acquired genes in bacteria. In our network, nodes rep-
resent alleles and weighted directed edges reflect the
strength of evidence. GeneMates produces such a net-
work in each run. Let vector e denote an edge, then it
represents a linear model ¥ ~ X, where scalar vari-
ables Y and X denote presence-absence of alleles Y and
X in an isolate, respectively. This model explains the dis-
tribution of allele Y (response allele) using that of allele
X (explanatory allele) and covariates. For GeneMates, in
particular, the covariates are isolate projections from an
orthonormal transformation of the population structure
based on a core-genome relatedness matrix. Correspond-
ingly, the edge is directed from node X to node Y. Users
may filter edges of a resulting network based on an asso-
ciation score s,(e) and a distance score s;(e) in order
to identify edges showing strong evidence of physical
linkage, and carry out topological analysis on the fil-
tered network afterwards. In following subsections, we
describe key elements of our approach. Additional details
of implementation are provided in Section 3 of Additional
file 1.

Network construction

Figure 1 illustrates our work flow for network construc-
tion — the core functionality of GeneMates. In order
to integrate functions implementing this work flow, we
created a wrapper function findPhysLink (find physical
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Fig. 1 An overall workflow of function findPhysLink. In this flowchart, cylinders denote both the input WGS data and a non-redundant (namely, with
no sequence duplication) reference database of acquired genes; rounded rectangles denote two key outputs — an association network and a
linkage network when reliable APDs are provided; ordinary rectangles denote intermediate results, which are matrices or tables; each arrow
represents a process of specific data analysis, which starts from the input and ends at its outcome, with the process name labelled besides the line.
Steps integrated into function findPhysLink are encircled by the dashed rectangular border. Abbreviations: cgSNPs, core-genome single-nucleotide
polymorphisms (SNPs), which are restricted to biallelic SNPs present in all isolates for GeneMates; PAM: a binary presence-absence matrix

linkage), which takes as input a binary allelic presence-
absence matrix (PAM) of target genes across genomes,
a matrix of biallelic core-genome single-nucleotide poly-
morphisms (cgSNPs), and optionally, a table of allelic
physical distances (APDs) for target genes. These inputs
can be extracted from read alignments and genome
assemblies using our helper scripts (released with Gen-
eMates). Function findPhysLink determines nodes and
edges of a resulting network and produces tables that can
be exported to Cytoscape [14] as node and edge attributes
for network visualisation.

Node generation

Assuming m alleles of target genes are detected in n
bacterial isolates, GeneMates function importAllelicPAM
imports an n x m binary PAM A = (a;j), where entry
a;j = 1 if the j-th allele is found in the i-th isolate, and
a;j = 0 otherwise. This function offers two optional fil-
ters to discard alleles of insufficient frequencies and/or
co-occurrence frequencies. In order to reduce the num-
ber of tests for allele-allele associations, we followed the
implementation of R package BugWAS [10] and coded
importAllelicPAM to de-duplicate each group of identi-
cal columns of PAM into a binary vector called an allelic

distribution pattern (Section 3.1.2 of Additional file 1).
The function uses column means to apply a column-wise
zero-centring to the pattern matrix, which is a common
technique used for simplifying matrix algebra without
affecting the distribution of data points [15].

Edge weights

GeneMates evaluates two kinds of evidence for infer-
ence of horizontal co-transfer of alleles X and Y. The
first evidence is a significant positive fixed effect of X on
presence-absence of Y when controlling for bacterial pop-
ulation structure. Testing for this effect is an analogue of
GWAS, which test for genotype-phenotype associations.
Specifically, for edge e in an association network, Gen-
eMates function /mm estimates parameters of a univari-
ate LMM using a residual maximum likelihood (REML)
approach to test for the fixed effect of X (Section 3.1 in
Additional file 1), and another function evalPL transforms
the estimated effect size ,3 and its Bonferroni-corrected
p-value into an association score s,(e) with possible val-
ues 1 (significant positive association), -1 (significant
negative association), and O (insignificant association).
See Figure s1 and Section 3.3.1 in Additional file 1 for
details.
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The second evidence comes from consistent physical
distances between alleles X and Y (namely, APDs) in dif-
ferent bacterial genomes as structural variation is likely to
only occur at a limited level within a mobile gene cluster
in a short period. For instance, the same AMR gene clus-
ter sul2-strA-strB has been circulating amongst Gram-
negative bacteria for decades due to its association with
plasmids and transposons [16]. Since APDs are measured
in genome assemblies, whose completeness determines
the amount of measurable APDs when X and Y are co-
localised in the same genomic region, for edge e, we also
consider its distance measurability m;,(e) — the percent-
age of genomes in which the APDs between X and Y are
actually measurable. This measurability value is calculated
by GeneMates function summariseDist, which also eval-
uates the consistency of APDs included for the distance
assessment and assigns a consistency score c(e) with val-
ues -1 (evidence against physical linkage), O (insufficient
evidence) and 1 (evidence supporting physical linkage).
Notably, this function estimates the probability of distance
identity-by-descent (IBD) and compares it to a user pre-
defined threshold (default: 0.9) for the assignment of each
consistency score. (Section 3.3.2 and Figure s2 in Addi-
tional file 1) A summary distance score is thereby defined
for edge e as the consistency score weighted by measur-
ability: sy(e) = miy(e)c(e). Finally, the association and
distance scores are summed to get a linkage score s(e),
reflecting the evidence of physical linkage, where —2 <
s(e) < 2 because 0 < m;,(e) < 1, and s(e) has five levels
(Table s1). Particularly, we define a linkage network as an
association network in which weights of each edge con-
sist of a fixed-effect size and a linkage score (Section 3.3 in
Additional file 1).

Network visualisation and topological analysis

GeneMates comprises several functions used for dis-
playing resulting networks and exploring network topol-
ogy for evidence of HGcoT under given conditions. For
instance, function mkNetwork (make network) extracts
user-specified node attributes (such as the frequency
and associated AMR phenotype of each allele) and edge
attributes (such as the estimated fixed effect size p
and linkage score s of each edge) from result tables of
findPhysLink and prints them to Cytoscape-compatible
text files for network visualisation. Function extractSub-
graphs follows a predefined node list to pull out sub-
networks from a parental network produced by find-
PhysLink. Particularly, the subnetworks can be maximal
cliques identified using function max_cliques of R package
igraph [17]. In addition, function countNeighbours lists
the number of neighbours per node in a network and
function getClusterMemberCooccurrence identifies iso-
lates in which member alleles of a selected subnetwork are
co-occurring.
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Results

We assessed the performance of GeneMates and validated
our methodology using published WGS data sets of two
bacterial pathogens of great clinical concern: multidrug-
resistant E. coli and S. enterica serovar Typhimurium.
Genomes in these well studied data sets have distinct
population structures, harbour diverse AMR genes and
MGEs, and show known gene-gene associations that we
expected GeneMates to identify. See Section 4 of Addi-
tional file 1 for details of materials and methods.

Characteristics of example data sets

Both the E. coli and Salmonella data sets consisted of
paired-end Illumina WGS reads, generated from 169 E.
coli isolates collected during the Global Enteric Mul-
ticentre Study [18, 19] and 359 isolates of typical S.
Typhimurium Definitive Type 104 [20], respectively. See
Additional file 2 for detailed isolate information.

AMR gene content In genomes of the 169 E. coli iso-
lates, we identified 178 alleles of 33 AMR genes conferring
resistance to eight antimicrobial classes (Figure s3). The
four known intrinsic AMR genes of E. coli (ampH, ampC1,
ampC2, and mrdA) displayed higher frequencies (> 87%)
than the 29 acquired AMR genes (< 63%). Altogether,
we detected 67 alleles of acquired AMR genes, including
45 alleles showing frequencies less than 3%. In genomes
of the 359 Salmonella isolates, we identified 57 alleles of
24 AMR genes (conferring resistance to six antimicrobial
classes), including a single allele of the known intrinsic
AMR gene (aac6-Iaa) of S. enterica and 56 alleles of 23
acquired AMR genes (Figure s5). Notably, five acquired
AMR genes (sull, aadA, blacars, tet(G), and floR) that
are known to be frequently present in Salmonella genomic
island 1 (SGI1) [21] were only detected in the domi-
nant lineage of collected Salmonella genomes (Figure s6),
whereas alleles of other acquired AMR genes were
sparsely distributed across a core-genome phylogenetic
tree of these Salmonella genomes (Figure s7). Further, we
identified four and one clusters of identically distributed
alleles in E. coli and Salmonella genomes, respectively
(Figure s8).

Core-genome SNP sites We analysed chromosomal
single-nucleotide polymorphisms (SNPs) of each species
using the method described in Section 4.2 of Additional
file 1. Particularly, we define cgSNP sites as SNP sites
detected in all chromosomes and outside of repetitive
or prophage regions. Altogether, numbers of cgSNP sites
used for correcting for population structure (namely, bial-
lelic cgSNP sites) of the 169 E. coli genomes and 359
Salmonella genomes were 209,097 and 2,316, respectively.
The percentage of total genetic variation captured by PCs
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of each cgSNP matrix is illustrated in Figure s9a. Further-
more, the REML estimate of parameter A (which reflects
the effect of population structure on the distribution
of the response allele) in the null LMM for presence-
absence of each allele of AMR genes perfectly predicted
whether > 5 PCs had significant effects (Bonferroni-
corrected p-values <0.05) on the distribution of this allele
(Figure s9b).

Effects of controlling for population structure

In order to evaluate the effect of controlling for popula-
tion structure using LMMs when measuring associations
between alleles of acquired AMR genes, we compared
unadjusted p-values of fixed effects estimated using the
LMMs to those estimated using simple penalised logistic
models (PLMs) [22] (Fig. 2). Particularly, we considered
a fixed effect estimated with either kind of models sig-
nificant if its Bonferroni-corrected p-value was < 0.05.
Figure 3 illustrates a directed comparative network for
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detected alleles of AMR genes in each example data set.
In this network, each edge starts from an explanatory
allele and terminates at a response allele, representing
a significant fixed effect of the explanatory allele in an
LMM or PLM or both. For the 67 alleles in E. coli
genomes, 3,364 LMMs were applied to 60 allele distri-
bution patterns, and 118 significant pairwise associations
were detected. Simple PLMs for the same allele patterns
of AMR genes in E. coli genomes identified 70 signif-
icant associations, 50 of which overlapped with those
from LMMs. The resulting comparative network con-
sisted of 45 nodes, 138 edges, and two connected graph
components (Fig. 3, E. coli). Of note, one of these com-
ponents was comprised of rare alleles and was only iden-
tified by LMMs (Figure s10). Regarding the 56 alleles
in Salmonella genomes, 2,040 LMMs were applied to
48 allele distribution patterns and 112 significant pair-
wise associations were detected. Simple PLMs for the
same allele patterns of AMR genes in Salmonella genomes
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Fig. 2 A comparison of unadjusted p-values from PLMs and LMM:s for the same pairs of allelic distribution patterns of AMR genes. For the E. coli data
set (panels a and b) and Salmonella data set (panels ¢ and d), respectively, a scatter plot and box plot of paired p-values are drawn on square-root
transformed axes to compare the p-values. Any p-value less than 2.2 x 107" is rounded to 2.2 x 107" owing to the smallest precise floating
number in our computer. In panels a and ¢, black diagonal lines indicate equality between p-values from these two kinds of linear models, and grey
dashed lines indicate the p-value corresponding to the Bonferroni corrected p-value of 0.05, which is used in this study as a cut-off for significant
associations. Associations that were only significant in PLMs, only significant in LMMs, significant in both PLMs and LMMs, and significant in neither
kind of models, are represented by blue, red, purple, and grey circles, respectively
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identified 48 associations, 36 of which overlapped with
those from LMMs. The resulting comparative network
consisted of 32 nodes, 124 edges, and one connected
graph component (Fig. 3, Salmonella). In addition, for
both E. coli and Salmonella data sets, estimates of fixed
effects in LMMs displayed a complete sign identity to
those in PLMs given a maximum type-I error rate of
0.05.

For most allele pairs, correcting for population struc-
ture using LMMs yielded greater p-values than did
PLMs: the majority of fixed effects (74% for E. coli and
85% for Salmonella) in LMMs became less significant
than those in PLMs (Fig. 2b, d). By contrast, associa-
tions in some allele pairs became more significant (that

is, of smaller p-values) after adjusting for population
structure, and in most of these pairs (93% and 99% for
E. coli and Salmonella, respectively), LMMs identified a
moderate to strong structural random effect (namely,
parameter estimate 1 < ):0 < 10° in an LMM
under the null hypothesis of no fixed effect from an
explanatory allele) underlying presence-absence status
of one or both paired alleles across isolates. Further,
using one-sided two-proportions Z-tests, we found that
LMMs showing moderate to strong structural random
effects were less likely to show increased p-values than
were other LMMs when compared to PLMs, with con-
trasts of proportions 70% versus 90% (p-value ~ 0)
in LMMs for the E. coli data set and 85% versus
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92% (p-value =
data set.

0.06) in LMMs for the Salmonella

Effects of adding APDs to association networks

Every APD was measured by a shortest-path distance
(SPD), defined as the smallest distance between two given
loci in an assembly graph (constructed using Unicycler
[23]). This approach allows us to recover query sequences
that are split into adjacent contigs and to measure APDs
between loci that are located in different contigs, poten-
tially increasing distance measurability of the graph,
defined as the percentage of measured APDs in all pos-
sible APDs of a complete circular genome. Nonetheless,
since SPDs are affected by the topology of each assem-
bly graph, which is usually tangled and partially resolved
when only short reads are used for genome assembly,
it is necessary to determine appropriate criteria for fil-
tering out inaccurate SPDs. Therefore, we downloaded
from GenBank [24] 10 complete reference genomes of
multidrug-resistant E. coli and S. Typhimurium, respec-
tively (Tables s2, s3 and Additional file 2), and compared
SPDs measured in de novo assembly graphs (constructed
from simulated Illumina reads) to true physical distances
extracted from original circularised complete genomes
(Section 4.6 of Additional file 1). Specifically, we used
Bandage [25] to identify BLAST hits of random coding
sequences (CDSs) in each assembly graph and to extract
SPDs for each pair of hits. As expected, Bandage always
recovered more query CDSs from the assembly graph
than it did from contigs of the same bacterial genome
(Tables s4 and s5).

Filters determined for removing inaccurate SPDs We
considered an SPD accurate if its error fell within a given
tolerance range (for instance, 2 kbp), and hence defined
the accuracy rate as the percentage of accurate SPDs in
all SPDs, either filtered or not. In practice, any parame-
ter for BLAST hits and SPD measurement can be taken
into account for excluding SPDs. In this study, we assessed
the accuracy rate of SPDs measured within various maxi-
mum distances and node numbers in each assembly graph
when confining BLAST hits to a minimum query cover-
age and nucleotide identity of 95%. Across E. coli and S.
Typhimurium genomes, we constantly saw that the accu-
racy rate reached >90% under an error tolerance + 1 kbp
when SPDs were measured within 250 kbp and no more
than two nodes (Figures s11 and s12).

Moreover, since the accuracy rate of SPDs measured
within contigs stayed above 90% when tolerating errors
within £1 kbp (Figures s13 and s14), we implemented
prioritisation of SPDs based on their sources (namely,
contigs or assembly graphs) in order to exclude inaccurate
SPDs from assembly graphs where repeats had not been
resolved by the genome assembler. Specifically, when the
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SPD between two CDSs is measurable in both a contig
and an assembly graph of the same genome, this method
overrides the graph-based SPD with its corresponding
contig-based SPD, thereby taking advantage of both the
high accuracy rate of contig-based SPDs and high measur-
ability of graph-based SPDs. As shown in Tables s6 and
s7), the prioritisation method led to an accuracy rate of
100% for the majority of SPDs measured between acquired
AMR genes, which are often embedded within tangled
sub-graphs owing to surrounding repeats.

We found that inaccurate SPDs measured across two
nodes of Salmonella assembly graphs (Table s7) were
caused by chimeric alleles (that is, highly similar alleles
of the same gene were mistakenly assembled into one
allele) in the assembly, owing to the limited capacity of
short reads in resolving repeats. We addressed this issue
through increasing the threshold for both the nucleotide
identity and query coverage of BLAST hits from 95%
to 99% (BLAST hits to chimeric alleles were hence dis-
carded) and thereby improved the accuracy rate from two
genomes at the cost of reducing distance measurability
(Table s8). Accordingly, we applied this adjusted thresh-
old to the measurement of SPDs between acquired AMR
genes in the 358 Salmonella draft genomes. Besides, we
directly calculated SPDs for strain DT104, whose com-
plete genome is publicly accessible on GenBank.

SPDs between alleles of acquired AMR genes From de
novo assemblies of the 169 E. coli genomes, we obtained
1,550 SPDs from 301 allele pairs that were tested for
associations (Hence alleles of each pair did not have iden-
tical presence-absence status across genomes) and 20
SPDs from nine pairs of identically distributed alleles. The
largest SPD was 59,433 bp (measured across 17 nodes) and
the greatest node traversal to measure an SPD was across
39 nodes (yielding an SPD of 4,628 bp). The exclusion
of SPDs measured across more than two nodes resulted
in 673 (43%) SPDs reliably measured for 163 tested allele
pairs and 18 (90%) SPDs for eight pairs of identically
distributed alleles. From de novo assemblies of the 359
Salmonella genomes, we obtained 2,880 SPDs from 224
allele pairs tested for associations, including 2,322 SPDs
between alleles of five SGI1-borne AMR genes (Table s9),
and obtained another 10 SPDs from five pairs of identi-
cally distributed alleles. The largest SPD was 710,475 bp
(measured across 44 nodes) and the greatest node traver-
sal to measure an SPD was across 57 nodes (yielding an
SPD of 687,051 bp). We saw large SPDs (> 56 kbp, which
were extraordinarily larger than the others) when the node
number exceeded 14. The exclusion of SPDs that were
greater than 250 kbp and measured across more than two
nodes resulted in 994 SPDs from 59 tested allele pairs
and eight SPDs from three pairs of identically distributed
alleles.
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Overall, positively associated alleles of acquired AMR
genes in E. coli and Salmonella genomes showed higher
measurability of SPDs than those measured between neg-
atively associated alleles. Specifically, as for pairs of posi-
tively associated alleles, 64 (72%) out of 89 pairs in E. coli
and 25 (26%) out of 97 pairs in Salmonella had at least
two SPDs measured, respectively (Tables s10 and s11).
Moreover, after removing SPDs that were greater than 250
kbp and measured across more than two nodes, 31 (35%)
out of the 89 allele pairs in E. coli and 10 (10%) out of
the 97 allele pairs in Salmonella had distance measurabil-
ity above 75%. On the contrary, no SPD was measurable
between negatively associated alleles as these alleles did
not co-occur in any genome.
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Linkage networks showing support of SPDs to HGcoT
For each species, we created a linkage network, in which
nodes represent alleles or clusters of identically dis-
tributed alleles of acquired AMR genes and directed edges
indicate significant associations obtained from LMMs
(Fig. 4). The edge width is proportional to an estimated
effect size B, solid lines and dashed lines indicate posi-
tive associations and negative ones, respectively, and the
edge colour indicates the distance score s;. No filter was
applied to distance scores. The linkage network for E. coli
consisted of 122 edges linking 46 nodes corresponding to
52 alleles of 26 acquired AMR genes. The distance score
followed a bimodal distribution, with 57 out of 83 allele
pairs (69%) having s; = 0 (84 edges) and 23 (28%) allele
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pairs having s; > 0.5 (38 edges). Considering only the
edges that yielded s; > 0.5 and connected alleles encoding
distinct kinds of resistance phenotypes, aminoglycoside
resistance alleles linked to 14 alleles — the largest number
of connections, followed by sulfonamide resistance alle-
les (linked to 11 alleles). By contrast, blapxa-1, the only
beta-lactam resistance allele having edges with distance
scores above 0.5, was linked to two alleles (aadA1-pm.182
and catA1.215). Notably, as shown in Fig. 4, five alle-
les (dfrA14.227, strB, sul2.168, strA.173, and sul2) formed
a cluster that was interconnected by bidirectional edges
with high distance scores (s; > 0.6).

The linkage network for Salmonella consisted of 37 alle-
les (21 AMR genes) connected by 162 edges (Fig. 4). No
identically distributed alleles could be collectively repre-
sented by a single node in this network due to absence
of perfect measurability or consistency of SPDs. The dis-
tance score again followed a bimodal distribution, with
95 out of 104 (91%) pairs having s; < 0.05, and seven
(7%) pairs (altogether, nine alleles) having s; > 0.5 (13
edges), all of which corresponded to significant positive
associations. Considering only the 13 edges having dis-
tance scores above 0.5, strB (aminoglycoside resistance)
linked to the largest number of alleles (four, altogether),
followed by sul2 and dfrA14.79, each connected to two
alleles.

Reasons for inconsistency in measured physical dis-
tances In both the E. coli and Salmonella data sets, a
lack of consistency in SPDs (namely, ¢ = 0) measured
between several positively associated alleles of acquired
AMR genes was observed (Tables s10 and s11). We inves-
tigated this issue based on GeneMates outputs and iden-
tified two common explanations.

First, in many cases diverse genetic structures were
found carrying the same combination of alleles of AMR
genes. For example, based on assembly graphs of E. coli
genomes, we recovered six distinct genetic structures link-
ing alleles blaTem-214.147 and tet(A), which showed signif-
icant positive associations in both LMMs and PLMs but
had six distinct SPDs (Figure s15). We found that these
SPDs followed a lineage-specific distribution. As illus-
trated in Figure s16, allele blaTgn.214.147 was carried by
transposon Tn2, which was common to all the six struc-
tures, either in its complete or truncated form. The variety
of insertion sites and orientations of this transposon rela-
tive to allele tet(A) in E. coli genomes, as well as plausible
gene gain/loss events (inferred from structural compar-
isons), resulted in differences in SPDs measured between
these two alleles.

Second, the GeneMates algorithm depreciates physical
distances showing IBD for scoring the distance consis-
tency (Section 3.3.2 of Additional file 1). For instance,
two alleles of SGI1-borne AMR genes sull and aadA2
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in Salmonella were frequent amongst the 359 Salmonella
isolates, with an occurrence count of 328 (91%) and 323
(90%), respectively (Table s9). Co-occurrence of these two
alleles were also frequent, with a count of 318 (89%) in
total. SPDs between sull and aadA2 were obtained from
genome assemblies of 295 (93%) out of the 318 isolates
where the alleles were co-occurring. After removing the
only SPD measured across more than two nodes (504 bp,
across three nodes), we obtained 294 SPDs, consisting of
293 SPDs measured in either contigs or assembly graphs
and one SPD measured in the complete chromosome
genome of reference strain DT104. All the filtered SPDs
were 504 bp, except the one from the complete genome
(9,964 bp). Despite this consistency in SPDs, the consis-
tency score ¢ = 0 as all the 294 SPDs were obtained from
the same lineage highlighted in Figures s17a (IBD prob-
ability of reliable SPDs: 95%) and were possibly resulted
from the same genetic and assembly structures related to
these two alleles (Figures s17b—d).

Validation of GeneMates

We validated our approach through identification of
known and novel physical clusters of mobile AMR genes
in the example data sets. Networks were constructed at
the allele level for these genes using GeneMates function
findPhysLink.

Identifying known clusters of mobile AMR genes The
first set of positive controls in our validation study con-
sisted of 28 pairs of AMR genes that are known to be
co-mobilised by MGEs between E. coli genomes [19]. As
shown in Table 1, LMMs and PLMs identified significant
positive associations at the allele level in 19 (68%) and 16
(57%) pairs, respectively. The second set of positive con-
trols for validation consisted of five AMR genes (aadA2,
floR, tet(G), blacarp-2, and sull) that are co-localised
in the acquired multidrug-resistant element SGI1 in
Salmonella genomes [20]. For these genes, LMMs and
PLMs identified significant positive associations between
eight and ten allele pairs, respectively (Table 2). The exclu-
sion of allele pairs having s; < 0.6 led to a substantial
reduction of co-mobilisation candidates, with 12 out of
33 (36%) allele pairs in E. coli genomes and two out of 20
(10%) allele pairs in Salmonella genomes passed this filter.

Identifying novel clusters of AMR genes Some edges
in linkage networks suggested novel physical linkage
between several alleles of AMR genes in E. coli and
Salmonella genomes. For instance, 20 novel edges in the
linkage network for E. coli (Fig. 4) had the maximum asso-
ciation score s, = 1 (0.12 < B < 1 in LMMs) and
high distance scores (0.75 < s; < 1), and these edges
formed five maximal cliques each consisting of three alle-
les. Similarly, a three-allele clique showing high distance
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Table 1 A comparison of significant positive associations in the
linkage network for . coli genomes to known co-localisation of
mobile AMR genes

Gene_1 Gene_2  Allele_1 Allele_2 LMM PLM  s4 PIBD
tet(B) strB tet(B).67 strB.153 @ O 0 -
tet(B).67 strB.156 @ (@] 0 -
tet(B).67 strB.162 @ @] 0 -
tet(B) sul2 - - O @] - -
tet(B) strA - - O @] - -
dfrA14 strB dfrA14.227 strB [ ] [ 093 05
dfrAl4 strB.157 @ @] 0 -
dfrA14 sul2 dfrA14.227 sul2 [ J o 0.87 05
dfrA5 sul2.168 @ o 0 -
dfrA7 strA dfrA7 strA.173 @ [ ] 0 0.35
dfrA7 strB dfrA7 strB [ ] [ 0 0.35
dfrA7 sul2 dfrA7 sul2.167 @ [ 0 -
dfrA7 sul2.168 @ [ 0 -
dfrA7 sull dfrA7 sull [ ] [ ] 1 0.46
dfrA7 sul1203 @ [ 1 0.04
dfrA17 sull [} o 1 0.26
dfrA7 tet(A)  dfrA7 tet(A) [ J @] 0 -
tet(A) strA tet(A) strA.173 @ [ 0 1
tet(A) strB tet(A) strB [ ] @] 0 1
tet(A) sul2 tet(A) sul2.168 @ @] 0 -
tet(A) sull - - O o - -
blaTem.108 tet(A) blatem214.147  tet(A) [} [ ] 0 .5
blaTen.198 sull - - ] O - -
blaTen198/101  StrA blaTem.214-147  strA173 @ [ ] 029 05
blaten.198/101  StrB - - O ) - -
blaten.198/101  sul2 - - O ) - -
dfrA8 strA dfrA8 strA.173 O [ ] 0.26 0.12
dfrA8 strB dfrA8 strB.153 @ [ ] 0.33 0.12
dfrA8 sul2 dfrA8 sul2 [} [ ] 0.23 0.07
strA strB strA.173 strB [ ] [ 0.68 0.5
strA.173 strB.153 O o 0.67 05
strA.178 strB [ ] o 0 -
strA sul2 strA.173 sul2 [ [ ] 062 05
strA.173 sul2.168 @ o 1 0.38
strB sul2 strB sul2.168 @ [ 1 0.38
strB.153 sul2 [ ] [ 0.65 0.5
strB sul2 [ ] @] 0.84 0.5
sull strA - - @) @] - -
sull strB - - O o - -
sull sul2 sull sul2.167 @ (@] 0 -
sul1.203 sul2.168 @ [ ] 0 -

Co-localisation of AMR genes in MGEs were previously determined by Ingle, et al.
[19]. Each pair of significantly associated alleles (denoted by alleles 1 and 2,
regardless of their roles in a linear model) is also identifiable in the comparative
network shown in Fig. 3. Directionality of associations is omitted in this table, hence
each pair of alleles only appears once in the table, although the alleles may mutually
associated in linear models. Note that an AMR gene may have multiple alleles
(whose names are listed in column Allele_1 or Allele_2) or no allele (denoted by a
dash sign in the table) present in a network. Abbreviations: LMM, linear mixed model;
PLM, penalised logistic model; IBD: identity by descent. Symbols indicating whether
a significant association is identified by either an LMM or a PLM: (@), yes; (O), no. sg4:
the distance score, which takes into account the distance consistency, measurability,
and the probability of IBD. pjgp: an estimate of the probability that APDs used for
calculating the sg are in IBD. This probability does not exist when no APD is available

scores (0.7 < sy < 0.9) was identified in the linkage net-
work for Salmonella (Fig. 4). As a further validation of
GeneMates, we investigated two maximal cliques through
inferring their plausible genetic structures and vectors
from genome assemblies.

The first clique consisted of alleles dfrAl, aadAl-
pm.181, and sat-2A detected in E. coli genomes. Between
these alleles, LMMs identified significant positive associa-
tions (Figure s18a), and SPDs (Table s12) showed complete
identity as well as perfect measurability (namely, s; = 1
for every edge of this clique). Co-occurrence of all three
alleles was identified in two distantly related genomes
(Figure s18b). Assembly graphs revealed co-localisation
of these alleles in the same array of gene cassettes in
a class-2 integron (Fig. 5a, b). We confirmed that this
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Table 2 L MM-based significant associations between five alleles
of AMR genes in SGI1

Gene.Y Gene X Allele.Y AlleleX A

<
<
=
<

L P Sd PIBD

floR sull floR.12 sull 64.98 O [] 0.03 0
sull floR sull floR.12 >10° O [ ] 003 0
aadA2 floR aadA2 floR.12 13749 @ [ ] 0.02 0
floR aadA2 floR.12 aadA2 8273 @ [ J 0.02 0
blacars floR blacars>  floR.12 11028 @ [ ] 0.04 0
floR blacars floR.12 blacars2  57.27 [ J [ J 0.04 0
floR tet(G)  floR12  tet(G)  64.45 @ ° 099 05
tet(G)  floR tet(G)  floR12 913 @ ° 099 05
blacars sull blacarg2  sull 70.79 [ ] [ ] 0.92 0.85
sull blacars  sull blacarg2  >10° O [ ] 092 0.85
aadA2 blacars ~ aadA2 blacars>  130.1 O [ ] 0 0
blacars  aadA2 blacars2  aadA2 1236 O [ J 0 0
blacare  tet(G) blacars>  tet(G) 24433 @ [ J 0.04 0
tet(G) blacars  tet(G) blacars2 160.14 @ [ ] 0.04 0
sull tet(G) sull tet(G) >10° O [ J 003 0
tet(G) sull tet(G) sull 55.9 [ ] [ 0.03 0
aadA2 tet(G) aadA2 tet(G) 11893 @ [ J 0.04 0
tet(G) aadA2 tet(G) aadA2 7776 @ [ J 0.04 0
aadA2 sull aadA2 sull 7342 @ [ J 0 0.95
sull aadA2 sull aadA2 >10° O [ ] 0 0.95

Allele_Y and Allele_X denote the response allele and explanatory allele in an LMM
Y ~ X, respectively. An association is denoted by a filled circle in the column LMM
when it is significant, otherwise, an unfilled circle is drawn. Directionality is shown in
this table for comparing the value of &, which denotes an REML estimate of
parameter A for evaluating structural random effects in an LMM. s: score of APDs.
Dpigp: an estimate of the probability that APDs used for calculating the s4 are in IBD

integron was carried by variants (100% coverage and
99% nucleotide identity) of transposon Tn7 (GenBank
accession: KX159451). Moreover, each Tn7 variant was
interrupted by a distinct insertion sequence (IS), as illus-
trated in Fig. 5¢. In summary, we saw strong evidence for
transposon-mediated co-transfer of these alleles between
E. coli lineages.

The second clique consisted of alleles sirA.55, strB,
dfrA14.79, and sul2 detected in Salmonella genomes
(Fig. 4). Both LMMs and PLMs identified that associa-
tions between all of these alleles were significantly positive
(0.69 < ,3 < 0.98 in LMMs). Edges between these alle-
les had distance scores between 0.7 and 0.9 except edges
linking strA.55 (0 < sz < 0.25). As shown in Fig. 6a, these
four alleles co-occurred in 13 Salmonella genomes from
distantly related clades. Using Bandage and nucleotide
BLAST, we confirmed co-localisation of these alleles in
a 3,084 bp region that was present in 10 out of the 13
genomes with a 100% nucleotide identity and coverage,
and these 10 genomes were sparsely distributed across
the phylogenetic tree in Fig. 6a. Furthermore, we saw
an insertion of allele dfrA14.79 into strA.55, splitting the
latter allele into two segments that covered 65.8% and
34.5% of its original length, respectively. In the assembly
graph of one of the 10 genomes, ERR026101, we found
the 3,084 bp multidrug-resistance (MDR) region in a 6,790
bp node, which appeared as a self-circularised sequence
independent to other graph components (Fig. 6b). Using
megaBLAST under its default parameters, a sequence
search of this MDR region against the NCBI nucleotide
database of the Enterobacteriaceae group (taxid: 91347,
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Fig. 5 Putative physical linkage between three alleles of AMR genes in two E. coli genomes. a A path constituting an inferred MGE in the assembly
graph of genome ERR178189. This plot is drawn in Bandage with a double-strand style, where the orientation of each DNA strand is indicated by an
arrow-like node end. The width of each node is proportional to its read depth determined by Unicycler. Some nodes not contributing to any
MGE-related path were deleted from the original assembly graph for visual conciseness. b A path constituting the other inferred MGE (following the
red dashed line) in the assembly graph of genome ERR178173. This plot was drawn in the same way as panel a. ¢ Alignment of the two Tn7 variants
we identified in E. coli genomes (ERR178189 and ERR178173) to a reference Tn7 sequence (GenBank accession: KX159451, denoted by green shaded
areas). Two direct repeats flanking the ISs, including inverted repeats, are denoted by green and pink boxes, respectively. Reference DNA sequences
of ISKpn26 (1,196 bp) and ISEc23 (2,532 bp) were retrieved from database ISFinder [29] in January 2018. Each IS in the resolved region showed a
100% coverage and 99% nucleotide identity to its reference

accessed in April, 2018) showed exact matches (100%
nucleotide identity and coverage) to a known and widely
distributed MDR plasmid pCERC1 (GenBank accession:
JN012467) as well as a number of plasmids widely dis-
tributed in bacteria of Enterobacterales (Table s13). There-
fore, this MDR region was shared by a great variety of
plasmids.

Discussion

GeneMates implements a novel network approach to
detection of intraspecies HGcoT between bacteria. Com-
pared to existing methods relying on co-occurrence
counts, association coefficients, or simple regression
models of bacterial genes, GeneMates enables us to
test for gene-gene associations when controlling for
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Fig. 6 Distribution and genetic structure of a four-allele clique in Salmonella genomes. a A ring plot displaying co-occurrence events (red track) of
the four alleles (darker boxes in grey tracks) against a midpoint-rooted phylogenetic tree of the Salmonella genomes. Clades are coloured by their
top-10 most correlated PCs that significantly explained the presence-absence status of an arbitrarily designated response allele sul2. Tips
highlighted with red circles denote genomes where the exact 3,084 bp MDR region harbouring all the four alleles were found using nucleotide
BLAST. b A putative 6,790 bp plasmid sequence restored from the assembly graph of genome ERR026101. Alleles of four AMR genes were identified
in this plasmid, showing 100% nucleotide identity and coverage to reference sequences of these genes

population structure, the main confounding factor in bac-
terial GWAS [26], through incorporating PCs into LMMs.
Results in “Effects of controlling for population structure”
section show that LMMs of GeneMates retain statis-
tical power of association tests, which is in line with
equivalent LMMs from literature (cf., Section 3.4.1 in
Additional file 1) [10, 27]. In our examples, association
networks constructed using GeneMates reveal extensive
associations between alleles of horizontally acquired AMR
genes (Fig. 3). Moreover, as expected, the majority of
p-values from association tests became greater after cor-
recting for population structure using LMMs, while the
other p-values saw a reduction, indicating increased sig-
nificance of associated alleles (Fig. 2). LMMs provide us
with another advantage: we only need to estimate three
parameters (8, y, and 1) besides the intercept term « to
fit a model, thereby circumventing the problem of over-
fitting as well as relaxing the requirement for sample
sizes. Notably, long-tailed curves of cumulative percent-
ages of total genetic variations captured by PCs (Figure s9)
indicate the necessity of including all PCs obtained from
the cgSNP matrix for accurate modelling in association
analysis.

On the grounds of examples where stable structures
of acquired AMR genes are shared between bacteria via
MGE:s in a short period of time [16, 19, 20, 28], we have
implemented another innovation in GeneMates — the
evaluation of APD consistency for evidence of HGcoT.
Since the physical distances between two loci in bacterial
genomes are correlated with both locus co-occurrence

and PCs representing population structure, APDs
cannot be directly incorporated into LMMs or PLMs
as additional covariates. Instead, GeneMates scores the
variation of APDs while taking the population structure
into account. As for APDs, it is self-evident that they
can be precisely calculated from genetic coordinates in
finished-grade genome assemblies, which remain the
minority of available bacterial genome sequences. In
order to overcome some of the limitations of measuring
APDs in draft genomes, we measured APDs in the form
of SPDs in assembly graphs, and developed a simulation-
based approach to determining reliability filters of SPDs.
Using this approach, the accuracy of SPDs from de novo
assembly graphs of reference multidrug-resistant E. coli
or S. Typhimurium genomes consistently exceeded 90%
when the distances were only measured across one or two
nodes (Figures s11 and s12), implying a universal filter for
other bacterial genomes. Nevertheless, as summarised in
“Effects of adding APDs to association networks” section
and displayed in Fig. 4, short-read genome assemblies
intrinsically confine both the measurability and accuracy
of SPDs, causing a loss of evidence for real physical
linkage in HGT.

In “Validation of GeneMates” section, the identifica-
tion of known and novel physical clusters of mobile
AMR genes suggests that maximal cliques in linkage
networks are useful starting points for recovering struc-
tures of horizontally co-transferred genes. A plausible
reason is that loci in strong physical linkage tend to
predict the presence of each other (namely, mutual
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positive associations) in HGT, and strong physical
linkage is often related to close physical proximity, which
in turn increases the measurability of their physical
distances, leading to a greater distance score given the
same consistency score. In practice, users may apply other
filters to the network to identify edges addressing specific
questions.

GeneMates also offers a framework (Fig. 1) for further
development, such as adding new modules and intro-
ducing other statistical models. Our methodology and
analysis demonstrated in example studies are applicable
to other kinds of acquired genes in haploid genomes of
the same species, as long as we can accurately determine
alleles of interested genes in each genome. Since Gene-
Mates is designed specifically to overcome challenges of
identifying intraspecies HGcoT, we did not test its per-
formance in detecting interspecies HGcoT. GeneMates
could theoretically be applied to analyse data sets includ-
ing multiple species. However, users should consider the
input SNP matrix carefully, as it determines what scale
of population structure is captured in the covariance
matrix used in LMMs. In cross-species analyses, the SNP
matrix would necessarily be restricted to core-genome
sites shared across species, which may represent only a
small fraction of individual genomes (depending on the
taxonomic breadth of included species). In such cases the
PCs would likely capture differences between species but
may not effectively capture intraspecies population struc-
ture. Furthermore, the inability of short reads to resolve
repeats, either through read mapping or de novo assem-
bly, may cause false negatives and errors in allele calls
when homologues of a target gene coexist in a genome.
Therefore, we expect a better performance of GeneMates
in analysing high-quality complete genomes or long-read
sequencing data that are able to resolve at least most of the
repeats. Finally, biological experiments are necessary as a
gold standard for validating candidates of HGcoT.

Conclusions

We have developed R package GeneMates and helper
scripts for analysing associations between alleles of
acquired genes and for inferring physical linkage between
these alleles in HGT. We have also demonstrated util-
ities of this package using publicly available WGS data
of 169 E. coli isolates and 359 Salmonella isolates.
In our study, functions of GeneMates identified clus-
ters of co-transferred AMR alleles in known and novel
MGES, enabling further investigations of HGcoT amongst
a wider range of bacterial species. GeneMates differs
from contemporary methods for bacterial GWAS in
three aspects. First, it focuses on gene-gene associa-
tions rather than genotype-to-phenotype associations.
Second, it only performs association tests for acquired
genes rather than genome-wide SNPs. Third, it evaluates
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evidence of physical distances between associated loci for
inference of physical linkage, although users may opt to
turn this utility off to only analyse gene-gene associations.
GeneMates offers a scalable and versatile approach that is
readily applicable to various kinds of horizontally acquired
genes. It is, however, confined by limitations of short-read
genome assembly, and its power will increase in the future
as we are accumulating complete genomes and enhancing
our ability in resolving repeats using sequencing data.

Availability and requirements

¢ Project name: GeneMates

¢ Project home page:
github.com/wanyuac/GeneMates
Programming language: R
Operating system(s): platform independent
Other requirements: GEMMA v0.96
Licence: Apache License, Version 2.0
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so forth. It consists of four tables with names Ecoli_reads (lllumina read sets
of E. coli isolates), STyphimurium_reads (lllumina read sets of Salmonella
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