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ABSTRACT: 1-Ally-3-methylimidazolium chloride ([Amim]Cl), dimethyl sulfoxide (DMSO), and CaCl2 were
selected to construct dissolution systems to produce value-added products from pretreatment of waste
corrugated cardboards (P-WCCs). The dissolution behaviors of P-WCCs before and after ball milling were
studied in different dissolution systems. The regenerated cellulose films were quickly and efficiently prepared via
dissolving, regenerating, and pressurized drying. When 4 wt % waste corrugated cardboard was dissolved in
[Amim]Cl for 4 h at 90 °C, the regenerated cellulose films featured tensile strengths as high as 59.00 MPa.
Adding 40% DMSO and 2 wt % CaCl2 increased the tensile strength of the film to a maximum value of 85.86
MPa. This demonstrates that DMSO improves the ability of WCC to dissolve in ionic liquids; Ca2+ improves the
tensile strength and thermal stability of the regenerated cellulose film but reduces its transparency. This work
provides a new, simple, and highly efficient way to use WCCs for packaging and wrapping.

1. INTRODUCTION

In 2018, China’s express industry generated about 50.7 billion
packages,1 80% of which used corrugated boxes as packaging
materials but the recovery rate of these packaging materials was
less than one-tenth, This resulted in a large number of paper
resources being wasted and the main component of the
corrugated board being cellulose. Cellulose is a type of polymer
with high strength, degradability, and renewability, making it a
promising material in biomass refining. However, there are
hydrogen bond network supramolecular structures in the
macromolecular structure of cellulose, which makes cellulose
insoluble in water and most common organic solvents, severely
limiting its applications.2 A specific range of the DP of cellulose
can be dissolved in a NaOH aqueous solution, as the NMMO
solvent system has high energy consumption, poor thermal
stability, and may be accompanied by side reactions because of
oxidation.3,4 At present, the LiCl/DMAc solvent system is
mainly limited to the laboratory because of LiCl is expensive,
the cellulose solution is not stable, and cellulose molecular
chain easily gather.5 Ionic liquids have proven to be excellent
green solvents for cellulose and have great potential in the
dissolution and processing of lignocellulose.6 1-Butyl-3-
methylimidazolium chloride ([Bmim]Cl), 1-ethyl-3-methyl-
imidazolium acetate ([Emim]OAc), and 1-allyl-3-methylimi-
dazolium chloride ([Amim]Cl) have been used for homoge-
neous esterification of cellulose as well as for the formation of
films and fibers.7 Ionic liquids can destroy the hydrogen
bonding between spiral cellulose molecular chains, due to the
high concentration of anionic intrusions in the cellulose
intramolecular and intermolecular hydrogen bonds, forming

new hydrogen bonds to divide cellulose.8 The main factor
affecting the solubility in ionic liquids is the structure of ionic
liquids. It has been found that the stronger the hydrogen bond
acceptance capacity of anions in the ionic liquid structure, or
the short alkyl chain, smaller central group, or strong electron-
withdrawing groups such as carbon−carbon double bond and
hydroxyl group in the cationic group structure, the stronger the
solubility.9 It was reported that [Bmim]Cl can dissolve 10%
cellulose,10 [Amim]Cl can dissolve 14.5% cellulose,11 and
[Emim]OAc can dissolve 20% of untreated cellulose.12 But
both [Amim]Cl and [Emim]OAc have a lower melting point
and viscosity and greater solubility with regard to cellulose.13,14

[Emim]OAc has a complex synthesis procedure than those of
[Amim]Cl and [Bmim]Cl; [Bmim]Cl and [Emim]OAc are so
hygroscopic that the viscosity determination measurements
with the air contact are not reliable.15 The solubility of
imidazolium ionic liquids is because of the strong hydrogen
bonding that arises from their alkalinity and low solvent
viscosity. Cl−, [OAC]−, and other strong basic anions are
strong electron donors, as they can easily form a strong
hydrogen bond with H in a natural polysaccharide molecule
−OH and cooperate with the hydrogen bond between the
imidazole cation and O in the natural polysaccharide molecule
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−OH to form a electron donor−receptor complex, so as to
dissolve the natural polysaccharide.16−18 Recently, it has been
found that cationic structures also play an important role in
this behavior during cellulose dissolution.19

The regenerated cellulose films can be prepared by
dissolving, settling, and precipitating lignocellulose (cellulose,
hemicellulose, and lignin) with ionic liquids.20 Moreover, it is
easy to prepare these films21 and their chemical properties are
fairly robust.22 The dissolution of cellulose in ionic liquids
involves not only interactions between the solute and the
solvent23 but also mass transfer in the ionic liquid.7,15 Ionic
liquids are relatively viscous,24 so it is often necessary to add
organic cosolvents such as dimethyl sulfoxide (DMSO) to
improve the dissolution rate and reduce the viscosity of the
solution system and save time.25−27 Xu28 studied how Ca2+

promotes interactions between cellulose chains, which can
improve the tensile strength of the regenerated cellulose films.
The regenerated cellulose films have been widely used in
various fields due to their high performance, such as in
wastewater prevention,29 groundwater pollution treatment,30

medical equipment,31 industrial pervaporation,32 and bio-
reactors.33 Cellulose can also adsorb heavy metals,34 adsorb
organic pollutants,35 perform antibacterial functions,36 and act
as drug carriers,37 after grafting functional groups onto
cellulose or performing other physical modifications. In recent
years, the regenerated cellulose films have also received
extensive attention in green packaging,38,39 coating,40 screen
display devices,41 optoelectronic materials,42 and electronic
flexible screens.43 Sixta44 presented a novel regenerated
cellulose fiber process of the Lyocell type using [DBNH]-
[OAc] as a solvent, and the resultant cellulose solution has a
high dissolution power and low viscosity. Its excellent
properties make the Ioncell-F fibers suitable as a reinforcing
material in composite structures and other technical
applications.
In this work, we seek to achieve high-value utilization of

waste corrugated cardboard using a [Amim]Cl/DMSO/CaCl2
dissolution system. DMSO can improve the dissolution of
cellulose in [Amim]Cl and CaCl2 can improve the mechanical
property of the films. In addition, the recovery of [Amim]Cl is
pretty high and the recovered [Amim]Cl still has a good ability
to dissolve fiber, and the performance of the cellulose film (R-
WCC film) regenerated from the recovered [Amim]Cl is also
very good.

2. RESULTS AND DISCUSSION
2.1. Composition of Fibers. Waste corrugated cardboard

is mainly composed of cellulose, hemicellulose, and lignin,
accounting for 52.02, 6.79, and 10.43% of the total
composition, respectively.45 From Table 1, it can be inferred
that the cellulose ratio of P-WCC is increased to 82.19%, the
amounts of ash and impurities are greatly reduced, the ratios of
lignin and hemicellulose are reduced by the NaOH solution
treatment, and the pulp can be bleached by H2O2. Finally, after

the KOH solution treatment, the WCC became fluffy, which
facilitated the dissolution.20

Moreover, the DP of cellulose in WCC and P-WCC is 1635
and 600, respectively, and the DP of cellulose in the P-WCC
film decreased to 485, according to GB/T 1548-2016. This
may be due to the protonation of Cl− with water molecules to
form HCl, resulting in the acid drop of polysaccharide
molecules in the dissociation reaction.46

2.2. Viscosity Analysis. The addition of a cosolvent can
have a strong influence on the viscosity,47 polarity,48

solvation,49 and other physical properties of an ionic liquid.
Measuring the viscosity of cellulose in an ionic liquid system
can help to clarify the dissolution mechanism of such a
mixture.50

As shown in Figure 1, DMSO can greatly improve the
rheological properties of the solvent, and adding just 10%

DMSO at 70 °C can reduce the solution viscosity by 58.94%.
Therefore, adding DMSO at a lower temperature has a greater
overall impact on the viscosity of [Amim]Cl. The viscosity of
[Amim]Cl decreases with the increase of DMSO content over
40%, but the change is negligible. With the addition of the
cosolvent DMSO, the viscosity of the dissolving system
decreases, the internal friction of the ionic liquid decreases,
and the hydrocarbon binding force decreases. This makes the
cellulose molecular chains disperse better in [Amim]Cl,
thereby improving the solubility of cellulose.

2.3. Solubility Properties. The polarizing micrographs of
P-WCC in [Amim]Cl at 90 °C is shown in Figure S1. Figure
2a shows the solubility and dissolution time of P-WCC and
BM-P-WCC in [Amim]Cl at 90 °C. The solubility of the fiber
after ball milling increases from 10.79 to 19.01 wt %. This
increase in solubility is due to the breaking of hydrogen bonds
between cellulose molecules under mechanical force, which
destroys the crystalline regions. Ball milling treatment reduces
the fiber size and increases the specific surface area, thus
improving the solubility as observed by Bodvik.51 Cellulose
absorbs the mechanical energy during the ball milling process
as shown in the X-ray diffraction (XRD) data in Figure S2; the
crystallinity of the P-WCC fiber was 72.19%, while that of the
BM-P-WCC fiber was reduced to 55.42%, such that the
crystalline structure of cellulose changes from a metastable
cellulose I type structure to a stable cellulose II type structure.
Further, the cross-linking between cellulose molecules in the II
type structure is closer, decreasing the dissolution time.
Figure 2b shows that as the temperature increases, the

solubility and dissolution time increase continuously. In this

Table 1. Composition of WCC, P-WCC, and P-WCC Film

cellulose
(%)

hemicellulose
(%)

lignin
(%)

ash
(%)

other
additives (%)

WCC 52.02 6.79 10.43 15.71 15.05
P-WCC 82.19 7.11 7.65 0.92 2.13
P-WCC
film

81.62 6.22 7.03 1.24 3.89

Figure 1. Effect of addition of DMSO on the viscosity of [Amim]Cl at
different temperatures.
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experiment, 4 wt % BM-P-WCC was added to [Amim]Cl to
examine the effect of the dissolution temperature on its
solubility and dissolution time. The solubility is 16.73 wt %;
when the temperature increases to 150 °C, the solubility
increases to 38.31 wt % and the dissolution time decreases
from 195 to 54 min.
Adding DMSO can reduce the viscosity of the cellulose

solution and effectively improve the solubility of cellulose in an
ionic liquid.25 BM-P-WCC (4 wt %) was added to 5 g of
[Amim]Cl and dissolved at 90 °C for 4 h. Figure 2c shows that
as the amount of DMSO increases, the solubility of BM-P-
WCC in the ionic liquid first increases and then decreases.
When the DMSO content is more than 20%, the solubility
begins to increase slowly; the solubility reaches a maximum of
25.47 wt % when the DMSO content is 40% and then begins
to decrease. In other words, the time required for 5 g of
[Amim]Cl to dissolve 0.2 g of BM-P-WCC decreases from 163
to 25 min. These results show that the addition of DMSO

reduces the viscosity of the solvent and effectively improves the
solubility of WCC fibers in [Amim]Cl. Under the action of a
certain temperature and proper cosolvent, the internal friction
force of the ionic liquid decreases and the binding force of the
hydrocarbon also decreases, which manifests as a decrease in
viscosity. The diagram of the dissolution mechanism of WCC
fibers in ionic liquids is shown in Figure 3. The cellulose
molecular chains can be better dispersed in [Amim]Cl, and
thus the solubility of WCC fibers in [Amim]Cl improves under
such conditions, a conclusion also reached by Andanson26 and
Lv.52

2.4. Mechanical Characterization. The regenerated
cellulose films (named as P-WCC film and BM-P-WCC
film) were prepared by adding 4 wt % P-WCC or BM-P-WCC
to [Amim]Cl and dissolving for 4 h at variable dissolution
temperatures. As shown in Figure 4a, the tensile strength of the
film first increases and then decreases as the dissolution
temperature increases, and the tensile strength of the BM-P-

Figure 2. Solubility and dissolution time of P-WCC and BM-P-WCC in ionic liquids.
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WCC film is slightly higher than that of the P-WCC film. The
tensile strengths of the P-WCC and BM-P-WCC films had
maximum values of 59.00 and 62.10 MPa, respectively at 90
°C. When the temperature increased above 110 °C, the tensile
strengths of these films became poor. At temperatures higher
than 150 °C, the film formation became noticeably difficult
and the tensile strengths were recorded as 0 MPa. The WCC
fiber dissolves in [Amim]Cl through a nonderivative form,
which can better retain the original mechanical strength of
lignocellulose in the fiber. When the temperature is too high,
the cellulosic macromolecules oxidize and degrade in ionic
liquids, resulting in poor tensile strength. According to Figure
4b, when the dissolution time increases from 3 to 4 h, the
tensile strengths of the P-WCC and BM-P-WCC films increase
from 48.69 and 51.16 MPa to 59.00 and 62.10 MPa,
respectively. The tensile strengths of the films begin to
decrease when the dissolution time continues to increase
beyond this point, denoting an optimal dissolution time of 4 h;
this is consistent with the research results of Zhang.53 Because
lignocellulose is easy to oxidize and degrade in ionic
liquids,54−57 when the dissolution time is too long, the tensile
strength of the regenerated cellulose film decreases.
When the amount of the added fiber is close to the

maximum solubility of [Amim]Cl, the viscosity of the ionic
liquid will be very high and the viscosity of the film-forming
solution has a great influence on the film-forming effect.

Therefore, we studied the influence of different added WCC
ratios on the tensile strength of the P-WCC and BM-P-WCC
films. In Figure 4c, the regenerated cellulose films were
prepared by dissolving BM-P-WCC or P-WCC at variable
ratios in [Amim]Cl at 90 °C for 4 h. When 4 wt % WCC was
added, the tensile strength of the resulting P-WCC and BM-P-
WCC films reached their maximum values of 59.00 and 62.10
MPa, respectively, and then decreased as more WCC fibers
were added. When the fiber ratio is greater than 8 wt %, a
cellulose hydrogel forms due to the high viscosity of the film-
forming solution. In addition, the tensile strength of the BM-P-
WCC film is slightly higher than that of the P-WCC film;
crystallinity may affect the tensile strengths of the films, as
shown in Figure S2, which is consistent with the results of
Zheng.14

As BM-P-WCC was proved to be too difficult to be
regenerated into a film using the [Amim]Cl/DMSO system,
only the tensile strength of the regenerated cellulose film
prepared using P-WCC was measured here. DMSO film was
prepared by adding 4 wt % P-WCC, different DMSO ratios,
and dissolving at 90 °C for 4 h. As shown in Figure 4d, the
tensile strength of the film decreases as the DMSO ratio
increases and at a ratio of 40%, the tensile strength of the P-
WCC film is 28.65 MPa, after which the tensile strength
sharply decreases. DMSO can prevent the oxidation and
decomposition of fibers in ionic liquids and improve the

Figure 3. Diagram of the dissolution mechanism of WCC fibers in ionic liquids.
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dissolution efficiency of fibers in [Amim]Cl. However, too
much DMSO will promote the acid-catalyzed water
depolymerization of cellulose in [Amim]Cl58 and will reduce
the tensile strength of the film. It shows the change in the
tensile strength of the regenerated cellulose film (named as
CaCl2 film) in Figure 4d prepared by adding 4 wt % P-WCC
and 40% DMSO at 90 °C at 4 h of dissolution, using varying
CaCl2 additions of 0−4 wt %. The tensile strength of the CaCl2
film first increases and then decreases as the amount of CaCl2
increases. At a CaCl2 addition of 2 wt %, the tensile strength of
the film reaches a maximum value of 85.86 MPa, which is
45.53% higher than that of the P-WCC film (59.00 MPa) and
199.86% higher than that of the DMSO film (28.65 MPa). The
tensile strength of common commercial polyolefin films (PE,
PP) is typically 20−40 MPa,59 and the tensile strength of the
cellulose film regenerated from ionic liquids ([EMIMO]Ac)
and ([Bmim]Cl) is, respectively, about 7060 and 34 MPa.61

The regenerated porous cellulose films were prepared by
dissolving in the LiCl/DMAc solvent; its tensile strength
reached 29.22 MPa62 and the tensile strength of all-cellulose
films regenerated from 7 wt % NaOH/12 wt % urea aqueous

solution change from 30 to 135 MPa.63 Thus, this CaCl2 film
has the potential to replace petroleum-based plastic bags as
packaging materials. The same anion of CaCl2 and [Amim]Cl
improves the tensile strength of the regenerated cellulose film,
which can promote the dissolution and regeneration of
cellulose in ionic liquids. Meanwhile, Ca2+ is cross-linked
with the cellulose molecular chains to enhance the tensile
strength of the film via the mechanism shown in Figure 5. The
excess CaCl2 will also adhere to the surface of cellulose and
reduce the tensile strength of the CaCl2 film.

2.5. Micromorphology Analysis. Figure 6 shows the
scanning electron microscopy (SEM) images of the surface and
cross section of the films prepared under different conditions.
There are a few particles on the surface (Figure 6a-1) and cross
section (Figure 6a-2) of the P-WCC film and a few protrusions
and holes on the cross section, which may be caused by the
removal or fracturing of larger fibers when the film is
quenched. In contrast, the surface (Figure 6b-1) of the BM-
P-WCC film is more smooth, compact, and bright owing to
ball milling, and the cross-sectional structure (Figure 6b-2) is
even and smooth without a grainy appearance. The surface of

Figure 4. Effect of the dissolution temperature (a), dissolution time (b), fibers ratio (c), DMSO ratio, and CaCl2 ratio (d) on the tensile strength of
the films.

Figure 5. Existence of Ca2+ in cellulose molecules.
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the DMSO film is rough but the fiber structures are exposed
and are interlaced and stacked to form a layered structure
(Figure 6c-2). The surface of the CaCl2 film is still relatively
rough with obvious fiber structures (Figure 6d-1) and the cross

section features some pores (Figure 6d-2). The inner fibers are
closely interwoven into a thin network structure but this
structure is slightly flat and dense compared with that of the
DMSO film (Figure 6c-1). The addition of CaCl2 inhibited the

Figure 6. SEM images of the surface, and cross section of the regenerated cellulose films.
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production of protons from the active hydrogen at the second
position on [Amim]+ in the ionic liquid, thus weakening the
acid-catalyzed water depolymerization of cellulose. This allows
Ca2+ to cross-link on the cellulose molecular chain, thus
enhancing the tensile strength of the film. Xu28 demonstrated

that such nonrigid fiber structures can be effectively cross-
linked by Ca2+.

2.6. Roughness Analysis. Figure 7 shows the three-
dimensional (3D) topographic maps of the P-WCC, BM-P-
WCC, DMSO, and CaCl2 films using atomic force microscopy

Figure 7. Surface roughness of the regenerated cellulose films.

Figure 8. TGA (a) and DTG (b) curves of the regenerated films.

Figure 9. Transmittance (a) and visual pattern (b) of the regenerated cellulose films.
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(AFM). The roughness value of the BM-P-WCC film (Figure
7b) is 11.54 nm, which is consistent with our SEM results. The
size of the milled fiber in BM-P-WCC is uniform, making this
film relatively smooth. The roughness value of the P-WCC film
(Figure 7a) is slightly higher. With the addition of DMSO and
CaCl2, the roughness values increase to 34.24 nm (Figure 7c)
and 42.59 nm (Figure 7d), respectively. However, the
roughness values of the regenerated cellulose films under
different conditions are all less than 50 nm, indicating that the
films have good surface structures.
2.7. Thermogravimetric Analysis (TGA). Figure 8 shows

TGA and derivative thermogravimetric (DTG) data of the P-
WCC, BM-P-WCC, DMSO, and CaCl2 films. There are two
periods of weight loss in these films (Figure 8a): the first time
is near 100 °C, which is the weight loss peak of water, while
the second time is the weight loss of the thermal
decomposition of the films. Figure 8b shows that the thermal
decomposition temperatures of the BM-P-WCC, DMSO, and
CaCl2 films are 347, 313, 349, and 351 °C, respectively; the
thermal stability of the BM-P-WCC film is lower than that of
the P-WCC film but the thermal stability of the regenerated
cellulose film was improved after adding DMSO and CaCl2.
2.8. Optical Performance. Figure 9a shows that the

smooth BM-P-WCC film shows the highest transmittance of
all films studied here, in the wavelength range of 380−780 nm.
This is because the small-sized BM-P-WCC fibers gather
closely within the film, resulting in low porosity and less light
scattering on the film surface. As shown in Figure 9b, the P-
WCC film is slightly yellowish with lower transmittance than
the BM-P-WCC film. DMSO film has the lowest transmittance
and appears dark yellow and foggy translucent due to light
scattering within the interlaced fiber network structure of the
film, decreasing both the transmittance and transparency. The
transmittance of the CaCl2 film increased by approximately 7%
compared to the DMSO film and became more transparent
due to the presence of Ca2+, which is consistent with our SEM
and AFM results. The transmittance of the regenerated
cellulose films varies when prepared under different conditions,
which could be useful in different applications.
2.9. Recovered Ionic Liquids. It was proved that [Amim]

Cl was recovered completely by 1H NMR spectra and FTIR
spectra (Figures S3 and S4). The recovery rate of the ionic
liquid is approximately 85%, and an R-WCC film was prepared
from the recycled ionic liquid in the same manner as the BM-
P-WCC film for comparison (4 wt % BM-P-WCC fibers
dissolved in the recovered [Amim]Cl at 90 °C for 4 h); the
properties of this film are shown in Table 2.

The tensile strength, surface roughness (Figure S5), and

transmittance (Figure S6) of the BM-P-WCC and R-WCC

films are relatively close, indicating that the recovered ionic

liquid still has a good ability to dissolve the fiber and that this

change has little effect on the physical properties of the film.

3. CONCLUSIONS

Four kinds of regenerated cellulose films with good mechanical
properties were successfully prepared using low-cost waste
corrugated cardboard (WCC) instead of high-grade pulp as a
raw material. Adding 4 wt % fiber in [Amim]Cl and dissolving
for 4 h at 90 °C yielded the best results. The regenerated
cellulose films were smooth, compact, and transparent or semi-
transparent, depending on the DMSO ratio, CaCl2 ratio, and
whether or not ball milling was used. The films exhibited good
mechanical properties, such as a maximum tensile strength of
85.86 MPa for the CaCl2 film. These films also had good
thermal stability and could be used in fields with low
transparency requirements. The BM-P-WCC film had a
smooth and uniform surface and high transmittance and
could be applied in fields requiring higher requirements. The
transmittance of the P-WCC film was slightly lower than that
of the BM-P-WCC film. With the addition of the cosolvent
DMSO, the tensile strength of the DMSO film decreased,
whereas the DMSO film prepared with 40% DMSO had low
tensile strength, low transmittance, and poor transparency.
[Amim]Cl was a nonderivatizing solvent for the WCC fiber.

Moreover, a deeper analysis has led to a greater understanding
of this route. The XRD patterns indicate a transformation in
the crystal structure (from cellulose I to cellulose II) that
occurred during the dissolution and regeneration processes.
TGA results demonstrated that the DMSO and CaCl2 films
possessed high thermal stability similar to that of the P-WCC
film. Therefore, the present work provides a simple and
effective method to convert low-grade cellulose resources into
high-value cellulose-based products.

4. MATERIALS AND METHODS

4.1. Materials. Waste corrugated cardboard (C-type
corrugated box), [Amim]Cl (C7H11N2Cl, ≥99%, Lanzhou
Institute of Chemical Technology, Chinese Academy of
Sciences), DMSO (AR, ≥99.8%, Tianjin Fuyu Fine Chemical
Co., Ltd.), CaCl2 (AR, ≥96.0%, Chengdu Kelong Chemical
Reagent Plant), NaOH (AR, ≥96.0%, Chengdu Kelong
Chemical Reagent Plant), KOH (AR, ≥85.0%, Tianjin
Zhiyuan Chemical Reagent Co., Ltd.), H2O2 (AR, ≥30%,
Tianjin Hengxing Chemical Reagent Manufacturing Co., Ltd.),
and phosphotungstic acid (AR, H3O40PW12·xH2O, Shanghai
Aladdin Biochemical Technology Co., Ltd.) were used in this
study.

4.2. Pretreatment of Waste Corrugated Cardboard.
As shown in Figure 10, waste corrugated cardboard was cut
into small pieces (1−2 cm), crushed and passed through a 700
μm sieve, treated with a 2 wt % NaOH solution in the ratio
1:10 (g/mL), and then stirred at 90 °C for 2 h. Subsequently,
the samples were treated with a 20% H2O2 solution in the ratio
1:20 (g/mL) and stirred at 70 °C for 1 h. Finally, this sample
was treated with a 4 wt % KOH solution in the ratio 1:10 (g/
mL) and stirred at 90 °C for 2 h. The precipitate was washed
with deionized water to a neutral pH and dried under vacuum
at 40 °C for 48 h to obtain the waste corrugated board (named
as P-WCC), which was kept sealed when not in use. One-half
of the above-mentioned P-WCC was used to prepare BM-P-
WCC via ball milling with a rotation speed of 4000 rpm for 10
h and kept sealed when not in use.

4.3. Preparation of the Regenerated Cellulose Films.
The preparation procedure of the regenerated cellulose films is
shown in Figure S1. After pretreatment, 0.8 g of P-WCC, 0.2 g

Table 2. Effect of the Recovery of Ionic Liquids on Some
Properties of the R-WCC Films

film tensile strength (MPa) rms (nm) transmittance (%)

BM-P-WCC 62.10 11.54 70.18
R-WCC 60.24 13.64 69.30
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of CaCl2, and 40% DMSO (to 20 g of [Amim]Cl) were
dispersed into 20 g of [Amim]Cl. The mixture was then heated
at 90 °C for 4 h under magnetic stirring, so that a
homogeneous 4 wt % P-WCC/[Amim]Cl solution was
obtained. The resulting solution was cast onto a poly-
(tetrafluoroethylene) plate with a spreader to obtain a 0.5
mm thick layer after 30 min setting time and immediately
immersed into a coagulation bath (deionized water) to form a
cellulose-based hydrogel, which was labeled as Hydrogel. The
cellulose-based hydrogel was then washed at least five times
with distilled water until the residual [Amim]Cl was
completely removed (the scrubbing solution was reserved for
later use). Finally, applying 900 MPa at 50 °C for 20 min using
a Kaiser rapid sheet former (2DA, Estanit GmbH, Germany),
the regenerated cellulose films were obtained. The films were
dried at 60 °C for 24 h for characterization.
4.4. Chemical Compositions of WCC and P-WCC. The

mass fraction of cellulose, hemicelluloses, lignin, and ash
content in WCC and P-WCC were characterized by the Fan
method, as shown in Table 1.64

4.5. Viscosity of [Amim]Cl/DMSO. The viscosity of
[Amim]Cl/DMSO was measured for 0.5 min using a modular
advanced rheometer (HAAKE MARS 40, HAAKE Technology
Co., Ltd., Germany), with an FL22 4B/ss Vane rotor and
CCB25 measuring cup. For each sample, at least three
specimens were tested, and the average value was reported.
4.6. Solubility Properties of Fibers in [Amim]Cl. The

dissolving property of P-WCC and BM-P-WCC in [Amim]Cl
was observed using a polarizing microscope (Nikon E200,
Nikon Co., Ltd., Japan). The solubility was calculated
following Liu,65 where the dissolution time refers to the time
required to completely dissolve 0.2 g of P-WCC or BM-P-
WCC in 5 g of [Amim]Cl.
4.7. Mechanical Characterization. The tensile strength

of the regenerated cellulose film was measured on an electronic
universal material testing machine (3367, Instron, U.K.) at a
crosshead speed of 5 mm/min. Specimens 50 mm in length
and 10 mm in width were used for these tests, and a gauge
length of 25 mm was maintained. For each sample, at least five
specimens were tested, and the average value was reported.

The mechanical tests were done by following the ASTM D-882
standard.

4.8. Micromorphology Analysis. Samples (cut into
squares of 10 mm × 10 mm) were lifted with tweezers and
attached to the stage with a conductive paste. Then, they were
sputter-coated with a thin layer of platinum before being
observed by scanning electron microscopy (SEM) (Phenom-
World Pro, FEI). The film was placed in liquid nitrogen for 10
s and quenched to obtain the fracture surface; the cross-
sectional structures of the films were observed at 10 V and the
surface structures of the films were observed at 5 V.

4.9. AFM Analysis. Films were cut into squares of 10 mm
× 10 mm for observation, and the samples were measured by
atomic force microscopy (AFM) (5100N, Hitachi High-Tech
Co., Ltd.) at 8.5 V, 299 kHz, tapping mode, C = 32 N/m, tip
diameter = 7 nm, and probe type = SI-DFP2.

4.10. TGA Analysis. The thermal decomposition behavior
of the samples was investigated using a synchronous thermal
analyzer (STA 449 F5, Netzsch Instruments Manufacturing
Co., Ltd.) under a nitrogen atmosphere at a heating rate of 10
°C/min, gas flow of 20 mL/min, and scanning temperature of
20−550 °C.

4.11. Optical Performance. Films were cut into speci-
mens of 40 mm × 9 mm before testing, and the transmittance
of a film laid on the inner wall of the colorimetric vessel was
measured by UV spectrophotometry (Lambda950, PerkinElm-
er Instruments) over the wavelength range of 380−780 nm.

4.12. Recovery Rate of Ionic Liquids. The scrubbing
solution reserved after preparing the regenerated cellulose films
was filtered with a Nylon Millipore filter (Φ = 0.45 μm), and
the water solvent was removed by rotary evaporation (RE-
3000 B, Shanghai Xiande Experimental Instrument Co., Ltd.)
at 105 °C under a 0.1 MPa vacuum.66 3A zeolite was added to
remove impurities, and the material was vacuum-dried at 80 °C
for 24 h to obtain the recovered ionic liquid.
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Figure 10. Preparation procedure of the regenerated cellulose films from waste corrugated cardboard.
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