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ABSTRACT
Objectives  Being able to predict which patients with 
COVID-19 are going to deteriorate is important to help 
identify patients for clinical and research practice. Clinical 
prediction models play a critical role in this process, 
but current models are of limited value because they 
are typically restricted to baseline predictors and do not 
always use contemporary statistical methods. We sought 
to explore the benefits of incorporating dynamic changes 
in routinely measured biomarkers, non-linear effects 
and applying ‘state-of-the-art’ statistical methods in the 
development of a prognostic model to predict death in 
hospitalised patients with COVID-19.
Design  The data were analysed from admissions with 
COVID-19 to three hospital sites. Exploratory data analysis 
included a graphical approach to partial correlations. 
Dynamic biomarkers were considered up to 5 days 
following admission rather than depending solely on 
baseline or single time-point data. Marked departures from 
linear effects of covariates were identified by employing 
smoothing splines within a generalised additive modelling 
framework.
Setting  3 secondary and tertiary level centres in Greater 
Manchester, the UK.
Participants  392 hospitalised patients with a diagnosis 
of COVID-19.
Results  392 patients with a COVID-19 diagnosis were 
identified. Area under the receiver operating characteristic 
curve increased from 0.73 using admission data alone 
to 0.75 when also considering results of baseline blood 
samples and to 0.83 when considering dynamic values of 
routinely collected markers. There was clear non-linearity 
in the association of age with patient outcome.
Conclusions  This study shows that clinical prediction 
models to predict death in hospitalised patients with 
COVID-19 can be improved by taking into account both 
non-linear effects in covariates such as age and dynamic 
changes in values of biomarkers.

INTRODUCTION
Most patients with SARS-CoV-2 experience 
mild symptoms. Some patients, however, 
experience significant symptoms requiring 

hospitalisation. The pandemic nature of the 
COVID-19 outbreak has meant that hospital 
services and capacity can be overwhelmed.1 
A tool to predict which patients are likely to 
deteriorate or need intensive care would help 
clinicians, hospital managers and researchers 
make better decisions.

Several such models are reported for 
patients with COVID-19 but have been 
criticised for risk of bias using the Predic-
tion model Risk Of Bias ASsessment Tool’s 
criteria.2 We have further concerns regarding 
the statistical tools used to develop models. 
First, current models typically only consider 
patient characteristics available at base-
line and do not consider that presentation 
of patients with COVID-19 and in hospital 
course is variable. Second, models routinely 
seek only linear effects of potential predictors 
on the outcome of interest, although these 
are not always clinically plausible.

We sought here to explore the benefits of 
incorporating dynamic changes in routinely 
measured biomarkers, non-linear effects and 
applying ‘state-of-the-art’ statistical methods 

Strengths and limitations of this study

	► Incorporating routinely available blood tests per-
formed over the first 5 days of hospital admission 
with clinical presentation data can enhance patient-
level prediction of COVID-19 progression.

	► A larger dataset is needed to construct definitive 
prediction models.

	► More sophisticated statistical exploitation of bio-
marker trajectories, for example, using random-
effects models of biomarker evolution or ‘conditional 
on outcome’ models of biomarker evolution, could 
make clinical predictions models still better.

http://bmjopen.bmj.com/
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in the development of a prognostic model to predict 
death in hospitalised patients with COVID-19.

METHODS
Study population
Admissions with confirmed COVID-19 (according to 
WHO guidance) at three hospitals in the Northern Care 
Alliance (Greater Manchester, the UK) between 11 March 
and 17 April 2020 with a minimum of a 3-week follow-up 
were studied.3

Data collection
Necessary approvals were obtained from the local research 
and innovation department. Research nurses abstracted 
data from the electronic patient records based on the 
International Severe Acute Respiratory and emerging 
Infection Consortium (ISARIC) data collection tool but 
modified for use with this study.4 The ISARIC study data 
were supplemented from electronic patient records with 
results of blood analyses performed as part of routine 
clinical care. The date of diagnosis was considered day 1.

Data analysis
All data were subjected to range checks and validated for 
internal consistency and missing items then anonymised 
prior to transfer.

Selection of biomarkers
The initial list of potential markers was determined 
through review of the literature and availability within 
routinely collected data. Candidate variables were further 
screened using a graphical representation of the partial 
correlation structure stratified by survival status.5 Routine 
bloods were typically analysed on alternate days. The 
assumption that the unrecorded values were missing at 
random was corroborated by inspection of joint bivariate 
plots of complete and incomplete observations made 
on each particular marker on consecutive days.6 Then, 
each missing value of a marker was imputed by iterative 
sampling from its conditional predictive distribution 
given past values, using R’s MICE package.6 7

Modelling
In this study, we used the information contained in the 
clinical presentation data and available biomarkers (creat-
inine, lymphocyte count, etc) to update, on a day-by-day 
basis, the patient’s probability of death within 21 days.

Initially, a logistic model for the all-cause mortality 
outcome using only clinical features at presentation was 
fitted initially. We then fitted separate logistic models for 
death for each day, using predictive variables identified 
from the partial correlation analysis described above. 
For each of the 5 days following hospital admission, we 
fitted a model based exclusively on data from subjects 
still alive at that day, with candidate predictors chosen 
out of the set of clinical variables and biomarker values 
collected until that day. This approach meant that for 
each of the first 5 days following admission, a sequence of 
day-specific mortality prediction models was available. We 
subsequently fitted each model within a generalised addi-
tive modelling framework involving smoothing splines to 
detect marked departures from linearity for continuous 
predictors and undertook data transformations (eg, log 
transformation of concentrations) as indicated.8 A stan-
dard logistic version of the model was then fitted. We 
used the Akaike Information Criterion to choose between 
logistic models and assessed predictive performance 
using the area under a 10-fold, cross-validated receiver 
operating characteristic (ROC) curve.

Table 1  Demographic, clinical and medical history factors 
considered at baseline (ICU intensive care unit; MAP mean 
arterial pressure)

Overall 
dataset

Number of patients 392

Age, median (IQR) 71 years (22 
years)

Gender: male:female ratio 65:35

Median time to hospitalisation following 
disease onset (IQR) days

5 (8)

Initial symptoms (%)

 � Fever 223 (57)

 � Cough 240 (61)

 � Dyspnoea 245 (65)

 � Fatigue 127 (37)

 � Muscle ache 53 (16)

Comorbidities

 � Cardiovascular disease 108 (28%)

 � Chronic respiratory disease (inc asthma) 110 (28%)

 � Chronic renal disease 45 (12%)

 � Chronic liver disease 14 (2%)

 � Obesity 34 (10%)

 � Diabetes 95 (24%)

 � Dementia 49 (13%)

Current smoker 24 (7%)

Presenting clinical features

 � Requirement for supplemental O2 125 (37%)

 � Oxygen saturation <90% 59 (17%)

 � Respiratory rate >24 109 (30%)

 � Temperature ≥38°C 168 (45%)

 � MAP <70 mm Hg 30 (8%)

Outcomes

 � Acute Respiratory Distress Syndrome 47 (17%)

 � Non-invasive ventilation 25 (9%)

 � Need for ICU care 31 (12%)

 � Invasive ventilation 14 (5%)

 � Death 110 (27%)
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Patient and public involvement
There was no involvement of patients or the general 
public in the design or delivery of this study. This was 
because of the acute nature and fast moving pace of the 
disease studies and because access to patients and the 
public was limited at this time.

RESULTS
A total of 392 patients with a COVID-19 diagnosis were 
admitted during the study period. Table  1 provides a 
summary of their demographic and clinical features, 
including medical history. Blood samples were typically 
requested every other day following admission (online 
supplemental table).

For an informal analysis of biomarker relationships, 
we analysed partial correlations between seven potential 
inflammatory markers in each of the two survival groups 
(figure 1). Among survivors, the anticipated correlations 
between lymphocytes and neutrophils (via white cell 
count) and between creatinine and urea were present, 
but these correlations were found to be significantly lower 
among the decedents, suggesting the possible presence 
of differences in the neutrophil/lymphocyte and urea/
creatinine ratios between the two outcome groups.

Inclusion of admission biomarker data did not 
improve the predictive value of the model over clinical 
data alone. Incorporation of post-admission dynamic 
biomarker data did, however, increase the discrimi-
native ability of the model (figure 2). Estimates from 
the best fitting model at day 5 (table 2) show strongly 
statistically significant term(s) reflecting post-baseline 
biomarker changes that can be readily visualised 
(figure 3). In addition to age and disease severity, the 
most recent neutrophil/lymphocyte ratio and the two 
most recent (and, therefore, recent change in) urea/
creatinine ratios were generally predictive. There was 
a marked non-linearity in the effect of age (figure 4).

DISCUSSION
These results suggest that using dynamic data is better 
than using baseline initial presentation data to predict 
death in patients with COVID-19. Even with a local dataset 
of just 392 admissions with COVID-19, we were able to 
identify clear benefit from exploiting dynamic biomarker 
data and marked non-linearity in the effects of commonly 
used factors to predict outcomes. Our findings should 
be taken as indicative of the benefits of ‘state-of-the-art’ 
statistical methodology but also the necessary collabora-
tion between statisticians and clinicians as this statistical 
methodology is not readily accessible to most researchers. 
Identification and validation of anything approaching a 
definitive predictive model would require substantially 
larger sample sizes.2

Neither the non-linear effect of age after allowance 
for other factors nor the particular biomarkers identi-
fied within this dataset are surprising. Others have also 
observed associations of mortality with age, and clin-
ical and biochemical markers of disease severity (eg, 
neutrophil/lymphocyte ratio).9–11 There have been 
few studies investigating dynamic changes in patient 
biomarkers for mortality prediction in COVID-19; 
one such study of 548 patients in China also demon-
strated that the neutrophil:lymphocyte ratio in survi-
vors and non-survivors became increasingly divergent 
throughout their hospital admission.12 Chen et al 
derived their prognostic score from an analysis based 
on a Cox’s regression model with their candidate 
predictive variables taken at baseline. They incorpo-
rated in their analysis the slope of a line fitted to the 
first and last measurements of each particular marker 
to model changes over time. Chen et al approach has 

Figure 1  Partial correlations between biomarkers. Nodes 
represent average marker levels from day 2 to day5 and 
edges represent partial correlations, as calculated from the 
survivors (left) and from the decedents (right). Broader lines 
indicate stronger relationships. Blr, bilirubin, CRP, C reactive 
protein, Crt, creatinine, Lym, lymphocytes, Ntr, neutrophils, 
WCC, white cell count, Ure, urea.

Figure 2  Receiver operating characteristic (ROC) curves 
for three models: solid line indicates model considering only 
clinical factors at baseline (area under ROC curve=0.73); 
finely dotted line indicates model extended to consider 
also biomarker data from baseline sample (area under ROC 
curve=0.75) and top line indicates model at 5 days extended 
to consider dynamic changes in biomarker data (area under 
ROC curve=0.83). Note that models are not nested.

https://dx.doi.org/10.1136/bmjopen-2020-041983
https://dx.doi.org/10.1136/bmjopen-2020-041983
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advantages and disadvantages. Their model captures 
duration information but does not allow choice of 
time horizon for prediction. Their predictions are 
arguably limited because they are not updated daily 
and depend on the assumption that marker evolution 
is linear and summarised by a straight line between 
initial and final values.

A smaller study limited to patients with severe 
COVID-19 also revealed a progressive increase in 
neutrophil count and plasma interleukin-6 concen-
tration in the decedents when compared with the 
survivors, but the authors did not perform any assess-
ment of the predictive value associated with dynamic 
changes in these laboratory parameters.13

Similarly, renal injury has also been shown to be 
common in patients with COVID-19 and is associated 

with a worse outcome.14 The reason for this is not 
clear. There is emerging evidence that SARS-CoV-2 
infection can directly harm the kidneys. The wors-
ening urea/creatinine ratio observed in our data 
set may also reflect either the therapeutic effects of 
fluid restriction to treat severe Acute Respiratory 
Distress Syndrome (ARDS) or evidence of multi-organ 
dysfunction.10 15 Regardless of the cause, the impact 
of the urea/creatinine level on death was not evident 
at presentation but became a significant predictor of 
death in our model over time. This observation illus-
trates the benefit of taking into account improvements 
and deterioration in daily blood test results as well as 
initial presentation factors when calculating the prob-
ability of death. Improving the accuracy of prediction 
models using this approach is likely to be successful 
in informing clinical decision-making, resource plan-
ning and communication with patients and relatives.

We acknowledge that our study has some limitations. 
We would have liked to consider other outcomes, 
including dynamic changes in clinical variables, as well 
as disease endpoints such as the incidence of ARDS and 
ICU (intensive care admission) admission. Dynamic 
clinical data were not included because it was less reli-
able to obtain compared with blood biomarker data, 
and a consistent diagnosis of ARDS, and dates of onset 
or admission to ICU were also not routinely available. 
Although we have undertaken internal cross-validation 
to ensure unbiased comparison of ROC curves, we 
have not considered calibration. We do not wish to 
make any claim for the value of our current models 
at each day based on the small sample size available to 
us locally. With only three hospital sites contributing 
during the first wave, and because of significant time/
resource pressures during the pandemic, we did not 
have sufficient data to construct definitive prediction 
models or to follow-up patients beyond 3 weeks. More 
sophisticated exploitation of biomarker trajectories 
through, for example, approaches based on random-
effects models of biomarker evolution or ‘conditional 
on outcome’ models of biomarker evolution, would 
also require more data and be expected to add further 
insights.16–18

Clinical prediction models are important and can 
help in clinical decision-making, resource allocation 
and optimal selection of trial participants for inves-
tigational treatments. In the setting of an infectious 
disease pandemic—affecting all geographic and socio-
economic groups—using routinely available blood 
tests to inform prediction models has obvious advan-
tages over less widely available, but perhaps more 
specific, biomarkers of disease severity. Until investi-
gators incorporate such data in participant selection, 
it is unlikely that future trials will be able to accurately 
target those patients most likely to benefit from ther-
apies such as immunomodulation. Overall benefits 
will be ‘diluted’ and potentially reversed by inclu-
sion of participants who have nothing to gain and, 

Figure 3  Violin plots showing distribution at each day 
of admission, stratified by survival status, for biomarkers 
identified by statistical modelling. Panel A: log-transformed 
neutrophil (×109/L)/lymphocyte (×109/L) ratio. Panel B: log-
transformed urea (mmol/L)/creatinine (μmol/L) ratio. Survivors 
(white) on left and decedents (shaded) on right.

Figure 4  Spline plot demonstrating marked non-linearity in 
relationship between age and outcome after adjustment for 
other factors included in the final model.
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in theory, may be harmed by restriction of a healthy 
inflammatory response.19 The consequence of poorly 
considered eligibility criteria may, therefore, be to 
erroneously dismiss therapies that could benefit those 
at highest risk from COVID-19.

Author affiliations
1Centre for Biostatistics, The University of Manchester, Manchester Academic Health 
Sciences Centre, Manchester, UK
2Manchester Centre for Clinical Neurosciences, Salford Royal Hospitals NHS Trust, 
Salford, UK
3Division of Neuroscience and Experimental Psychology, The University of 
Manchester, Manchester, UK
4Cardiff and Vale University Health Board, Cardiff, UK
5Department of Pharmacy and Optometry, The University of Manchester, 
Manchester, UK
6Department of Brain and Behavioural Sciences, The University of Pavia, Pavia, Italy

Correction notice  This article has been corrected since it first published. Table 2 
has been updated.

Acknowledgements  The Northern Care Alliance research delivery team who 
collected the data for the patients, and the Salford Royal business analysis team 
who helped in providing access to the daily blood and clinical observation results. 
This report was also made possible by the provision of the data collection tool 
through the efforts and expertise of the International Severe Acute Respiratory and 
emerging Infection Consortium's Team (https://isaric.tghn.org/).

Contributors  All authors (CB, CH, AK, AV, CO'L, DB, JG, KO, MW, OP, SH, SA, LB 
and HCP) were involved in the concept and design of the study, which was led by 
HCP and AV, and involved in revising the manuscript and contributed to the final 
draft. HCP, CH and MW acquired the data, and CB, LB, AV, HCP and CH analysed and 
interpreted the data. CB, DB, SA, OP, JG, AV, CH and HCP drafted the manuscript. 
The corresponding author attests that all listed authors meet authorship criteria and 
that no others meeting the criteria have been omitted. HCP acts as guarantor for 
the study.

Funding  AK, AV, JG, HCP and SH are funded by the National Institute for Health 
Research Efficacy and Mechanism Evaluation Programme, Ref: 14/209/07. DB is 
funded by MRC grant MR/T016515/1.

Competing interests  Swedish Orphan Biovitrum have provided investigational 
medicinal product for public-funded, peer-reviewed trials on which AK, AV, JG, HCP 
and SH are coinvestigators. The other authors declare no competing interests.

Patient and public involvement  Patients and/or the public were involved in the 
design, or conduct, or reporting, or dissemination plans of this research. Refer to 
the Methods section for further details.

Patient consent for publication  Not required.

Provenance and peer review  Not commissioned; externally peer reviewed.

Data availability statement  Data are available upon reasonable request.

Open access  This is an open access article distributed in accordance with the 
Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits 
others to copy, redistribute, remix, transform and build upon this work for any 

purpose, provided the original work is properly cited, a link to the licence is given, 
and indication of whether changes were made. See: https://creativecommons.org/​
licenses/by/4.0/.

ORCID iD
Hiren C Patel http://orcid.org/0000-0002-1439-8801

REFERENCES
	 1	 Emanuel EJ, Persad G, Upshur R, et al. Fair allocation of scarce 

medical resources in the time of Covid-19. N Engl J Med 
2020;382:2049–55.

	 2	 Wynants L, Van Calster B, Collins GS, et al. Prediction models for 
diagnosis and prognosis of covid-19 infection: systematic review and 
critical appraisal. BMJ 2020;369:m1328.

	 3	 WHO. Laboratory testing for coronavirus disease(COVID-19) in 
suspected human cases, 2020.

	 4	 International Severe Acute Respiratory and emerging Infection 
Consortium. Available: https://isaric.tghn.org [Accessed 28 May 
2020].

	 5	 Friedman J, Hastie T, Tibshirani R. Sparse inverse covariance 
estimation with the graphical LASSO. Biostatistics 2008;9:432–41.

	 6	 Rubin DB. Inference and missing data. Biometrika 1976;63:581–92.
	 7	 Azur MJ, Stuart EA, Frangakis C, et al. Multiple imputation by 

chained equations: what is it and how does it work? Int J Methods 
Psychiatr Res 2011;20:40–9.

	 8	 Hastie T, Tibshirani R. Generalized additive models, 2017.
	 9	 Huang C, Wang Y, Li X, et al. Clinical features of patients 

infected with 2019 novel coronavirus in Wuhan, China. Lancet 
2020;395:497–506.

	10	 Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality 
of adult inpatients with COVID-19 in Wuhan, China: a retrospective 
cohort study. Lancet 2020;395:1054–62.

	11	 Ruan Q, Yang K, Wang W, et al. Clinical predictors of mortality due to 
COVID-19 based on an analysis of data of 150 patients from Wuhan, 
China. Intensive Care Med 2020;46:846–8.

	12	 Chen R, Sang L, Jiang M, et al. Longitudinal hematologic and 
immunologic variations associated with the progression of COVID-19 
patients in China. J Allergy Clin Immunol 2020;146:89–100.

	13	 Pan F, Yang L, Li Y, et al. Factors associated with death outcome in 
patients with severe coronavirus disease-19 (COVID-19): a case-
control study. Int J Med Sci 2020;17:1281–92.

	14	 Cheng Y, Luo R, Wang K, et al. Kidney disease is associated 
with in-hospital death of patients with COVID-19. Kidney Int 
2020;97:829–38.

	15	 Su H, Yang M, Wan C, et al. Renal histopathological analysis of 26 
postmortem findings of patients with COVID-19 in China. Kidney Int 
2020;98:219–27.

	16	 Berzuini C, Larizza C. A unified approach for modeling longitudinal 
and failure time data, with application in medical monitoring. IEEE 
Trans Pattern Anal Mach Intell 1996;18:109–23.

	17	 Albert PS. A linear mixed model for predicting a binary event from 
longitudinal data under random effects misspecification. Stat Med 
2012;31:143–54.

	18	 Liu D, Albert PS. Combination of longitudinal biomarkers in 
predicting binary events. Biostatistics 2014;15:706–18.

	19	 King A, Vail A, O'Leary C, et al. Anakinra in COVID-19: important 
considerations for clinical trials. Lancet Rheumatol 2020;2:e379–81.

https://isaric.tghn.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-1439-8801
http://dx.doi.org/10.1056/NEJMsb2005114
http://dx.doi.org/10.1136/bmj.m1328
https://isaric.tghn.org
http://dx.doi.org/10.1093/biostatistics/kxm045
http://dx.doi.org/10.1093/biomet/63.3.581
http://dx.doi.org/10.1002/mpr.329
http://dx.doi.org/10.1002/mpr.329
http://dx.doi.org/10.1016/S0140-6736(20)30183-5
http://dx.doi.org/10.1016/S0140-6736(20)30566-3
http://dx.doi.org/10.1007/s00134-020-05991-x
http://dx.doi.org/10.1016/j.jaci.2020.05.003
http://dx.doi.org/10.7150/ijms.46614
http://dx.doi.org/10.1016/j.kint.2020.03.005
http://dx.doi.org/10.1016/j.kint.2020.04.003
http://dx.doi.org/10.1109/34.481537
http://dx.doi.org/10.1109/34.481537
http://dx.doi.org/10.1002/sim.4405
http://dx.doi.org/10.1093/biostatistics/kxu020
http://dx.doi.org/10.1016/S2665-9913(20)30160-0

	Value of dynamic clinical and biomarker data for mortality risk prediction in COVID-­19: a multicentre retrospective cohort study
	Abstract
	Introduction﻿﻿
	Methods
	Study population
	Data collection
	Data analysis
	Selection of biomarkers
	Modelling
	Patient and public involvement

	Results
	Discussion
	References


