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We propose a Susceptible–Infected–Recovered (SIR) modified model for Coronavirus disease – 2019 

(COVID-19) spread to estimate the efficacy of lockdown measures introduced during the pandemic. As in- 

put data, we used COVID-19 epidemiological information collected in fifteen European countries either in 

private surveys or using official statistics. Thirteen countries implemented lockdown measures, two coun- 

tries (Sweden, Iceland) not. As output parameters, we studied herd immunity level and time of formation. 

Comparison of these parameters was used as an indicator of effectiveness / ineffectiveness of lockdown 

measures. In the absence of a medical vaccine, herd immunity may be regarded as a factor of popula- 

tion adaptation to severe acute respiratory syndrome-related coronavirus-2, the viral pathogen causing 

COVID-19 disease (SARS-CoV-2), and hence COVID-19 spreading stop. We demonstrated that there is no 

significant difference between lockdown and no-lockdown modes of COVID-19 containment, in terms of 

both herd immunity level and the time of achieving its maximum. The rationale for personal and busi- 

ness lockdowns may be found in the avoidance of healthcare system overburdening. However, lockdowns 

do not prevent any virus with droplet transmission (including SARS-CoV-2) from spreading. Therefore, in 

case of a future viral pathogen emergence, lockdown measures efficiency should not be overestimated, as 

it was done almost universally in the world during COVID-19 pandemic. 

© 2020 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Efficiency and necessity of lockdown measures implemented 

n a scale of the whole world, cause much controversy [1-3] . In 

he current paper, we analyse whether total lockdowns are help- 

ul in stopping spread of Coronavirus disease – 2019 (COVID-19) 

nd future similar global diseases, by means of investigating herd 

mmunity formation to Severe acute respiratory syndrome-related 

oronavirus-2, the viral causative agent of COVID-19 disease (SARS- 

oV-2). In the current absence of a vaccine, herd immunity re- 

ains the only way to stabilise human population reaction to the 

ovel viral pathogen. 

It was repeatedly emphasised that creating of so-called herd 

population, block, natural) immunity is important for slowing 

own the rate of COVID-19 spread in population and, actually, for 

topping the pandemic [4-10] . However, as of 25 June 2020, not 

any official investigations of SARS-CoV-2 dissemination in the 

hole ecosystems and populations (e.g. random mass testing, rep- 

esentative sample screening, closed ecosystem studies, etc.) have 
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een performed and reported, that would allow us to estimate 

he level of herd immunity formation. Henrik Jarlov collected the 

ost comprehensive list of all programmes of COVID-19 popula- 

ion mass screening, including RT-PCR tests and immunoglobulin 

ests [11] . 

The evaluation of herd immunity formation may be highly 

mportant in clinical treatment of COVID-19 patients for several 

easons. First, it may help to avoid excessive loads related to 

OVID-19 suspicious cases, on healthcare systems, by differenti- 

ting COVID/non-COVID cases. This knowledge is relevant even in 

eptember 2020 (the time of the final revision of the article), as 

 second COVID-19 wave is not impossible. A threat of healthcare 

ystem overheat has been already reported for a number of coun- 

ries [12-15] . Second, it may give a more realistic picture of COVID- 

9 spread in the population and, therefore, provide more depend- 

ble statistical data on the number of the infected, symptomatic 

nd asymptomatic patients at a given time point. Third, it can be 

sed for elaborating the general rules of identifying and classify- 

ng the patients. And most importantly, herd immunity may be a 

eans of assessing the efficiency of lockdown measures. 

Used as an epidemiological instrument initially, notorious and 

uch talked-about lockdowns unfortunately transformed to the 
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Fig. 1. Two public policies of SARS-CoV-2 containment: full lockdown ( A ) and no- 

lockdown ( B ). The latter represents a “bicycle wheel” where every knot (state) is 

connected with all other knots (states), with intensity coefficients λij , i and j are 

running from 0 to 12: Home {0} – Pharmacy {1} – Grocery store {2} – Walk with an 

animal {3} – Walk anywhere with several people together {4} – Public transport {5} 

– Public gatherings, excluding mass gatherings {6} – Cafés, restaurants {7} – Hospi- 

tals, medical institutions {8} – Offices, working places {9} – Asylums, orphanages, hos- 

pices {10} – Weekend limited gatherings, camps on nature ( e.g. school, university, cor- 

porate etc.) {11} – Educational institutions (schools, universities, training programmes 

etc.) [12}. For simplicity of the figure, full sets of arrows are shown only for knots 1 

and 2. 

p

R

S

c

t

t

t

m

e

(

i

c

l

c

(

p

a

m

s

eans of social control and political compelling/blackmailing in 

any parts of the world. Excepting a very limited number of coun- 

ries, the almost global and universal governmental response to 

OVID-19 pandemic evidently put the world on the verge of the 

rwell’s 1984 scenario. Now, in September 2020, when media and 

any politicians do not stop to speculate about second and con- 

ecutive waves of SARS-CoV-2 pandemic, lockdown measure are 

ooming on the horizon again. In UK, in the small city of Aberdeen 

n Scotland, exceeding the acceptable SARS-CoV-2 infection limits 

efined by the government merely by fifty humans, plunged the 

ity in the full lockdown of indefinite length again. The Brazilian 

opulation vast in size continues to suffer from incessant lock- 

owns. In USA, each state administration regards COVID-19 differ- 

ntly and the country remains severely split in terms of the SARS- 

oV-2 containment strategy. In Russia, all governmental media do 

ot cease to intimidate people by a possibility that soon every- 

ody will be locked again and every citizen will pay for his/her 

elaxed summer rest (basically, normal mode of life without coer- 

ive deprivation of personal freedoms). Is the time not come when 

e should critically evaluate with the help of mathematical models 

acked by experimental epidemiological information collected thus 

ar, to which extent the lockdown measures and strategies should 

e used again, if used at all? 

Currently, a lot of mathematical models of SARS-CoV-2 spread 

ave been elaborated, both theoretical [16,17] and computational, 

any of them already described in Special Issues of Chaos, Soli- 

ons and Fractals journal “Modeling and forecasting of epidemic 

preading: the case of Covid-19 and beyond” [18,19] . By dint of our 

odel, we hope to contribute to our mutual understanding of the 

ockdown measures efficacy. 

. Materials and methods 

.1. Methodology 

We propose a Susceptible–Infected–Recovered (SIR) modified 

ompartmental model. Using epidemiological data as input param- 

ters for the model, we calculate times and levels of herd immu- 

ity formation for different modes of containment (lockdown and 

o-lockdown). Finally, we evaluate the efficiency of lockdown mea- 

ures. 

.2. Open-Source primary epidemiological data 

The statistical data on COVID-19 random testing were used: Di- 

mond Princess cruise ship [20-23] , evacuation flights data in Japan 

24] , Japan [25] , Republic of Korea [26] , Taiwan [27] , Austria [28] ,

ermany [29] , Iceland [30] , Lombardy (Italy) [31] ; Portugal [32] ; 

ussia [33] ; and United Kingdom [34] . 

.3. Privately collected primary epidemiological data 

COVID-19 primary statistical data sets were collected since 2 

arch to 21 April 2020. In May-August 2020, additional data have 

een collected that changed our understanding of SARS-CoV-2 

pread substantially. The Acknowledgement section contain a num- 

er of names of people who assisted in collecting the data and 

xpressed their explicit consent for their contribution to be noted. 

The primary information and its sources are summarised in 

able 1 for the initial period (March-April 2020). 

.4. Modelling the COVID-19 spread in population 

We assume that the dissemination of COVID-19 may be ex- 

lained by a continuous-time Markov process model [35,36] . This 
2 
rocess can be generally described by a Susceptible–Infected–

ecovered (SIR) compartmental model [37,38] . Some authors used 

usceptible–Exposed–Infected–Recovered (SEIR) model for their 

alculations [39-41] . We chose to use a common SIR compartmen- 

al model altered by introducing several significant modifications 

o the corresponding Markov process structure. 

Regarding lockdown measures imposed on citizens, we used 

wo models: a) common; b) Swedish. In the former, full lockdown 

easures were implemented during the surge of COVID-19 dis- 

ase (only Home – Pharmacy – Grocery Store – Walk with an Animal 

e.g. dog) – Hospital possibilities), in the latter no lockdowns were 

n force. Most of countries followed the lockdown way. Very few 

ountries implemented no lockdowns, e.g. Sweden, Iceland, Be- 

arus, Japan, Taiwan, Republic of Korea. The Swedish model is more 

omplex, and the corresponding Markov process includes 13 knots 

in our modelling). The knots (states) of the Markov processes of 

eople relocation in a community, are shown in Fig. 1 . 

Fig. 2 demonstrates our SIR modified compartmental model as 

 continuous-time Markov process modelling the infection trans- 

ission, with the knots (states) corresponding to different possible 

ituations of a human in regard to the disease. 
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Table. 1 

Sources of private and publicly available data sets on COVID-19 statistics in some European countries obtained in time interval 2 March – 21 April 2020. 

Countries (in the 

alphabetical order) Number of venues surveyed 

Total number of 

tests made, 

available for our 

analysis ∗
Percentage of the 

population tested,% 

Number of time 

snapshots 

available ∗ Availability of data 

Official mass 

screening 

procedures taking 

place as of 25 April 

2020 

Medical institutions 

and ambulance 

(hospital and field 

tests) 

Commercial and 

non- commercial 

test labs 

Austria (official) 156,800 1.742 10 Public Yes 

Austria 3 2 26,608 0.296 14 Private 

Denmark 3 4 21,782 0.376 12 Private No 

Finland 2 2 3081 0.056 6 Private No 

Germany (official) 2320,415 2.800 16 Public Yes 

Germany 10 18 224,220 0.271 34 Private 

Iceland (official) 4197 ∗∗ 1.183 1 Public Yes 

Iceland 1 1 10,102 2848 2 Private 

Italy (official) 234,870 ∗∗∗ 0.389 1 Public No 

Italy 3 5 5702 0.009 12 Private 

Norway 4 4 42,147 0.795 16 Private No 

Poland 8 2 4262 0.012 8 Private No 

Portugal (official) 208,314 2.027 15 Public Yes 

Portugal 4 6 48,188 0.469 18 Private 

Russia (official) 2142,600 1.459 22 Public Yes 

Russia 2 1 37,205 0.025 2 Private 

Spain 4 5 9322 0.020 10 Private No 

Sweden 2 3 42,163 0.409 27 Private Yes 

Switzerland 3 6 8014 0.094 12 Private No 

The Netherlands 2 8 87,341 0.501 27 Private No 

United Kingdom 

(official) 

386,044 ∗∗∗∗ 0.579 1 Public No 

United Kingdom 7 12 62,254 0.094 20 Private No 

Total 58 79 > 4500,000 

∗ As of 21 April 2020. We have no information about the total number of COVID-19 tests made on a scale of a whole country, if the information is not disclosed publicly. 
∗∗ As of 21 March 2020. 
∗∗∗ In Lombardy only. 
∗∗∗∗ In-patient (hospital only) PHE statistics, as of 21 April 2020. 

Table. 2 

Estimation of herd immunity formation in Europe (95% confidence interval) during the “first wave” of SARS-CoV-2 according to our SIR modified modelling with the 

privately collected input data on different European countries, for different possible basic reproduction numbers r 0 . 

Mode of containment Full-lockdown No-lockdown 

Basic reproduction number r 0 r 0 = 1.6 r 0 = 5.6 r 0 = 1.6 r 0 = 5.6 

Scenario ∗ a b c a b c a b c a b c 

Total herd immunity 

achievable, per cent of 

population 

3.31 4.78 5.24 3.63 5.17 6.02 4.40 4.65 5.11 4.77 5.56 6.42 

Estimated time of achieving 

maximal rate of herd 

immunity growth, weeks 

7.2 –

5.7; 

6.6 

–16.3 6.9 –

13.3; 

5.8 

–23.6 3.1 –5.7; 

2.7 

–16.3 3.0 –

13.3; 

2.4 

–23.6 

Estimated time of achieving 

95% herd immunity, weeks 

14.0 12.8 11.5 13.2 11.5 10.0 47.3 45.2 42.8 45.0 43.6 40.4 

Negative time values stand for the time before the beginning of the infection process in a given community. 
∗ Scenarios:. 
a world disease peak (“first wave” of SARS-CoV-2) has not yet been passed on 11 March 2020 (announcement of the pandemic by World Health Organisation (WHO));. 
b there are two peaks a and c ; a current situation is their overlapping;. 
c disease peak has been already passed unnoticed before the pandemic was announced by WHO. 
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.5. Distribution and relocation of population in space and time in 

wo different modes of containment 

Let us consider a human who may be in any of the five places

n a full lockdown mode of life. Then the probabilities of his/her 

tay in these five places are p 0 (home), p 1 (pharmacy), p 2 (grocery 

tore), p 3 (street saunter with an animal, most commonly a dog), 

 4 (hospital / any other medical institution, in inpatient / outpa- 

ient modes of treatment). It is obvious that 

4 
 

i =0 

p i ( t ) = 1 (1) 
3 
First, let us write a system of Kolmogorov linear differential Eqs. 

2)-(6) for the movement of a human in Model 2 (in a country 

ith a full lockdown mode). For the considerations of simplicity, 

e assume that a hospitalisation may be made only from his/her 

ome, and intensities are not functions of t : 

d p 0 ( t ) 
dt ( Home ) = χ10 p 1 ( t ) + χ20 p 2 ( t ) + χ30 p 3 ( t ) + χ40 p 4 ( t ) −

( ϕ 01 + ϕ 02 + ϕ 03 + ϕ 04 ) p 0 ( t ) , 

(2) 

d p 1 ( t ) 

dt 
( P harmacy ) = ϕ 01 p 0 ( t ) + χ21 p 2 ( t ) − ( χ10 + ϕ 12 ) p 1 ( t ) , 
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Fig. 2. Schematics of a continuous-time Markov process describing SARS-CoV-2 transmission (SIR modified compartmental model). 
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(3) 

d p 2 ( t ) 

dt 
( Grocery ) = ϕ 02 p 0 ( t ) + ϕ 12 p 1 ( t ) − ( χ20 + χ21 ) p 2 ( t ) , 

(4) 

d p 3 ( t ) 

dt 
( Saunter ) = ϕ 03 p 0 ( t ) + χ30 p 3 ( t ) (5) 

d p 4 ( t ) 

dt 
( Hospital ) = ϕ 04 p 0 ( t ) + χ40 p 4 ( t ) (6) 

For the second model (Swedish), we have fourteen Kolmogorov 

quations. Taking into account that Markov process in the Swedish 

odel is ergodic, in comparison with the full lockdown Markov 

rocess, we receive the following system of Kolmogorov equations: 

d p i ( t ) 

dt 
= 

13 ∑ 

j = 0 

j � = i 

ϕ ji p j ( t ) − p i ( t ) 

13 ∑ 

j = 0 

j � = i 

ϕ i j , i = ( 0 ; 12 ) (7) 

Typical values of λij and μij are taken from the similar models 

f human relocation, as described in the works [42-45] . 

To estimate the number of the immune people and, therefore, 

he level of herd immunity created thus far, we have to observe 

ow Kolmogorov equation systems 2–6 and 7, and the correspond- 

ng master equations behave (how the solutions p i ( t ) change) on 

arying the epidemiologic and demographic parameters. The solu- 

ions, i.e. probability functions p ( t ) are complex functions of t , and
i 

4 
hey have these parameters as variables: 

p i = p i 
(
t , r 0 , c drop. , c sur f . , N imm 

( t ) 
)
, (8) 

here r 0 is basic reproduction number, c drop contagiousness coef- 

cient of droplet transmission, c surf contagiousness coefficient of 

ouching surface transmission, N the total number of humans in 

 community, N imm 

the number of people in the community who 

lready have the immunity to SARS-CoV-2. 

Using coefficients of transmission is a rather new concept. 

n fact, these coefficients represent probabilities of a non- 

mmune person of becoming infected through a direct contact 

ith a person already infected or a contaminated surface: c = 

N in fect ed a f t er contact 

N tot al cont acts 
, and, therefore, 0 ≤ c drop. + c surf. ≤ 1. In a more 

road sense, 0 ≤ c drop. + c surf. ≤ 2, but the value 2 for the sum 

s not achievable even for the most contagious diseases known to 

umanity thus far (e.g. varicella for droplet transmission or Ebola 

aemorrhagic fever for body liquids transmission). 

Basic reproduction number r 0 is estimated differently by dif- 

erent research groups. The difference is tremendous, from 1.6 

36] or 2.6 [46] to 5.6 as a median with 6.7 as the maximal value 

47] and even almost 15 for the virus spread estimations on Di- 

mond Princess cruise ship [20] . In its report of 17 and 24 April 

020, Robert Koch Institute made evaluations of r 0 as low as 0.5–

.6 [29] . Such enormous difference in evaluating basic reproduc- 

ion number may result from the fact that various research groups 

tudied different samplings incomparable with each other in terms 

f closeness and rate of human contacts. We will use r 0 = 1.6 and

.6 as reference points. 

The sum c drop + c surf was initially estimated in 0.3–0.4 range 

nearly 3 or 4 of 10 persons directly contacting an infected individ- 
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al of surfaces with a full virus titre, will be infected by SARS-CoV- 

 virus) [48–50] , where c drop may be 0.1–0.2 [50] . Values of N for

ifferent communities are taken from various demographic sources 

ublicly available over the Internet. h (t) = 

N imm. (t) 
N is required to be 

ssessed in our model. 

.6. The model of the virus transmission 

To perform estimations of N imm 

( t ), an additional Kolmogorov 

quation system should be included in our analysis. Within our SIR 

odified compartmental model, this system of linear differential 

quations describes intensities and directions of flows in the trans- 

ission model ( Fig. 2 ). Analysing the behaviour of Markov process 

hat describes the virus spread, along with the behaviour of sys- 

ems 2–6 and 7 of space-time population distribution, enabled us 

o evaluate the level and time of herd immunity formation in the 

ountries studied. 

A non-infected person may contact with: a) an ambiguous per- 

on (he/she may be either infected or non-infected) (knot 1); b) 

 proven SARS-CoV-2 carrier (knot 2); c) a contaminated surface 

knot 3); d) an ambiguous surface (a virus amount may be present 

r may not) (knot 4). The knots 5–7 correspond to the virus car- 

iers proven by an RT-PCR or RT-LAMP test: asymptomatic OR 

hose in the incubation period (knot 5); mild symptomatic (knot 

) and severe symptomatic with atypical pneumonia clinical pic- 

ure (knot 7). Finally, the outcomes are either decease (knot 8) 

r recovery (knots 9–10). amongst the recovered patients, there 

ay be the contagious ones (knot 9) and completely recovered 

nes without active virions in their bodies, and therefore, with- 

ut any SARS-CoV-2 contagiousness (knot 10). The Markov process 

s non-ergodic, non-stationary. We are interested in the character- 

stics of the final state of this process. Potentially, with relatively 

arge time values, the Markov process described will reach a sta- 

ionary state of the maximal herd immunity formation (one global 

pike of disease) or several quasi-stationary states of local herd im- 

unity plateaus formation (two or more local spikes of disease), 

ith the last plateau being the global maximum of herd immu- 

ity achievable in population. The stationary state of the Markov 

rocess discussed will not change over time any longer; the quasi- 

tationary states will not change over some time. These states cor- 

espond with herd immunity global and local plateaus. We shall 

nd the times and values of these plateaus by finding the inflec- 

ion points of herd immunity dependence on time, that coincide 

ith extremum points of herd immunity first time derivative. 

The system of Kolmogorov equations for this SIR modified dis- 

ase transmission compartmental model is the following (9-19): 
 

 

 

d p 0 ( t ) 
dt 

(
non − in fected 

persons, non − immune 

)
= μ10 p 1 ( t ) + μ20 p 2 ( t ) 

+ μ30 p 3 ( t ) + μ40 p 4 ( t ) − ( λ01 + λ02 + λ03 + λ04 ) p 0 ( t ) , 

(9) 

 

 

 

 

 

d p 1 ( t ) 
dt 

(
non − in fected person 

contacts ambiguous person 

)
= λ01 p 0 ( t ) 

+ μ51 p 5 ( t ) + μ91 p 9 ( t ) + μ10 , 1 p 10 ( t ) 
−( λ15 + λ16 + λ17 + μ10 ) p 1 ( t ) , 

(10) 

 

 

 

 

 

d p 2 ( t ) 
dt 

(
non − in fected person 

contacts in fected person 

)
= λ02 p 0 ( t ) + μ52 p 5 ( t ) 

+ μ62 p 6 ( t ) + μ72 p 7 ( t ) 
−( λ25 + λ26 + λ27 + μ20 ) p 2 ( t ) , 

(11) 

 

 

 

 

 

d p 3 ( t ) 
dt 

(
non − in fected person 

touches contaminated sur face 

)
= λ03 p 0 ( t ) 

+ μ53 p 5 ( t ) + μ63 p 6 ( t ) + μ73 p 7 ( t ) 
−( λ35 + λ36 + λ37 + μ30 ) p 3 ( t ) , 

(12) 
5 
 

 

 

 

 

d p 4 ( t ) 
dt 

(
non − in fected person 

touches ambiguous sur face 

)
= λ04 p 0 ( t ) 

+ μ54 p 5 ( t ) + μ94 p 9 ( t ) + μ10 , 4 p 10 ( t ) −
−( λ45 + λ46 + λ47 + μ40 ) p 4 ( t ) , 

(13) 

 

 

 

 

 

d p 5 ( t ) 

dt 

( 

asymptomatic 

car r ier state 

OR incubation period 

) 

= λ15 p 1 ( t ) + λ25 p 2 ( t ) + λ35 p 3 ( t ) + λ45 p 4 ( t ) 

−( μ51 + μ52 + μ53 + μ54 + λ56 + λ58 + λ59 ) p 5 ( t ) , 

(14) 

 

 

 

d p 6 ( t ) 

dt 

(
mild symptomatic 

car r ier state 

)
= λ16 p 1 ( t ) + λ26 p 2 ( t ) 

+ λ36 p 3 ( t ) + λ46 p 4 ( t ) + λ56 p 5 ( t ) − ( μ62 + μ63 + λ67 + λ68 + λ69 ) p 6 ( t ) , 

(15) 

 

 

 

d p 7 ( t ) 

dt 

(
se v ere symptomatic 

car r ier state 

)
= λ17 p 1 ( t ) + λ27 p 2 ( t ) 

+ λ37 p 3 ( t ) + λ47 p 4 ( t ) + λ67 p 6 ( t ) − ( μ72 + μ73 + μ76 + λ78 + λ79 ) p 7 ( t ) ,

(16) 

d p 8 ( t ) 

dt 

(
deceased 
persons 

)
= λ58 p 5 ( t ) + λ68 p 6 ( t ) + λ78 p 7 ( t ) , (17) 

 

 

 

d p 9 ( t ) 
dt 

(
r ecov er ed, immune, 

contagious 

)
= λ59 p 5 ( t ) + λ69 p 6 ( t ) + λ79 p 7 ( t )

−( λ9 , 10 + λ9 , 1 + λ9 , 4 ) p 9 ( t ) , 

(18) 

d p 10 ( t ) 

dt 

(
compl etel y recov ered, 

immune 

)
= λ9 , 10 p 9 ( t ) − ( λ10 , 1 + λ10 , 4 ) p 9 ( t ) , (19) 

here probability changes (first derivatives) in the left parts of 

he equations are calculated by means of separate probabilities p i 
nd current intensities λij. A separate probability p i stands for a 

escription that in moment t a human being will be in state S i 
one of the described states). A major assumption of the model 

hat oversimplifies it is that a said human cannot be in two states 

imultaneously. Plus signs are for straight direction (from initial 

vents in the disease to further events, i.e. classical progression of 

he infection) (black arrows in Fig. 2 ) and minus signs for back- 

ard events that return a human to previous states (blue arrows 

n Fig. 2 ). The exact structure of possible connections and, there- 

ore, currents, were taken from the book of Karin VanMeter and 

obert Hubert [35] . 

Besides, the condition (1) is met for this system, as 
∑ 

m 

m � = 8 

N m 

= 

, where m is the number of Markov process knots, in our case 11, 

nd we consider that the number of deaths is small. 

Several obvious border conditions and definitions may be fur- 

her explicated, such as 

p 0 (0) = N (0) / N < 1; the inequality assumes that at the initial

oment of time there is a portion of persons that already have the 

mmunity to SARS-CoV-2. 

p 10 ( T ) + p 9 ( T ) = N immune ( T ) / N , where T >> t (in fact, we may

ake T → ∞ for the simplicity), is the final herd immunity level; 
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hile p 10 ( t ) + p 9 ( t ) may be not equal to N immune ( t ) / N for any mo-

ent of time. For any t the intermediary herd immunity level may 

e measured as 

immune ( t ) = 

N 9 ( t ) + N 10 ( t ) 

N 

(20) 

Likewise, p 8 ( T ) = N d ( T ) / N, is total population fatality rate

TPFR). For any t we use 

deseased ( t ) = 

N 8 ( t ) 

N 

(21) 

nstead. It is population fatality rate (PFR) that shows the percent- 

ge of the deceased in the total population. 

p 5 ( t ) = p 5 ,incubation ( t ) + p 5 ,asymptomatic ( t ) f orany t; (22) 

 IR = p 5 ( t ) + p 6 ( t ) + p 7 ( t ) = 

N in fected 

N 

, (23) 

or any t , is population infection rate (PIR); 

p 5 ,asymptomatic ( T ) = N asymptomatic ( T ) /N; (24) 

nd 

p 8 ( t ) 

p 5 ( t ) + p 6 ( t ) + p 7 ( t ) + p 8 ( t ) 
= 

N deceased ( t ) 

N in fected ( t ) 
(25) 

s the infection fatality rate (IFR). 

We composed the system (9–19) just for one person. Solving 

he system numerically for each person for each state in (2–6) and 

 with a subsequent averaging, and observing how the solutions 

ould change on varying epidemiological parameters, is not a best 

lgorithm. In a community there are N people, and this number 

s constant (the number of deaths is small in regard to the to- 

al population size). Therefore, we have a multinomial distribution. 

e may assume that the time of a contact with a carrier is negli-

ibly small in comparison with other times (e.g. the time of self- 

solated life or a stay in a hospital). Then, according to Sanov theo- 

em about large deviations for a multinomial distribution [51] fur- 

her explicated by Borovkov [52] , we receive the equation: 

N! ∏ 10 

m ∈ M, 

m = 0 

( N m 

( t ) ! ) 
p 

N 0 ( t ) 
0 ( t ) · . . . · p 

N 10 ( t ) 
10 ( t ) 

= exp 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

−N ·
10 ∑ 

m ∈ M, 

m = 0 

νm 

( t ) ln 

νm 

( t ) 

p m 

( t ) 
+ R 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

, (26) 

here ( m = 1 ; 10) ∩ (m ∈ M ) ; M = { 0 ; 5 ; 6 ; 7 ; 8 ; 9 ; 10 } , i.e. m is 

n index from set M , running through the chosen integer val- 

es from 0 to 10. It means that we take into account only non-

mmune non-infected people; all types of carriers (asymptomatic, 

ild symptomatic and severe symptomatic), immune contagious 

ecovered persons and fully recovered and immune persons. Fur- 

her, νm 

= 

N m 
N , and R is a compensating term: 

 ≤ 7 

2 

( ln N + 1 ) . (27) 

Indeed, (26) can be obtained for our case in such a way. In- 

ection process development may be described as a continuous 

hrenfests’ chain [44,53,54] . Let ξ ( t ) stand for these Ehrenfest 

hain within our virus spread system. νm 

and νm + 1 are parts (pro- 

ortions) of Markov chains ηi that in time moment t are in states 

 and m + 1, i.e. they can be defined as Ehrenfest frequencies: 

m 

( t ) = 1 − ξ ( t ) 
(28a) 
N 

6 
nd 

m +1 ( t ) = 1 − ξ ( t ) 

N 

(28b) 

Then, as explained by A. Gasnikov in details in his work [54] , let

s express the probability of these frequencies being probabilities 

 1 and p 2 (later we may transfer similarly to all our probabilities 

 m 

): 

 ( v m 

( t ) = p 1 , v m +1 ( t ) = p 2 ) = 

= 

N! 
( N p 1 ) ! ( N p 2 ) ! 

P ( ηm 

( t ) = m ) 
N p 1 

P ( ηm 

( t ) = m + 1 ) 
N p 2 (29) 

Indeed, Ehrenfest chain ξ ( t ) with N + 1 knots may be expressed 

ia N independent or dependant Markov chains ηi with only one 

order condition P ( η0 (t) = 0 ) : (in conditional designation) 

( t ) 
�= 

m ∑ 

i =1 

ηi ( t ) . (30) 

Hence we have 

 ( ξ ( t ) = 0 ) = 

m ∏ 

i =1 

P ( ηi ( t ) = 0 ) (31) 

Switching in (29) to the limit at t → ∞ (we assume that the 

irus spread may be as prolonged as we prefer and not restricted 

y time), we receive 

lim 

 → ∞ 

P ( v m 

( t ) = p 1 , v m +1 ( t ) = p 2 ) = 

N! 

( N p 1 ) ! ( N p 2 ) ! 

1 

2 

N 
(32) 

After that, we proceed to the limit at N → ∞ (the human pop- 

lation size where SARS-CoV-2 is spreading may be as large as we 

refer). Using Stirling formula for factorial approximation 

 ! = n 

n e −n 
√ 

2 πn 

(
1 + O 

(
1 

n 

))
, (33) 

e obtain (with compensating O( 1 n ) with an approximate equality 

nd simplifying it) 

lim 

 → ∞ 

P ( v m 

( t ) = p 1 , v m +1 ( t ) = p 2 ) ≈ 1 √ 

N 

2 

−N √ 

2 π p 1 p 2 

1 

p N p 1 
1 

p N p 2 
2 

(34) 

It is obvious that the right part may be re-written using log- 

rithmic functions of probabilities ψ( p i ) = – p 1 ln p 1 – p 2 ln p 2 and

xponent, and then we have: 

lim 

 → ∞ 

P ( v m 

( t ) = p 1 , v m +1 ( t ) = p 2 ) ≈ 1 √ 

N 

2 

−N √ 

2 π p 1 p 2 

exp ( −N ( − − p 1 ln p 1 − − p 2 ln p 2 ) ) (35) 

We investigate our system of SARS-CoV-2 dissemination for sta- 

ility – precisely what we do with studying the behaviour of its 

yapunov functions. Here the stability may be defined as Sanov 

51] , Borovkov [52] and Gasnikov [54] define it, viz. a stable state 

f virus spread system ( p 1 , p 2, …, p m 

) in whose little neighbour-

ood stationary measure (probability of frequencies νm 

receiv- 

ng values m , m + 1, m + 2, …) is being concentrated, indepen-

ently of t . It is simpler to consider stationary states with t → ∞ ,

ut non-stationary states may be obtained as easily. Maximising 

 ( v m 

(t) = p 1 , v m +1 (t) = p 2 ) on condition that p 1 + p 2 = 1, or ulti- 

ately 
m ∑ 

i =1 

p i = 1 , is the same as minimising ψ( p i ). Differentiating 

( p i ) by t , we receive 

d p i ( t ) 

dt 
= 

m ∑ 

j = 1 , 

j � = i 

λ j p j − λi p i (36) 
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It is not difficult to see that we received exactly our system of 

qs. (9 - 19 ) with Lyapunov functions ψ( p i ), Q.E.D. The same proce-

ure may be carried out first for considering limit at N → ∞ and 

nly after that at t → ∞ . In such a case, the completely similar re-

ult may be received using the theorem formulated by Thomas G. 

urtz [53] . 

Now, having assured ourselves that system (36) is in fact sys- 

em (9–19), we can analyse the behaviour of our multinomial dis- 

ribution (26) without solving system (9–19) for each state in (2–

) and 7. We can vary r 0, c drop + c surf and compare the out- 

ome. A proprietary C# algorithm was written for estimating lev- 

ls and times of herd immunity formation in the countries studies. 

e observed the stability of the multinomial distribution of virus 

pread in the population (26) by analysing the behaviour of Lya- 

unov functions of master equation corresponding to the process 

9–19) in the non-negative orthant R 

n + (all probabilities and herd 

mmunity levels are non-negative real numbers from 0 to 1; times 

re non-negative real numbers). Finding the attractors (if any) by 

eans of analysing Lyapunov functions behaviour in the orthant 

 

n + would allow us to determine the most probable values of the 

rojected herd immunity and the times of its formation. 

.7. Software packages 

Microsoft Visual Studio 2010, OriginLab OriginPro 8.1 and PTC 

athcad 6.0 were used. 

.8. Time of preparing the paper 

The paper was prepared in its initial state in April 2020 and 

as re-considered several times in May, June and August with seri- 

us corrections of the model proposed. The final revision was com- 

leted by 24 September 2020. 

. Results and discussion 

.1. Change of population infection rate over time 

In addition to the mean population infection rate (PIR) level, 

ts change over time is of importance. In Fig. 3 , the time depen-

ence of instantaneous PIR is shown for United Kingdom, Russia, 

he Netherlands (lockdowns) and Sweden (no lockdown). Instanta- 

eous PIR is calculated as P I R inst. = 

�N new pos. cases 

�N new tests made 
, i.e. the ratio of 

aily increase of positive cases to daily increase of the tests per- 

ormed. 

We observed mixed dependency on time here. By 21 April 

020, symbate dynamics of instantaneous PIR and daily increment 

f positive cases is observed only for Russia. For UK, there is a 

aximum of instantaneous PIR that does not coincide with the 

aximum of confirmed positive cases. For the Netherlands, the ap- 

roximation is very close to a constant line. For Sweden, we may 

ocalise a decay, low plateau and growth. On the whole, for the 

our countries concerned, instantaneous PIR as a function of time 

oes not correlate with confirmed cases dynamics. 

Asymbate dynamics of instantaneous PIR and confirmed posi- 

ive cases at the initial stages of the pandemic may be generally 

xplained by three factors. First, the samplings in at least one case 

confirmed positive cases measurements or mass screening pro- 

edures) may be not fully representative on a scale of a popula- 

ion. Second, the change in new tests performed on a daily basis 

ay grow with different speed than the infection dissemination, 

.g. faster constant growth of number of tests made than the dis- 

ase spread may result in an instantaneous PIR decay on growing 

onfirmed cases dynamics. Third, several spikes of disease may be 

resent of which we are currently detecting only one. Along with 

elatively low values of PIRs, it enables us to suggest that three 
7 
cenarios for European countries studied are possible, regarding 

eal (not observed) disease spread extremums: 

a disease peak has not yet been passed on 21 April 2020; 

b there may be several disease peaks, and different European 

countries may be situated in different time places regarding the 

peaks (e.g. between them); a current situation may be an over- 

lapping of different peaks; 

c disease peak has been already passed unnoticed by the world 

community, by the moment of the pandemic announcement 

(early March 2020). 

Taking into account these three scenarios, creating herd immu- 

ity may become an even more important factor for population 

daptation to COVID-19. It was so in April and continues to be in 

ugust 2020. 

.2. Herd immunity formation under lockdowns and without 

ockdowns 

To estimate times and values of maximums of herd immu- 

ity formation in the countries studied, PC numerical solving the 

olmogorov equation systems described in Materials and Meth- 

ds section with modelling the Lyapunov functions behaviour for 

he corresponding master equations (finding global attractors) has 

een performed for the three scenarios described above, for full- 

ockdown and no-lockdown modes of SARS-CoV-2 containment. 

On maximising herd immunity first derivative 

dh ( t ) 

dt 
= 

d N immune ( t ) 

Ndt 
, (37) 

e receive the inflection points for herd immunity curves. The 

chematics for Sweden is shown in Fig. 4 . For the interval 0–120 

ays from Day Zero, confirmed positive cases dynamics (official 

HO data) may be approximated by an extreme function 

 con f irmed = N 0 + A e −e 
t−t max 

w − t−t max 
w +1 , (38) 

nd for Sweden the coefficients are: 

N 0 = 60.30 persons; 

A = 488.79 persons; 

t max = 30.07 days; 

w = 15.63 days. 

Different peak functions may be used for confirmed cases 

ynamics approximation [53-56] . The extreme function provided 

bove was chosen of the list of the most widely used functions by 

riterion of achieving the best approximation results (the lowest 

dim. 
2 and highest R adj. 

2 ), where the parameters were calculated 

s follows: 

2 
dim 

= 

χ2 

n − 1 

, (39) 

2 = 

∑ 

i 

( x i − C i ) 
2 

σ 2 
, (40) 

2 = 

m ∑ 

q =1 

( x q − x ) 
2 

m 

, (41) 

m is the numbers of points; n – 1 is the number of degrees of 

reedom; x i are experimental epidemiological data; C i are approxi- 

ated values; and σ 2 is variance. 

The adjusted coefficient of determination 

 

2 
adj = 1 −

(
1 − R 

2 
)
( 1 − n ) 

n − k − 1 

, (42) 

here R is Pearson correlation coefficient between experimental 

ata and the approximation and k is the number of explanatory 
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Fig. 3. Dynamics of instantaneous PIR for UK, Russia, the Netherlands and Sweden for late April 2020. Except Russia, all instantaneous PIRs are calculated on the basis of 

privately collected data. For Russia, official statistics is used, since no sufficient snapshot amount is present in the private data set. Grey columns represent daily change of 

confirmed positive cases. Blue dots are instantaneous PIRs calculated. Blue polylines are parts of linear piecewise approximations. 

Fig. 4. Calculation of herd immunity formation for Sweden. Day Zero is 15 March 

2020. The inflection point of herd immunity is the maximum of its first derivative. 
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erms (descriptors). Of course, another approximation could be 

sed instead of the proposed one. 
8 
Using private data on Sweden PIR, taking into account its no- 

ockdown mode of containment, r 0 = 5.6 and maximising herd 

mmunity first time derivative by Lyapunov function analysis in 

he positive quadrant, give us a double exponential function 

dh (t) 
dt 

green curve in Fig. 4 ): 

dh ( t ) 

dt 
= D e 

(
−e ( 

t−t z 
q ) 

p 

+ ( t−t z 
v ) 

u 

)
, (43) 

The coefficients: 

D = 3417.46 days –1 

t z = 62 days 

p = 1.6 

q = 150.0 days 

u = 1 

v = 50.50 days 

Finally, integrating dh (t) 
dt 

over t , we receive a sigmoidal func- 

ion of h ( t ) (black curve in the inset in Fig. 4 ), with its maximum

alue of approximately 540,0 0 0 people (based on the epidemiolog- 

cal data collected for Sweden in June 2020). That means the over- 

ll herd immunity rate. Taking into consideration the population 

f Sweden (currently 10,319,600 people), it gave 20.80 per cent of 

opulation in April and 5.20 per cent in June 2020. Thus, we see a 

ramatic correction of the model to be discussed below. 
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Fig. 5. Epidemiological data on population infection rate (PIR) collected for various countries in different months since the beginning of SARS-CoV-2 pandemic in Europe. 

Whiskers show estimations of false positive and false negative test results for antibody testing programmes and false negative estimations for RT-PCR tests. Confidence 

interval (CI) is 95%. Full containment until late May 2020: United Kingdom (A). Full lockdown until mid-June 2020: Russia (B). Partial lockdown for April 2020 and full for 

May 2020: the Netherlands (C). No lockdowns ever: Sweden (D), Iceland (E) and Belarus (F). 
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.3. Iteration-based correcting and refining the model 

SARS-CoV-2 is an evolving process that change our understand- 

ng on a constant basis. Obviously, SARS-CoV-2 has not yet reached 

imits of its dissemination. In our truly global world without any 

xed cultural boundaries that might help to slow down tourism 

nd migrant currents, spreading a new virus will continue till a 

table co-existence with homo sapiens population has been at- 

ained [57-61] . Recently, Oleg Donskikh [62] and Alexandre Gnes 

63] demonstrated the influence of cultural implications on epi- 

emiological situation. As Wolfgang Sassin evidently showed in his 

odelling human evolutionary processes, in the global open world 
9 
ith population more than 1.2–1.5 billion people, even a local vi- 

al pathogen outbreak with 100–150 humans infected may hit the 

hole world in two-three months and the process of its dissem- 

nation will not be stopped by any restrictive means until a new 

volutionary niche with co-existence of homo and the virus has 

een created [59,60,64,65] . Regarding SARS-CoV-2, this niche is not 

reated yet. New data on SARS-CoV-2 situation are appearing in- 

essantly that help to improve the model by the possibility to in- 

ut the most novel and relevant epidemiological information. 

Four major iterations of model correction/refinement have been 

ade (mid-March prediction of April, mid-April prediction of May, 

id-May prediction of June, and mid-June prediction of further 
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Fig. 6. Modelling herd immunity, real epidemiological data and statistical treatment of the model for different types of environments: closed communities (A, B), semi- 

open premises (C, D) and open spaces (E, F). Pearson correlations coefficients between simulated curve and epidemiological data approximation: 0.95882 ( p ≤ 0.00183) (A); 

0.96290 ( p ≤ 0.0 0 072); and 0.93733 ( p ≤ 0.01274). In right panes (B, D and F), scatter matrices (blue lines) and 95% correlation CI ellipses (red) are shown. In the insets, 

coherence vs frequency of signal plots are provided. Coherence between simulated curve and real data is calculated as C ab ( f ) = 

| P ab ( f ) | 2 
P aa ( f ) P bb ( f ) 

, where P ab the cross power spectral 

density, and P aa and P bb are power spectral densities of simulated curve and experimental data means. Estimations of Poisson noise of the model: 5.12% (A); 6.68% (C); and 

14.47% (E). 

10 
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Fig. 7. Model precision statistical estimations at every iteration (see text for de- 

tailed description). 

Fig. 8. The most recent modelling herd immunity formation in lockdown and no- 

lockdown modes of SARS-CoV-2 containment (August 2020 iteration). 
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ARS-CoV-2 spread). It is very important that the newest epidemi- 

logical information on the pandemic changed the model dra- 

atically since March 2020, when Europe had entered the first 

ARS-CoV-2 wave. Additionally, different type of information has 

merged since that time, viz. antibody testing programmes have 

een launched in many European countries, that are auxiliary 

ources of our knowledge about the virus spread. 

Fig. 5 demonstrates that now, much later after SARS-CoV-2 

nitial outbreak in China, PIR diminished significantly, reaching a 

ower plateau independently of the country or mode of contain- 

ent (full lockdown / partial lockdown / no lockdown) concerned. 

f six states the data on which are presented in Fig. 5 , UK and Rus-

ia chose full lockdown mode, the Netherlands partial lockdown 

hile Sweden, Iceland and Belarus no lockdown at all. Surprisingly, 

ince May 2020, a clear trend of PIR decrease was observed every- 

here. In most of countries, PIR can be estimated now as some 

–4 per cent, in Sweden and Belarus 6–7 per cent, whereas initial 

arch and April numbers were substantially higher. It may be pos- 

ibly explained by improving representativeness of the virus (RT- 

CR) and antibody testing programmes. At the beginning of the 

andemic, only people who were seriously ill with COVID-19 got 

nto the focus of the tests, whether official, government-sponsored 

r commercial. This fact unfolds a likely origin of highly overstated 

pidemiological figures for UK and Belgium in Match-April (PIR of 

early 35–40 per cent). Later milder symptomatic patients were in- 

luded in the tests too. But only since May and especially in sum- 
11 
er 2020, a broad and much more representative cohort of Euro- 

ean population commenced to be tested [66-70] . Using the May 

nd June data as input parameters for the model enabled us to 

ugment its quality and predicting force. June iteration based on 

une European epidemiological situation resulted in the herd im- 

unity level prediction for August approximately four times less 

han the April prediction. 

.4. Statistical treatment 

Different predicting force of the model has been observed 

or different types of ambience: closed communities, semi-open 

remises and open space ( Fig. 6 ). In Fig. 6 , the June modelling iter-

tion is provided that was performed at the time when the paper 

as returned for revision. It was based on the data collected by us 

uring surveillance procedures in UK, Russia, the Netherlands and 

weden. As modelling error estimations show ( χdim. 
2 and R adj. 

2 ), 

he model allowed to receive the best coincidence of predicted 

erd immunity with the experimental data for semi-open premises 

multi-storey living houses, condominiums, fenced living districts, 

arge offices, trading floors, warehouse premises, etc.), where low- 

st χdim. 
2 and highest R adj. 

2 were achieved within apartments and 

mall houses) gave less exact results ( Fig. 6 , panels C and D). A

iphasic structure of the virus spread predicted by the model was 

n a satisfactory agreement with the experimental epidemiologi- 

al data. Modelling spreading SARS-CoV-2 in closed communities 

family environments within apartments and small houses) gave 

ess exact results ( Fig. 6 , panels A and B). Predicting the virus dis-

emination in open spaces was the least precise ( Fig. 6 , panels A 

nd B). 

In Fig. 7 , the comparison of the model precision is given for the 

our main iterations of correcting the model. Precision coefficient 

s calculated as the mean of precision factors for each point i of n :

 rec = 

1 

n 

n ∑ 

i =1 

| C mod i − C real i | 
| C x i | , (44) 

here C x i is the largest by module of { C mod i; C real i }; C mod i is a

odelled value in point i ; and C real i is an observed value in this 

oint. In Fig. 7 , one can see that the model changed essentially 

ince the beginning of the pandemic. 

In March 2020, PIR = 19.19% was taken as the maximum of 

erd immunity that may be achieved without any lockdown and 

estrictive measures. In August 2020, it is already becoming clear 

hat value is the maximum only for closed communities ( Fig. 6 , 

anel A). The fact is not very surprising, as such places with in- 

erlinked ventilation as Diamond Princess cruise ship may be con- 

idered a completely closed ecosystem [20-23,71-75] . An opener 

mbience leads to much less PIRs ( Fig. 6 , panels C and E). 

Current improving the model does not mean, however, that we 

chieved a desired level of precision. A possible surge of SARS-CoV- 

 infected humans’ figures in autumn 2020 and winter 2020–2021 

ay introduce further significant corrections. 

. Conclusions 

The analysis of both epidemiological data and simulation re- 

ults indicates that the initially anticipated herd immunity level for 

ARS-CoV-2 of nearly two thirds of a population or even higher, 

s hardly ever achievable. The real herd immunity for the current 

irus is three-six times as less. Therefore, COVID-19 contagious- 

ess is not so high as it was initially thought in January-March 

020. Almost universal and worldwide implementation of lock- 

own measures and complete switching off the economies, as it 

as been done in Germany, France, Russia or UK, may be reck- 

ess. Despite some governmental and administrative assumptions 
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hat only strict quarantine might lead to diminishing SARS-CoV-2 

pread, our study does not confirm it. Neither modelling, nor PIR 

tatistical data on the European countries collected and studied by 

s so far, may corroborate that full-lockdown modes are any better 

han the Swedish no-lockdown mode in terms of the virus dissem- 

nation ( Fig. 8 , Table 2). Fig. 8 demonstrates the June prediction it-

ration with 95% and 99% CI. According to the model, only at the 

ery beginning of the epidemic, the lockdown mode may demon- 

trate better results in containment of the virus than no-lockdown 

ne (pink line is lower than blue line). After 7–8 weeks of the virus 

pread, both modes start to give similar outcomes. This simula- 

ion is corroborated sufficiently by the experimental data obtained. 

ountries with full lockdowns and no lockdowns reached very sim- 

lar results in PIR and herd immunity, viz. 3–5 per cent predicted 

y the model after the June iteration ( Fig. 8 ) and 3–7 per cent of

he total population observed in reality ( Fig. 5 ). The basic repro- 

uction numbers are also similar [75,76] . 

Why so? First, during lockdowns people were still allowed to 

o outside, e.g. to grocery stores and saunter with pets. Meet- 

ngs that caused reciprocal infection in elevators, on streets and in 

lose premises, were imminent. Second, ventilation system in large 

ulti-storey buildings disseminated the virus further. Third, public 

ransport was still on, where cross-infection possibility was high. 

Was any sense in lockdowns at all? We think yes. They helped 

o avoid healthcare system collapse in many countries. However, 

heir near and distant harm to health of different groups of pop- 

lation, economies, business and world supply chains is still to be 

ssessed in the future. 

We suppose that a real hazard of COVID-19 lockdowns is as- 

ociated with the common governmental belief backed by several 

orld Health Organisation’s announcements that it is the lock- 

owns that saved humanity from excessive mortality connected 

ith COVID-19. Our research proves that it is a very dangerous 

isbelief with far-reaching consequences. It is SARS-CoV-2 rela- 

ively low contagiousness and case fatality rate that led to avoid- 

nce of millions of deaths, not lockdowns. We agree with the Edi- 

ors that the health consequences of the pandemic are devastating 

77] . However, non-evidence-based reliance of governments just on 

otal lockdown as a universal measure of the pandemic contain- 

ent may be much more devastating in the future, in case of pos- 

ible consecutive waves of SARS-CoV-2 or any other viral pathogen. 

overnments should not use simplest lockdown ways of “contain- 

ent” the virus with an obvious threat to the democracy and hu- 

an rights in the whole world instead of elaborating complex and 

ffective epidemiological and social strategies. 

Why may the belief in lockdowns as the only means of pan- 

emic containment be harmful? In our truly global world with 

lobal tourism and transport routes, an emergence and possible 

mmediate worldwide spread of a new viral pathogen, much more 

angerous than SARS-CoV-2, may be only a matter of time. In case 

his virus may have a mortality of Ebola, contagiousness of vari- 

ella and worldwide spread, governmental and administrative re- 

iance just on lockdowns may cost hundred millions of human 

ives. 

In the end, lockdowns may be ineffective because they do not 

nd potentially cannot stop a respiratory virus spread [78,79] . In- 

tead, effective healthcare and public policy containment measures 

ust be depended upon, such as strictest epidemiological surveil- 

ance in airports, international railways and bus stations; manag- 

ng tourist routes at the very beginning of early epidemic warn- 

ngs; applying antiviral cleansing and sanitation of publicly acces- 

ible territories, especially in urban environment; habitual wearing 

ndividual protective units in places of mass congestion of people 

nd during seasonal respiratory disease surges (e.g., according to 

apanese positive experience); and preparedness of medical care 
12 
ystems for global pandemics and other “Black Swan” emergencies. 

ll these measures can be much more effective than lockdowns. 
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