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Abstract

Biosensors are valuable and versatile tools in synthetic biology that are used to modulate gene expression in response to a
wide range of stimuli. Ligand responsive transcription factors are a class of biosensor that can be used to couple intracellu-
lar metabolite concentration with gene expression to enable dynamic regulation and high-throughput metabolite producer
screening. We have established the Saccharomyces cerevisiae WAR1 transcriptional regulator and PDR12 promoter as an or-
ganic acid biosensor that can be used to detect varying levels of para-hydroxybenzoic acid (PHBA) production from the shiki-
mate pathway and output green fluorescent protein (GFP) expression in response. The dynamic range of GFP expression in
response to PHBA was dramatically increased by engineering positive-feedback expression of the WAR1 transcriptional reg-
ulator from its target PDR12 promoter. In addition, the noise in GFP expression at the population-level was controlled by
normalising GFP fluorescence to constitutively expressed mCherry fluorescence within each cell. These biosensor modifica-
tions increased the high-throughput screening efficiency of yeast cells engineered to produce PHBA by 5,000-fold, enabling
accurate fluorescence activated cell sorting isolation of producer cells that were mixed at a ratio of 1 in 10,000 with non-
producers. Positive-feedback, ratiometric transcriptional regulator expression is likely applicable to many other
transcription-factor/promoter pairs used in synthetic biology and metabolic engineering for both dynamic regulation and
high-throughput screening applications.
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1. Introduction

Advances in synthetic biology and metabolic engineering are
beginning to enable alternative routes for chemical, fuel, and
pharmaceutical manufacturing. Microorganisms can now be
engineered to convert renewable agricultural resources into a
wide array of metabolites that can serve as either replacements
or alternatives to existing industrial products. However, there
are significant challenges involved in engineering microbial
cells to produce desired products at commercially viable titres,

rates, and yields. Traditional approaches involve balancing the
expression levels of metabolic pathway enzymes leading to the
desired product, the elimination of enzymes that compete for
carbon flux, and the balancing of cellular redox and energy
states (Nielsen and Keasling 2016). These biological components
often interact synergistically to control complex metabolic regu-
lation, and their rearrangement/optimisation therefore entails a
combinatorial explosion of complex traits that require building
and testing for performance. Although in silico modelling
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approaches have proven invaluable for understanding metabo-
lism and improving metabolite production (Wiechert 2002; Patil
et al. 2004), metabolic engineering ‘design principles’ are yet to
be fully elucidated due to our incomplete knowledge of living
systems. Subsequently, it can take many iterations of the classi-
cal design-build-test cycle to achieve engineering objectives,
some of which may even be impossible to meet using available
biological knowledge.

An elegant way to overcome the challenges associated with
engineering in biology is to apply a selective pressure to a genet-
ically diverse population so that cells with the desired pheno-
type can be isolated. Using selective pressure in this way means
that biological knowledge and the limited capacity to design-
build-test no longer limit the solutions available to biological
engineering problems. While methods such as adaptive labora-
tory evolution can be used to generate populations with supe-
rior tolerance to growth inhibiting chemicals (Goodarzi et al.
2010; Kildegaard et al. 2014; Almario et al. 2013; Brennan et al.
2015), altered substrate specificity (Wisselink et al. 2009; Garcia
Sanchez et al. 2010; Quan et al. 2012; Zhou et al. 2012), and in-
creased temperature tolerance (Riehle et al. 2003; Caspeta et al.
2014), this approach cannot be readily applied to the selection
of high metabolite yields because phenotypes such as metabolic
productivity are usually not naturally coupled to cell survival.
One of the most promising ways to make this connection and
select for cells with higher metabolic productivity is to use a bio-
sensor that detects the intracellular concentration of a metabo-
lite of interest and outputs a survival function in response
(Williams et al. 2016). The output is typically green fluorescent
protein (GFP) expression so that cells that are more productive
within an evolving or mutated population can be isolated using
fluorescence activated cell sorting (FACS) (Williams et al. 2016).
The advantage of using FACS is that thousands of cells can be
screened per second, as opposed to per week or month using
traditional analytical methods for metabolites.

Biosensors are gaining prominence both for the dynamic
control of metabolic pathways in response to metabolites, and
as conduits between metabolite productivity and cell survival
for high-throughput screening (Liu et al. 2015; Zhang et al. 2015;
Williams et al. 2016). Allosterically regulated transcription fac-
tors are abundant in nature, with a large number characterised
in terms of their activating ligands and target promoters (Tropel
et al. 2004; Ramos et al. 2005; Gallegos et al. 1997; Taylor et al.
2016). These proteins have therefore typically been the first op-
tion for those seeking metabolite biosensors for metabolic engi-
neering applications and high-throughput screening (Taylor
et al. 2016; Williams et al. 2016). However, many naturally oc-
curring transcription factors have activation dynamics that are
not ideal for high-throughput metabolite-producer cell screen-
ing. Features such as high basal expression levels, low dynamic
range of expression, and stochastic variation in gene expression
across a population (noise) can all reduce the effective screening
throughput by making it difficult to distinguish ‘producer’ cells
from non-producers within a genetically diverse population.

With the aim of establishing a generic synthetic biology ap-
proach to select for enhanced metabolite producers we have de-
veloped an amplified ligand-responsive transcription-factor
biosensor with a built-in ratiometric noise suppressor to en-
hance the efficacy of high-throughput screening. As a proof of
concept, we focused on transcriptional regulators that respond
to organic acids, as there is great interest in producing these
compounds biologically (Chen and Nielsen 2016). Organic acids
are used to make a variety of products such as plastics, solvents,
polymers and chemical ‘building blocks’, animal feed, nylons,

flavours and fragrances, as well as food and beverage ingredi-
ents (Sauer et al. 2008). Most organic acids are currently pro-
duced from petrochemical feed-stocks, and there is therefore
significant interest in implementing renewable and more envi-
ronmentally friendly production processes using microbial
hosts (Sauer et al. 2008). The yeast Saccharomyces cerevisiae is
a well characterised eukaryotic model organism, industrial
work-horse, and synthetic biology ‘chassis’ cell (Pretorius 2016).
S. cerevisiae is also preferred industrial producer of organic acids
due to its ability to grow at a low pH, enabling low purification
costs and reducing microbial contamination from non-sterile
substrates (Sauer et al 2008; Abbott et al. 2009). Consequently,
there have been intensive efforts in metabolic engineering of
yeast for the production of valuable organic acids such as lactic
(Ishida et al. 2006; Baek et al. 2015), succinic (Raab et al. 2010;
Agren et al. 2013; Ito et al. 2014), malic (Zelle et al. 2008), 3-
hydroxypropionic (Borodina et al. 2015; Kildegaard et al. 2015),
4-hydroxybenzoic and para-aminobenzoic (Krömer et al. 2012;
Averesch and Krömer 2014; Williams et al. 2015), itaconic
(Blazeck et al. 2014), and muconic (Curran et al. 2013) acids.

2. Materials and methods
2.1 Growth media

All S. cerevisiae strains were grown in synthetic dropout (SD) me-
dia containing Yeast Nitrogen Base Without Amino Acids mix
(Sigma-Aldrich Y0626) supplemented with 10 g/l glucose, and
amino acids at 100 mg/l to complement auxotrophies as appro-
priate. pH was adjusted to either 6.5 or 3.5 as indicated in indi-
vidual experiments. Escherichia coli DH5a strains were grown in
LB medium with ampicillin.

2.2. Growth conditions

For all dose–response GFP measurement and cell-sorting experi-
ments, culturing methods and pre-culture methods were as fol-
lows. Glycerol stocked strains were inoculated into 5 ml of SD
medium in a 50-ml sterile Falcon tube and grown for 8–10 hours
at 30 �C, 200 rpm in a shaking incubator. These cultures were
then used to inoculate 10 ml of SD medium at an OD600nm of
0.02–0.04 and grown overnight for approximately 18 hours. The
next morning, exponentially growing cultures (OD600nm 0.1–1.5)
were used to inoculate experimental cultures in triplicate, at an
OD600nm of 0.1. Populations were grown in 24-well micro-plates
in a total volume of 1.5 ml containing any organic acids involved
in promoter screening or dose–response experiments at the in-
dicated concentrations. Weak acid response experiments were
carried out in SD medium at pH 3.5 such that acid molecules
outside of cells would freely diffuse inside, potentially being
available for promoter/GFP activation (Holyoak et al. 1999). Cell
sorting and GFP measurement experiments with para-hydroxy-
benzoic acid (PHBA) producer populations were carried out in
SD medium at pH 6.5 such that any organic acids produced and
secreted by individual cells would not enter other cells (Holyoak
et al. 1999) and interfere with the GFP readout from their own
PHBA production capacity (or lack of). For cell sorting experi-
ments, pre-cultured producer and non-producer populations
were inoculated at exactly OD600nm 0.05 in separate tubes prior
to being mixed together at the indicated ratios within the same
50-ml Falcon tube. To reach the dilutions ranging from 1:10 to
1:105 producers to non-producers, serial 10-fold dilutions were
made starting from the 1:10 population. Both multi-well plate
and Falcon-tube cultures were grown at 30 �C with 200 rpm
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shaking in an InFors incubator for 3 hours prior to GFP
measurement.

2.3 Flow cytometry

A BD Influx flow cytometer was used for all fluorescent protein
measurements and cell sorting. For GFP measurement a
200 mW 488-nm laser was used for excitation with emission fil-
ters at 540 6 30 nm. A GFP negative control strain (415.C, Table 3)
was used to measure auto-fluorescence in parallel to GFP posi-
tive strains, and the 540 6 30 nm PMT voltage was set such that
the mean auto-fluorescence value was either 2 or 4, as indicated
in the supplementary data (fluorescence of no-GFP control
strain 415.C, Table 3). Mean GFP values from experimental pop-
ulations were divided by auto-fluorescence, and all conditions
were measured in triplicate cultures, with mean and SDs re-
ported. Mixed producer/non-producer populations were sorted
according to GFP or GFP:mCherry fluorescence whereby gates
that excluded any cells below a GFP fluorescence level that oc-
curred in a yeast population containing the pPDR12-GFP or
pPDR12-GFP-pPDA1-mCherry biosensor (measured in parallel),
but not containing a production pathway (strains GFP.415,þFB.
GFP.415,þFB.GFP.mCherry.415, Table 3). Alternatively, in the
case of the GFP-only sorting experiment (Fig. 2d), a gate encom-
passing the top 3.4% of the mixed population was used for sort-
ing. mCherry fluorescence was measured simultaneously to
GFP fluorescence in individual cells using the 488-nm laser. A
692/40-emission filter was used to measure mCherry fluores-
cence with PMT gain set to 75 and the 540/30 PMT gain set to 35.
These gain settings were imposed with the goal of enhancing
mCherry signal while reducing the affect of GFP emission leak-
age into the mCherry channel. Likewise the 692/40-emission fil-
ter was used in place of the 610/20 filter (closer to the mCherry
emission optima) in order to reduce GFP leakage into the
mCherry channel. mCherry expression was verified by compar-
ing the mCherry.415 strain 692/40 values to those of the 415.C
control strain. Overlay histograms of GFP and GFP:mCherry dis-
tributions were made using GraphPad Prism 7 software. 10,000
events were recorded and FCS files were converted to csv prior
to being imported into GraphPad Prism, where GFP fluorescence
values were grouped into 100 arbitrary units (au) bins, and
GFP:mCherry values into 0.05 au bins. Fluorescence values/
ratios were plotted on the x-axes with event numbers on the
y-axes.

2.4 Strain and plasmid construction

Primers, plasmids, and strains used in this study are shown in
Tables 1, 2, and 3, respectively. Strains were constructed by
transforming plasmids into the relevant yeast strain using the
lithium acetate method (Gietz et al. 2007) and selecting for
growth on appropriate auxotrophic dropout agar plates. All in
silico cloning, Gibson assembly, and primer design was carried
out using Geneious Pro software (Kearse et al. 2012), version
9.1.5. E. coli DH5a was used for cloning using standard tech-
niques (Sambrook and Russell 2001) unless otherwise men-
tioned. For the construction of pRS415 biosensor plasmids,
PDR12 (primers 1/2), YGP1 (primers 3/4), and TPO2 (primers 5/6)
promoter regions were amplified from S. cerevisiae BY4741 DNA
and Gibson Assembled (Gibson et al. 2009) 50 of the yEGFP-ADH1t
sequence amplified from the p413-TR-SSRE-GFP plasmid (Chen
and Weiss 2005) (primers 7/8, 9/10, 11/12 for amplification of
yEGFP-ADH1t and assembly with pPDR12, pYGP1, and pTPO2 re-
spectively). For pPDR12-yEGFP assembly the pRS415 plasmid was

linearized via PCR amplification with primers pRS-F and pRS-R,
while for pYGP1-yEGFP and pTPO2-yEGFP, pRS415 was linearized
via digestion with SmaI and Eco53KI enzymes respectively. The
high copy-number pPDR12-yEGFP-pRS425 plasmid was made
using the same approach as for pPDR12-yEGFP-pRS415, except
with pRS425.

The native WAR1 promoter was replaced with the DNA bind-
ing target of the WAR1p transcriptional regulator (PDR12 pro-
moter) to create a positive feedback loop using CRISPR-Cas9-
mediated (Clustered Regularly Interspersed Short Palindromic
Repeat) targeting and homologous recombination. The CRISPR
guide RNA expression cassette and Streptococcus pyogenes Cas9
gene from the work reported by DiCarlo et al. (2013) were first
combined on the same high copy number plasmid with the HIS3
marker (pRS423). The guide RNA expression cassette comprising
the SNR52 promoter, CAN1.Y targeting guide RNA, structural
crRNA, and CYC1 terminator from the p426-gRNA.CAN1.Y plas-
mid (DiCarlo et al. 2013) were PCR amplified (primers 13/14) and
Gibson assembled into PCR linearised pRS423 (primers 15/16) to
create the ‘gRNA-423’ plasmid. The TEF1 promoter, Cas9 gene,
and CYC1 terminator from pTEF1-Cas9-pRS414 (DiCarlo et al.
2013) were PCR amplified with primers 17/18 to create 40-bp ho-
mologous overlaps to the SmaI digested gRNA-423 plasmid, and
the two were Gibson Assembled to make Cas9-gRNA-423. This
plasmid still contained the guide RNA sequence designed to tar-
get the CAN1.Y locus from the original CRISPR study (DiCarlo
et al. 2013). To generate a WAR1 promoter-targeting guide RNA
for CRISPR-mediated knock-in of the PDR12 promoter, the entire
Cas9-gRNA-423 plasmid was PCR amplified using primers that
bind either side of the existing CAN1.Y guide RNA sequence.
These primers (19/20) contained 20 nt 50 extensions that encode
a new CRISPR guide RNA specific for the WAR1 promoter region.
The new CRISPR guide RNA encoding extensions on the forward
and reverse primers for the Cas9-gRNA-423 plasmid were also
100% homologous to one another so that the linearized PCR
product could be circularised to create Cas9-pWAR1-crRNA-423
using Gibson Assembly (Gibson et al. 2009) or Yeast Assembly
(Gibson et al. 2008; Shao et al. 2009). In this case, Yeast
Assembly was used where PCR linearized and DpnI-treated plas-
mid (to remove template DNA) was co-transformed with the
PDR12 promoter DNA. The PDR12 promoter was PCR amplified
from S. cerevisiae BY4741 genomic DNA using primers (21/22)
with 50 extensions that encode 60 bp of homology with the
WAR1 promoter region such that the 221 bp 50 of the WAR1 start
codon would be replaced with the 780 bp PDR12 promoter.
CRISPR-mediated promoter replacement was achieved by co-
transforming approximately 200 ng of Cas9-pWAR1-crRNA-423
and 5 lg of PDR12 promoter PCR product. Cells were plated on
SD –His medium to select for the CRISPR plasmid and screened
using primers that anneal outside of the WAR1 promoter region
(23/24). Only 3 out of 28 colonies screened had the WAR1 pro-
moter replaced with the PDR12 promoter using this method.

The PHBA production pathway comprised a feedback-resis-
tant version (Q166K) (Hartmann et al. 2003; Fukuda et al. 1992)
of the 3-deoxy-D-arabino-heptulosonate-7-phosphate (DAHP)
synthase enzyme (ARO4 gene) and a chorismate pyruvate lyase
enzyme encoded by a codon optimised version of the E. coli UBiC
gene, which was previously shown to function in S. cerevisiae us-
ing a synthetic quorum sensing circuit (Williams et al. 2013,
2015). Here, UBiC and ARO4 were expressed constitutively using
the TEF1 promoter, from the pRS416 plasmid. A previously de-
scribed plasmid (pTEF1-UBiC-CYC1t-pTEF1-ARO4-CYC1t-pRS406)
(Williams et al. 2016) was digested with SalI and NotI to release
the UBiC-ARO4 expression cassette, which was gel purified prior
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to cloning into SalI/NotI digested pRS416 to create pTEF1-UBiC-
CYC1t-pTEF1-ARO4-CYC1t-pRS416 (named UA-416). A pRS416
plasmid containing only the pTEF1-UBiC-CYCt expression cas-
sette (U-416) was created by digesting this cassette from the
UA-416 plasmid using SalI/EcoRI enzymes and cloning the gel
purified product into pRS416. To facilitate easy identification of
sorted-cells that contain the PHBA production genes, the G418
antibiotic resistance marker (KanMX) was PCR amplified from
pUG6 DNA using primer pair 25/26 and Gibson assembled onto
the Eco53KI linearised UA-416 plasmid to make UA-KanMX-416.

A ratiometric biosensor was made by expressing a red fluo-
rescent protein (mCherry) from the constitutive PDA1 promoter
(Peng et al. 2015) on the same pRS415 plasmid that the pPDR12-
yEGFP biosensor is encoded on. The PDA1 promoter and CYC1
terminator were PCR amplified from BY4741 genomic DNA us-
ing primer pairs 27/28 and 31/32, while the mCherry open read-
ing frame was synthesised by IDT as a gBlock and PCR amplified
using primer pair 29/30 for Gibson assembly with pPDA1 and
CYC1t into SmaI linearised pPDR12-GFP-415 plasmid to make
pPDR12-GFP-mCherry-415. The same assembly reaction was car-
ried out with empty, SmaI linearised pRS415 vector to make
mCherry-415.

2.5 PCR-mediated identification of producers

Cells with GFP:mCherry fluorescence values deemed to indi-
cate the presence of the UBiC and ARO4Q166K genes were sorted
directly onto SD minus leucine and uracil agar plates. After 3–
4 days DNA was extracted from single colonies by resuspend-
ing them in 50 ll of MilliQ water with 16 units of zymolyase
enzyme (Zymo Research catalogue number E1005), incubating
at 37 �C for 30–60 minutes then at 95 �C for 10 minutes. Two
microlitres of crude DNA extract was used as template for PCR
using primers 33/34 that anneal to the TEF1 promoter and
CYC1 terminator of the UBiC gene. Touch-down PCR (Korbie
and Mattick 2008) was used with the annealing temperature
decreasing from 65 to 50 �C at 1 �C per cycle, then staying
constant at 50 �C for an additional 20 cycles. Denaturation at
95 �C for 30 seconds and extension at 72 �C for 1 minute 20 sec-
onds was used for each cycle. GoTaq 2x master mix (Promega)
was used with a total reaction volume of 20 ll in 96-well
plates. Known non-producer and producer colonies were
used as negative and positive controls, respectively. All PCR
products were visualised on 1% agarose gels stained
with SYBR safe (LifeTechnologies) and ran at 100 V for
30 minutes.

Table 1. Primers used in this study.

Primer number/name 50 to 30 sequence

1/pPDR12F CGAGGTCGACGGTATCGATCTAAACCAAAGATGGATTGTTTACCA
2/pPDR12R ACCTTTAGACATTTTTTTATTAATAAGAACAATAACA
3/pYGP1F ATCGAATTCCTGCAGCCCAGCGTGCTATTTTTTAAAAAGGGC
4/pYGP1R CCTTTAGACATTTTCTATTACTGTATTACTTAACTGACGA
5/pTPO2F GCCGCCACCGCGGTGGAGCCTATGCAAAAACCCTTCCCC
6/pTPO2R CCTTTAGACATATTTGTTTTGTGTATTATTTTTGTGA
7/pPDR12-yEGFPF ATTAATAAAAAAATGTCTAAAGGTGAAGAATTATTCACTGG
8/pPDR12-yEGFPR GGAATTCGATATCAAGCTTAATATTACCCTGTTATCCCTAGCGG
9/pYGP1-yEGFPF AGTAATAGAAAATGTCTAAAGGTGAAGAATTATTCACTGG
10/pYGP1-yEGFPR AGAACTAGTGGATCCCCCATATTACCCTGTTATCCCTAGCGG
11/pTPO2-yEGFPF ACAAAACAAATATGTCTAAAGGTGAAGAATTATTCACTGG
12/pTPO2-yEGFPR AGGGAACAAAAGCTGGAGATATTACCCTGTTATCCCTAGCGG
13/crRNAF CGAGGTCGACGGTATCGAGCTTCTTTGAAAAGATAATGT
14/crRNAR GGAATTCGATATCAAGCTTAGGCCGCAAATTAAAGCCTTC
15/pRSF TAAGCTTGATATCGAATTCC
16/pRSR TCGATACCGTCGACCTCG
17/Cas9F ATCGAATTCCTGCAGCCCCATAGCTTCAAAATGTTTCTACTCCT
18/Cas9R AGAACTAGTGGATCCCCCGGCCGCAAATTAAAGCCTTC
19/pWAR1-crRNAF TAGTGTGTATTGACTGTGATGTTTTAGAGCTAGAAATAGCAAGTTA
20/pWAR1-crRNAR ATCACAGTCAATACACACTAGATCATTTATCTTTCACTGCG
21/pPDR12F TTACAAGTTCGTGCATATATAGAAAGAATTCTGTTGTTGTAATTGTCATAACTATTGAGCTCTAAACCAA

AGATGGATTGTTTACCA
22/pPDR12R ATTATCATTATTGATTTCTTTCCCGACGGCAACGCCAGTTATTGCAATCTGCGTGTCCATTTTTTTATTAA

TAAGAACAATAACA
23/pWAR1checkF AACCTGCTGAACCAACAAAACC
24/pWAR1checkR AACTTTTTGGTCGGTCTTTG
25/4HB-KanMX F GCCGCCACCGCGGTGGAGTAGGTCTAGAGATCTGTTTAGCTTGC
26/4HB-KanMX R AGGGAACAAAAGCTGGAGATTAAGGGTTCTCGAGAGCTCG
27/pPDA1 F GTATTCTGATAAATCTAAAGAGA
28/pPDA1 R TGGCACAAATGTGGTTTCCT
29/mCherry F ATGGTTTCTAAGGGTGAAGAAGACA
30/mCherry R TTACTTGTACAATTCGTCCATACCAC
31/CYC1t F AAGGCCCCTTTTCCTTTGTC
32/CYC1t R CGACGATGAGAGTGTAAACTGC
33/UBiC-pTEF1 F TATTATGTCGACCTCGAGGCACACACCATAG
34/UBiC-CYC1t R TATTATGCGGCCGCACGATGAGAGTGTAAACTGC
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3. Results and discussion
3.1 Identification and testing of organic acid responsive
promoters

A literature search identified two native yeast promoters that
respond to organic acid bio-products. The first operates via the
War1p transcriptional regulator protein, which up-regulates
transcription of the membrane acid efflux protein encoding

PDR12 gene (Piper et al. 1998). Although the exact mechanism of
War1p activation is incompletely understood, it appears to in-
volve a combination of direct interaction between intracellular
dissociated acid molecules and War1p, and phosphorylation of
the protein via an unknown mechanism (Kren et al. 2003;
Schüller et al. 2004; Gregori et al. 2008). The second weak acid
response module results in the up-regulation of expression of
the membrane protein encoding TPO2 and YGP1 genes from the

Table 2. Plasmids used in this study.

Name Details Origin

pRS415 Yeast centromeric plasmid, LEU2 marker Euroscarf 52

pRS416 Yeast centromeric plasmid, URA3 marker Euroscarf (Sikorski and Hieter 1989)
pRS425 Yeast 2 micron plasmid, LEU2 marker Euroscarf (Christianson et al. 1992)
pUG6 Contains G418 resistance marker KanMX Euroscarf (Güldener et al. 1996)
TR-SSRE yEGFP containing plasmid Chen and Weiss (2005)
pPDR12-GFP-415 pPDR12-yEGFP-ADH1t-pRS415 This study
pYGP1-GFP-415 pYGP1-yEGFP-ADH1t-pRS415 This study
pTPO2-GFP-415 pTPO2-yEGFP-ADH1t-pRS415 This study
pPDR12-GFP-425 pPDR12-yEGFP-ADH1t-pRS425 This study
U-416 pTEF1-UBiC-CYC1t-pRS416 This study
UA-416 pTEF1-ARO4-CYC1t-pTEF1-UBiC-CYC1t-pRS416 This study
UA-KanMX-416 pTEF1-ARO4-CYC1t-pTEF1-UBiC-CYC1t-KanMX-pRS416 This study
pPDR12-GFP- mCherry-415 pPDR12-yEGFP-ADH1t-pPDA1-mCherry-CYC1t-pRS415 This study
mCherry-415 pPDA1-mCherry-CYC1t-pRS415 This study

Table 3. Yeast strains used in this study.

Name Genotype, plasmids Notes Origin

BY4741 MATa his3D1 leu2D0 met15D0 ura3D0 Haploid auxotrophic laboratory strain,
mating type ‘a’

Euroscarf

BY4742 MATa his3D1 leu2D0 lys2D0 ura3D0 Haploid auxotrophic laboratory strain,
mating type ‘a’

Euroscarf

PDR12 BY4742, pPDR12-GFP-415 PDR12 promoter regulated GFP expression This study
YGP1 BY4742, pYGP1-GFP-415 YGP1 promoter regulated GFP expression This study
TPO2 BY4742, pTPO2-GFP-415 TPO2 promoter regulated GFP expression This study
415.C BY4741, pRS415, pRS416 No GFP control strain This study
425.C BY4741, pRS425, pRS416 No GFP control strain This study
GFP.415 BY4741, pPDR12-GFP-415, pRS416 Centromeric plasmid biosensor strain This study
GFP.415.U BY4741, pPDR12-GFP-415, U-416 Centromeric plasmid biosensor strain

with UBiC expression
This study

GFP.415.UA BY4741, pPDR12-GFP-415, UA-416 Centromeric plasmid biosensor strain
with UBiC and ARO4 expression

This study

GFP.415.UA.KanMX BY4741, pPDR12-GFP-415, UA-KanMX-416 Centromeric plasmid biosensor strain
with UBiC, ARO4, and KanMX expression

This study

GFP.425 BY4741, pPDR12-GFP-425, pRS416 Episomal plasmid biosensor strain This study
þFB.GFP.415 BY4741, pWAR1::pPDR12, pPDR12-GFP-415,

pRS416
Positive feedback, centromeric plasmid

biosensor strain
This study

þFB.GFP.415.U BY4741, pWAR1::pPDR12, pPDR12-GFP-415,
U-416

Positive feedback, centromeric plasmid
biosensor strain with UBiC expression

This study

þFB.GFP.415.UA BY4741, pWAR1::pPDR12, pPDR12-GFP-415,
UA-416

Positive feedback, centromeric plasmid
biosensor strain with UBiC and ARO4
expression

This study

þFB.GFP.mCherry.415 BY4741, pWAR1::pPDR12, pPDR12-GFP-
pPDA1-mCherry-415, pRS416

Positive feedback, ratiometric centromeric
plasmid biosensor strain

This study

þFB.GFP.mCherry.415.
UA

BY4741, pWAR1::pPDR12, pPDR12-GFP-
pPDA1-mCherry-415, UA-416

Positive feedback, ratiometric centromeric
plasmid biosensor strain with UBiC and
ARO4 expression

This study
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Haa1p transcriptional regulator as part of a rapid response to
acid stress (Fernandes et al. 2005). We therefore tested the ca-
pacity of the PDR12, YGP1, and TPO2 promoters to regulate the
expression of GFP in response to two industrially relevant or-
ganic acids, PHBA and propionic acid (PA) (Fig. 1a). The YGP1
promoter showed no difference in GFP expression levels when
treated with either PHBA or PA, while the TPO2 promoter dis-
played slightly up-regulated GFP expression in the presence of
PA. In contrast, the PDR12 promoter up-regulated GFP expres-
sion approximately 3.4- and 6.2-fold above the level of the con-
trol in the presence of PHBA and PA, respectively. This positive
response indicated that the War1p-mediated PDR12 promoter
(Fig. 1b) has potential to act as a biosensor of exogenously added
weak organic acids such as PHBA and PA.

3.2 Discrimination of intracellular production levels and
genetic variants

Critical characteristics for a metabolite-reporter are to: detect
metabolites originating from within the cell; distinguish be-
tween a wide range of different levels of cellular production
from within a genetically diverse population of rapidly growing
cells; and facilitate rapid selection by high-throughput screen-
ing methods. The pPDR12-GFP biosensor was tested against
these performance criteria using PHBA production from the shi-
kimate pathway in yeast (Fig. 2a). PHBA is an aromatic molecule
used in liquid crystal polymers, with applications in the elec-
tronics and fibre industries and an estimated market of $150
million (USD) per annum (Krömer et al. 2012). It has previously
been established that expression of an E. coli chorismate pyru-
vate lyase (UBiC gene), and feedback resistant S. cerevisiae DAHP
synthase results in PHBA production in yeast (Williams et al.
2015, 2016). As a proof-of-concept, the UBiC and ARO4Q166K genes
were expressed from strong-constitutive TEF1 promoters in a
pPDR12-GFP biosensor-containing strain (Fig. 2a). Expression of
only the UBiC gene resulted in a slight but significant (P¼ 0.009)
increase in average GFP expression (Fig. 2b) from 28 to 35 arbi-
trary units (au). This is highly consistent with previous results
that demonstrated a small increase in PHBA production from
yeast cultures expressing UBiC (26–46 lM) (Williams et al. 2015).

The ARO4Q166K enzyme resists feedback inhibition by down-
stream metabolites in the shikimate pathway (Fukuda et al.
1992; Hartmann et al. 2003), and over-expression of feedback re-
sistant versions of this enzyme is known to result in an approxi-
mately 4- to 5-fold increase in shikimate pathway flux (Luttik
et al. 2008), and a 6-fold increase in PHBA production (from 46 to
297 lM)35. In concordance with these results, we observed a sig-
nificant (P¼ 1.7 � 10�6) 3-fold increase in pPDR12-GFP expression
from cells expressing both UBiC and ARO4Q166K genes (Fig. 2b).
These results indicate that War1p-mediated pPDR12-GFP ex-
pression can be modulated by intracellular PHBA levels and is
sensitive to variations in metabolic flux though a production
pathway.

The second performance objective for a metabolite produc-
tion biosensor is the capacity to enable selection of productive
cells from a mixed population of producers and non-producers
(Fig. 2c). The pPDR12-GFP biosensor was tested for this charac-
teristic using a simple experiment where cells that contain the
genes required for PHBA production (UBiC and ARO4Q166K) also
express the geneticin resistance gene KanMX. This strain
(GFP.415.UA.KanMX, Table 3) was mixed in a 1:1 ratio with an
equivalent biosensor containing strain without PHBA produc-
tion genes (GFP.415, Table 3). After 3 hours of growth cells
within the top 3.4% of GFP fluorescence values were sorted from
the population directly onto YPD agar plates. This gate was
drawn to visually encompass the top fraction of the population
where more events from the producer-only population were
likely to occur. To determine if sorted cells actually contain the
PHBA production genes, these colonies were replica-plated onto
YPD agar containing geneticin (G418), which only producer cells
have the capacity to grow on. The majority of sorted colonies
(23/35) tested using this method were found to have the G418
resistance and were therefore correctly isolated from the mixed
producer/non-producer population based on GFP fluorescence.
Conversely, when cells in the bottom 10% of GFP fluorescence
values were sorted, as expected none were found to be pro-
ducers (0/35 able to grow on YPD-G418 plates). This experiment
was carried out in growth medium at a pH of 6.5 so that any
PHBA molecules (pKa¼ 4.54) excreted by producer cells exist in
their dissociated form outside of the cell, and are unable to
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Figure 1. PHBA and PA responsive promoter screening. (a) Three different promoters that were previously reported to be up-regulated in the presence of organic acids

(PDR12, YGP1, and TPO1) were used to control GFP expression in cells treated with water (control), 50 mM PHBA, or 50 mM PA. Mean GFP values from triplicate cultures

are shown with error bars representing 6 1 SD. Flow cytometry was used to quantify GFP expression after 3 hours of cultivation. (b) The weak acid response system in

yeast maintains neutral cytosolic pH via the exportation of organic acid anions and hydrogen ions form the cell. Organic acids can freely diffuse into the cell in their

non-dissociated form (R-COOH) when the pH is below their pKa. Once inside the cell they encounter a neutral pH and exist in a dissociated anionic form (R-COO-)

(Holyoak et al. 1999). The hydrogen ions accumulated after acid dissociation are exported from the cell via the Pma1p membrane protein, while acid anions bind to the

War1p transcription factor which up-regulates expression of the PDR12 gene encoding a membrane transporter. Pdr12p then transports organic acid anions outside of

the cell (Piper et al. 1998).
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diffuse into other cells that are non-producers (Holyoak et al.
1999), thereby preventing GFP expression that would result in
the sorting of false positives. These results validate the use of
the War1p-mediated pPDR12-GFP system as a biosensor for
War1p interacting organic acid metabolites produced from engi-
neered metabolic pathways in yeast.

An interesting feature of the pPDR12-GFP biosensor popula-
tions was the high noise level of the non-producer control
strain, as assessed by flow cytometry (Fig. 2d). This strain was
cultured without PHBA production pathway genes, and without
the addition of PHBA to the growth medium, yet 49% of the cells
had the same high level of GFP expression seen in the producer
population (Fig. 2d). Furthermore there were two sub-
populations, with most cells (51%) residing in a low-GFP state
that is equivalent to yeast auto-fluorescence. When biosensor-
containing cells also had UBiC and ARO4Q166K genes for PHBA
production the majority of cells (85%) existed in the high-GFP
state (Fig. 2d). By only sorting cells in the top 3.4% of fluores-
cence levels, it was possible to isolate producers based on GFP
expression with 66% accuracy (23/35 colonies able to grow on
YPD-G418 plates). This relatively low level of sorting accuracy

probably arose because the gate used to isolate producers over-
lapped significantly with the non-producer population. A
greater separation of producer and non-producer fluorescence
levels would enable the use of a gate that excluded all GFP fluo-
rescence levels observed in the non-producer population. With
these strains this is not possible (Fig. 2d–e), making the system
impractical for further high-throughput screening applications.
Ideally, a much higher separation of producer-GFP expression
from non-producer-GFP expression would exist so that pro-
ducers could be more easily isolated. This led us to consider
ways of improving the dynamic range of GFP expression, and re-
ducing the noise levels of the pPDR12-GFP biosensor.

3.3 Fine-tuning sensor dynamic range using positive
feedback

An ideal biosensor has a large dynamic-range of output levels
(e.g. GFP expression), low non-induced expression, and is effec-
tive at differentiating between a wide-range of input concentra-
tions. The pPDR12-GFP biosensor was tested for dose-dependent
response to externally applied PHBA with pPDR12-GFP
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Figure 2. Detection of intracellular PHBA and shikimate pathway flux variants. (a) The expression of chorismate pyruvate lyase and 3-deoxy-D-arabino-heptulosonate-

7-phosphate synthase (UBiC and ARO4 genes) from strong TEF1 promoters in yeast enables the production of PHBA (Williams et al. 2016). The pPDR12-GFP biosensor

was tested for responsiveness to intracellular PHBA production via co-expression in a PHBA producing strain. (b) The GFP fluorescence of pPDR12-GFP biosensor con-

taining strains increases with increasing PHBA production. Mean GFP values from triplicate cultures are shown with error bars representing 6 1 SD. (c) As a proof of

principle, equal amounts of biosensor containing PHBA producers and non-producers were mixed in the same culture and cells were sorted onto agar plates according

to GFP fluorescence. (d and e) Flow cytometry density plots are shown with GFP fluorescence on the y-axis and forward scatter on the x-axis. (d) A non-PHBA producing

strain (GFP.415, Table 3). (e) The fluorescence level of a strain with TEF1 promoter-mediated expression of UBiC, ARO4Q166K, and KanMX (strain GFP.415.UA.KanMX,

Table 3) for PHBA production.
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expression from low- or high-copy vectors (pRS415 or pRS425)
(Fig. 3a). In each case, there was a dose-dependent increase in
GFP expression, with a 2.1-fold dynamic range from the high-
copy vector and a 2.9-fold dynamic range with the low-copy
vector, and a response range between 10 and 75 mM PHBA.
Increasing GFP copy-number via expression from the pRS425
vector had little effect on these parameters and served primar-
ily to increase the uninduced GFP expression level (Fig. 3a). The
fold-change observed in this native system was not ideal for use
as a high-throughput screening biosensor, we therefore sought
to implement genetic modifications in the yeast weak acid re-
sponse module that would increase the dynamic range and sen-
sitivity of the biosensor output.

Positive feedback loops are commonly used synthetic biol-
ogy devices that can reduce non-specific expression while in-
creasing dynamic range and sensitivity (Ingolia et al. 2007;
Williams et al. 2013). In order to implement a positive feedback
loop in the weak acid response system in yeast, we replaced the
native promoter that regulates the expression of the War1p
transcription factor with its target PDR12 promoter (Fig. 3b) us-
ing CRISPR-Cas9-mediated homologous recombination (see
Methods section for details). With this re-configuration the
War1p transcription factor should in theory only be expressed
at low-levels from ‘leaky’ non-induced PDR12 promoter expres-
sion in a cell without weak acid production/exposure. Upon re-
sponse to weak acid molecules, the amount of War1p available

for GFP expression induction from the PDR12 promoter should
sharply increase as War1p starts to induce its own expression
as part of a positive-feedback loop (Fig. 3b). When PHBA and PA
dose–response experiments (Fig. 3c and d) were carried out on
cells with positive feedback War1p expression, there was a sig-
nificant increase in the dynamic range of GFP expression. The
dynamic range increased from to 2.9- to 4.2-fold in the presence
of PHBA and from 3.6- to 10-fold with PA (Fig. 3c and d). The
basal non-induced GFP-expression levels were also reduced by
between 7 and 19% due to positive-feedback War1p expression,
as expected from the positive-feedback model (zero acid GFP
values not shown in Fig. 3a–d due to the log scale on the x-axis).

In theory, positive feedback expression of War1p results in a
lower basal-concentration of GFP in the absence of inducer, and
a higher maximum expression-level upon induction, resulting
in a higher dynamic range. While our findings are consistent
with this model, it is also possible for positive-feedback loops to
alter the timing and rate of gene expression (Ingolia et al. 2007;
Williams et al. 2013). Therefore, another possible explanation
for our observations could be that the dynamic ranges of the na-
tive and positive feedback War1p expression systems are actu-
ally the same, but that the positive-feedback system is simply
induced faster. We therefore tested the pPDR12-GFP expression
levels from both systems after PA induction over 7 hours (Fig. 4).
Although the initial rate of increase in GFP expression was
much higher in the positive-feedback strain (0 to 2.5 hours,
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Figure 3. Tuning biosensor output using positive feedback. (a) PHBA dose response curves for strains with pPDR12-GFP expression form low- or high-copy vectors

(pRS415 or pRS425). (b) Circuit configuration of a positive feedback biosensor. The native WAR1 promoter was replaced with the PDR12 promoter such that the organic

acid anion responsive War1p transcription factor regulates its own expression as part of a positive feedback loop, in addition to pPDR12-GFP expression. pPDR12-GFP ex-

pression levels in strains with the native WAR1 promoter or positive-feedback pPDR12-WAR1 expression in response to PHBA (c) or propionic acid (d). Mean GFP values

and SDs from triplicate cultures are shown.
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Fig. 4), a constant difference of �130 au was reached after
2.5 hours and the high-GFP state of the positive-feedback sys-
tem was not attained by the native one within the time-frame
of this experiment. These observations further demonstrate the
utility of the positive feedback system for reducing basal ex-
pression levels and increasing dynamic range, and validate the
use of the 3-hour sampling point that we employed for other ex-
periments in this study.

3.4 Controlling noise using a ratiometric biosensor

High noise-levels in gene expression across a population are a
universal feature of biological systems (Elowitz et al. 2002), and
a constant bane to synthetic biologists. Gene expression noise
can be attributed to extrinsic factors such as differences in cell
size and cycle, substrate uptake rates and metabolic fluxes, as
well as variations in the concentrations of other biomolecules
that affect a cell’s capacity to express genes such as; plasmid
copy number, transcription factors, RNA polymerase, ribo-
somes, and ATP (Elowitz et al. 2002). Although variations in
plasmid copy-number are known to contribute significantly to
noise levels (Zhang et al. 2016), we chose to use the low-copy
yeast vector pRS415 for biosensor expression instead of geno-
mic integration to facilitate rapid prototyping of different bio-
sensors. Even with genomic integration of reporter systems
such as GFP, there are still significant levels of noise due to sto-
chastic variations in the concentrations of other biomolecules
between individual cells in a population (Elowitz et al. 2002). In
the context of biosensor-mediated cell sorting, noisiness in
gene expression can mean that the throughput of screening is
greatly reduced. Although a responsive population may have a
much higher average GFP level, there can be significant overlap
between ligand-responsive and control populations.
Populations can be gated such that only cells with GFP levels
higher than a non-productive control population are sorted, but
if there is too much noise then the number of cells that are
available for selection is dramatically reduced. Mitigating the ef-
fects of highly variable gene expression is therefore of critical
importance to biosensor-mediated high-throughput screening.
One potential way to achieve this is to ‘normalise’ the level of
biosensor output (GFP) to another constitutively expressed

fluorescent protein. Because the second fluorescent protein is
constitutively regulated, its expression level should serve as a
proxy for aspects of cellular physiology that contribute to gene
expression noise. In theory, cells can then be selected based on
the ratio of biosensor-mediated GFP expression to constitutive
fluorescent protein expression within a single cell.

In order to reduce extrinsic noise in biosensor output and in-
crease screening throughput, we converted our positive-
feedback biosensor into a ratiometric sensor. This was achieved
by expressing a red fluorescent protein (mCherry) from the
weak-constitutive PDA1 promoter (Peng e al. 2015) alongside the
weak-acid responsive pPDR12-GFP biosensor on the same plas-
mid (pPDR12-GFP- mCherry-415, Table 2), in the same strain
(þFB.GFP.mCherry.415, Table 3) (Fig. 5a). By plotting mCherry
fluorescence on the x-axis and GFP fluorescence on the y-axis,
the ratio of GFP to mCherry in individual cells can be measured
using flow-cytometry (Fig. 5b). In theory, the level of mCherry
reflects a cell’s general capacity for gene expression, and en-
ables the inclusion of low GFP expressing, but organic acid re-
sponding/producing cells in high-throughput screening. The
fact that there is a positive linear relationship between mCherry
fluorescence and GFP fluorescence (Fig. 5b) supports the idea
that a constitutively expressed fluorescent protein can be used
as a kind of ‘internal standard’ for a cell’s gene expression ca-
pacity. When a ratiometric biosensor strain was treated with
and without a saturating concentration of PA (1.5 mM) and ana-
lysed using only GFP fluorescence, there was a large overlap be-
tween the groups with approximately 34% of the cells in the
treated population within the range of GFP fluorescence values
observed in the non-treated population (Fig. 5c). When the
same comparison was made using the ratio of GFP to mCherry
within each cell, the overlap between the two populations was
approximately 1% (Fig. 5d). This demonstrated the efficiency of
the ratiometric approach for controlling noise in the biosensor
population. The same trend was observed with PHBA treatment,
although there was a less pronounced effect (Figure S1 in the
Supplementary Data). This is consistent with the previously ob-
served weaker biosensor induction using PHBA relative to PA
(Fig. 3c and d).

The concept of using ratiometric fluorescence normalisation
to increase the signal to noise ratios of sensors has existed for
some time (Demchenko et al. 2010) and has most commonly
been exploited in the form of Forster Resonance Energy
Transfer (FRET) systems where a different emission spectrum
results from close fluorophore proximity. FRET systems have
previously been used as in vivo metabolite biosensors (Michener
et al. 2012), but are yet to be used for high-throughput screening
of producer-cells. Similarly, ratiometric fluorescent protein nor-
malisation was recently employed by Zhang et al (2016) to im-
prove the signal-to-noise ratio of an in vivo NADPþ/NADPH
reporter with great success. However, the ratiometric approach
was not used for high-throughput metabolite producer screen-
ing, and as far as we are aware, ratiometric biosensor expres-
sion has not previously been applied to high-throughput
metabolite-producer screening. Given the efficiency of ratio-
metric fluorescent protein normalisation at reducing the signal
to noise ratio of biosensor output, we sought to explore how
this mode of biosensor expression affects the efficiency of high-
throughput screening.

The decrease in overlap that we observed between treated
and non-treated biosensor populations (Fig. 5c and d) should
also result in increased high-throughput screening power, as a
greater proportion of a given population is available for selec-
tion using gates that exclude control population fluorescence
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values. The producer-screening efficiency of the positive-
feedback-ratiometric biosensor was therefore tested by at-
tempting to sort producer cells mixed with non-producers at a
variety of ratios. The success of fluorescence based PHBA-
producer sorting was determined using PCR with a forward pri-
mer specific to the TEF1 promoter and a reverse primer specific
to the CYC1 terminator region of the UBiC gene expression cas-
sette, on DNA extracted from single colonies arising from sorted
cells on agar plates.

Mixed populations with producer to non-producer ratios
varying from 1:1 through to 1:1�105 were used to test the limits
of our biosensor’s sorting accuracy. When pure producer and
non-producer populations from the initial non-positive-
feedback, and positive-feedback biosensor strains were com-
pared it was not possible to make a sorting gate in the producer
population that did not overlap with the non-producer popula-
tion, as previously observed (Fig. 2d and e). In contrast, when
the GFP:mCherry fluorescence levels of producer and non-
producer strains containing the positive-feedback ratiometric
biosensor (strainsþFB.GFP.mCherry.415.UA andþFB.GFP.
mCherry.415, Table 3) were compared there was a clear separa-
tion of fluorescence levels that could be used to define a sorting
gate (Fig. 6a). It should be noted that we used a high-power blue
laser (200 mW, 488 nm) to excite mCherry (excitation maximum
587 nm) so it is likely that using a green laser, which is common
option on many flow sorters, may significantly improve the sep-
aration of producers from non-producers. Furthermore, when
mixed producer/non-producer populations were visualised us-
ing density plots after 3 hours of co-culturing, the two

populations were still clearly distinguishable (Fig. 6a). This
again indicates that the technique of culturing mixed popula-
tions at a pH above the pKa of the secreted organic acid product
(pH 6.5 and PHBA pKa 4.54 in this case) prevents the PHBA mole-
cules produced by one cell entering another cell in the popula-
tion and potentially activating the biosensor of a non-producer.
This would lead to an averaging-out of the fluorescence levels
observed in the two pure populations, and was not observed
here (Fig. 6a). When cells were sorted from mixed populations
ranging from 1:1 to 1:105 producer to non-producers, the
positive-feedback ratiometric biosensor was highly efficient at
enabling the correct identification of producers based on
GFP:mCherry ratios (Fig. 6b). 100% of isolates from the 1:1
through to 1:102 producer:non-producer populations were con-
firmed as producers via PCR. Sorting accuracy dropped to �88%
at 1:103 and to �66% at 1:104, while no producers could be cor-
rectly identified at 1:105 using this strategy (Fig. 6b). This a dra-
matic increase in high-throughput screening power when
compared with the original non-positive feedback non-
ratiometric version of the biosensor (strain GFP.415, Table 3),
which only enabled 66% sorting accuracy with equal
amounts of producers and non-produces in a mixed population
(Fig. 2c–e). The 66% sorting accuracy we observed with the
positive-feedback, ratiometric biosensor therefore represents a
5,000-fold improvement in high-throughput screening power.
The magnitude of this improvement can partly be attributed to
the poor-performance of the original War1p-pPDR12 system
as a biosensor. It is therefore likely that positive-feedback, ratio-
metric biosensor expression would result in less dramatic
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fold-improvements of biosensors that have inherently lower
noise-levels and higher dynamic ranges.

These results demonstrate the utility of the positive-
feedback ratiometric biosensor approach for improving high-
throughput screening efficiency via controlling for noise, reduc-
ing basal biosensor output, and increasing dynamic range.
When applying this sensor to isolate producer cells from ran-
domly mutated or evolving populations, the frequency of cells
containing mutations that encode for increased metabolite pro-
duction are likely to be much lower than 1 in 104, the limit of ac-
curacy for our biosensor. However it has recently been
demonstrated that repeated cycles of enrichment for cells with
high biosensor output using FACS can be used to concentrate
high producers over time and identify rare mutational events
that lead to higher productivity (Mahr et al. 2015). We envisage
that a similar process of iterative growth and FACS enrichment
could be successfully employed to evolve PHBA or PA-producing
yeast using our biosensor. The highest previously recorded titre
of PHBA in yeast is � 1 mM, and this level was achieved by si-
multaneously expressing three pathway enzymes (UBiC, ARO4,
TKL1) and dynamically repressing two enzymes (ARO7, CDC19)
that compete for carbon flux (Williams et al. 2015). Although the
dynamic range of our biosensor is nearly saturated via the ex-
pression of UBiC and ARO4 genes (Fig. 2b), it should be possible
to discover novel mutations that affect shikimate pathway flux
by carrying out biosensor-mediated directed evolution experi-
ments beginning with only UBiC gene expression. In theory this
approach should enable the exploration of evolutionary trajec-
tories that are independent of the traditional feedback resistant
ARO4 enzyme (Luttik et al. 2008). It is also possible that this bio-
sensor could be used to screen PHBA production (or other or-
ganic acids) from other cells in microtiter plates as part of a co-
culture system. PHBA in particular has been produced at high
levels in E. coli (12 g/L) (Barker and Frost 2001), Klebsiella pneumo-
nia, and Pseudomonas putida (317 mg/L) (Verhoef et al. 2010), and
this biosensor has the potential to be used to screen modified or
mutated strains of these producers, albeit at a much lower
throughput compared with FACS.

4. Summary and Conclusions

Ligand-responsive transcriptional regulators and their cog-
nate promoters are widely used tools in synthetic biology
(Taylor et al. 2016), and are becoming increasingly valuable
as metabolite biosensors for high-throughput strain screen-
ing and dynamic pathway regulation in metabolic engineer-
ing (Zhang and Keasling 2011; Liu et al. 2015; Mahr et al. 2016;
Rogers et al. 2016; Williams et al. 2016). We have demon-
strated that positive-feedback biosensor expression signifi-
cantly reduces the basal expression level and increases the
dynamic range. Furthermore ratiometric fluorescent protein
‘normalisation’ within single cells provides a control system
for extrinsic noise, increasing the efficiency and accuracy of
high-throughout strain screening. By combining positive-
feedback biosensor expression with ratiometric fluorescence
normalisation, high-throughput screening efficiency was im-
proved 5,000-fold. These phenomena were demonstrated us-
ing the WAR1 organic acid responsive transcriptional
regulator in yeast, which holds great promise for use as a bio-
sensor for isolating highly productive organic acid produc-
tion strains from randomly mutated or evolving populations.
Due to the fact that gene expression noise is a universal fea-
ture of biological systems (Elowitz et al. 2002; Keren et al.
2015) the design principles of positive-feedback, ratiometric
biosensor expression are likely to be relevant to many other
transcription-factor promoter pairs used in synthetic
biology.
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