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Selective digestive decontamination 
solution used as “lock therapy” prevents 
and eradicates bacterial biofilm in an in vitro 
bench‑top model
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Abstract 

Background:  Most preventing measures for reducing ventilator-associated pneumonia (VAP) are based mainly on 
the decolonization of the internal surface of the endotracheal tubes (ETTs). However, it has been demonstrated that 
bacterial biofilm can also be formed on the external surface of ETTs. Our objective was to test in vitro the efficacy of 
selective digestive decontamination solution (SDDs) onto ETT to prevent biofilm formation and eradicate preformed 
biofilms of three different microorganisms of VAP.

Methods:  We used an in vitro model in which we applied, at the subglottic space of ETT, biofilms of either P. aerugi-
nosa ATCC 15442, or E. coli ATCC 25922, or S. aureus ATCC 29213, and the SDDs at the same time (prophylaxis) or after 
72 h of biofilm forming (treatment). ETT were incubated during 5 days with a regimen of 2 h-locks. ETT fragments 
were analyzed by sonication and confocal laser scanning microscopy to calculate the percentage reduction of cfu and 
viable cells, respectively.

Results:  Median (IQR) percentage reduction of live cells and cfu/ml counts after treatment were, respectively, 53.2% 
(39.4%—64.1%) and 100% (100%–100.0%) for P. aeruginosa, and 67.9% (46.7%–78.7%) and 100% (100%–100.0%) for E. 
coli. S. aureus presented a complete eradication by both methods. After prophylaxis, there were absence of live cells 
and cfu/ml counts for all microorganisms.

Conclusions:  SDDs used as “lock therapy” in the subglottic space is a promising prophylactic approach that could be 
used in combination with the oro-digestive decontamination procedure in the prevention of VAP.

Keywords:  Ventilator associated pneumonia, Biofilm, Endotracheal tube, Selective decontamination solution, Lock 
therapy
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Background
Ventilator-associated pneumonia (VAP) is one of the 
most common pulmonary nosocomial infections in 
intensive care units (ICU), not only in developed but also 
in developing countries, with an incidence of 9% to 27% 
in intubated patients increasing to 46% in patients who 
need mechanical ventilation for more than 48  h after 
major heart surgery [1–5]. VAP represents high rates of 
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morbidity and mortality, longer hospital stays, and addi-
tional sanitary costs [6].

Although pulmonary aspiration of oropharyngeal and 
gastric microorganisms are the endogenous rout of air-
way colonization, the ability of bacteria to form biofilm 
on endotracheal tube (ETT) surface is thought to be one 
of the most important external risk factors of VAP devel-
opment [6–10]. There are several strategies to prevent 
and treat VAP focused mainly in the internal surface of 
the ETT, including: selective digestive and oral decon-
tamination (SDD/SOD), use of oral antiseptics, subglot-
tic aspiration, elevation of the head of bed, ETT surface 
modifications such as antimicrobial-drug coated tubes or 
silver-coated ETT, mucus removal, and parenteral anti-
microbial therapy [9, 11–19].

SDD refers to a prophylactic strategy based on the 
application of non-absorbable antimicrobial agents in 
the oropharynx and gastrointestinal tract [20–22]. SDD 
solution (SDDs) is mainly composed of tobramycin, poly-
myxins and amphotericin B with antimicrobial activity 
against gram negative microorganisms, including multi-
drug resistant, gram positive, and yeasts; which are the 
most common causative microorganisms in VAP [1, 20, 
22–25]. SDDs was designed to attack only aerobic bac-
teria potentially pathogenic in the oral cavity and in the 
digestive tract leaving anaerobic normal microbiota 
undisturbed [26]. Although there are several studies 
regarding the efficacy and safety of SDDs in ICU patients 
[20, 27, 28] literature about its efficacy as antibiotic lock 
therapy (ALT) or antibiotic lock prophylaxis (ALP) is 
scarce to the best of our knowledge [29].

Thus, our objective was to assess the efficacy of SDDs 
as prophylaxis and treatment of bacterial biofilm admin-
istered in the external surface of the subglottic space 
using an in vitro bench model [30].

Methods
This study was carried out in the laboratory of the Clini-
cal Microbiology and Infectious Diseases Department, 
Hospital Gregorio Marañón, Madrid, Spain.

Confocal laser scanning microscopy (CLSM) images 
were performed in the CLSM unit of the Instituto de 
Investigación Sanitaria Gregorio Marañón. Scanning 
electron microscopy (SEM) images were performed in 
the Centro Nacional de Microscopía de Barrido de la 
Universidad Complutense de Madrid.

Therapies
An adult tracheal intubation was simulated using cuffed 
ETT (TaperGuard Oral Tracheal Tube Evac Murphy Eye, 
Mallinckrodt ™) as shown in Fig. 1 [31].

Treatment therapy
Mature-biofilms: The ETTs were colonized with 3 ml of 
0.5 McFarland culture of Pseudomonas aeruginosa ATCC 
15442, or Escherichia coli ATCC 25922, or Staphylococ-
cus aureus ATCC 29213 in their culture medium (BHI, 
LB, and TSB respectively) (Sigma-aldrich, Spain). ETT 
were culture at 37 °C for 72 h with 24-h medium replace-
ment performed daily at the same time (Additional file 1: 
Fig. S1).

Lock therapy: ALT was based on a 2-hour application 
at the mature biofilms of 3  ml in the subglottic area of 
either SDDs (nystatin 2.6 mIU, tobramycin 15.6  mg/ml, 
and colimycin 13 mg/ml. In the case of S. aureus, vanco-
mycin 3.6  mg/ml was also added) after a washing with 
sterile saline in the treated samples or sterile saline (0.9% 
NaCl) in positive controls. Then, solutions were removed 
and ETT were washed with sterile saline and incubated 
with fresh medium at 37 °C for 22 h. Antibiotic lock solu-
tion was repeated during 5 days. Medium without micro-
organism was used as negative control. All samples were 
tested six times.

Fig. 1  Schematic diagram of the in vitro bench model. A total 
volume of 3 ml was instilled in the subglottic space for treatment and 
prophylaxis therapy
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Prophylactic therapy
The ETTs were colonized simultaneously with 1.5 ml of 
a 0.5 McFarland culture of P. aeruginosa ATCC 15442, 
or E.coli ATCC 25922, or S. aureus ATCC 29213 in their 
culture medium (BHI, LB, and TSB respectively) and 
1.5  ml of either SDDs in the treated samples or sterile 
saline (0.9% NaCl) in positive controls. In this ALP, final 
concentrations of nystatin, tobramycin, colimycin, and 
vancomycin were as follow: 1.3 mIU, 7.8 mg/ml, 6.5 mg/
ml, and 1.8 mg/ml, respectively.

ETTs were incubated at 37  °C for 2  h. Solutions were 
discarded and ETT were washed with sterile saline and 
incubated in fresh medium for 22  h at 37  °C. The pro-
cedure was repeated during 5  days. Medium without 
microorganism was used as negative control. All samples 
were tested six times.

After each therapy, ETT were washed with sterile saline 
before analysis.

ETTs analysis
ETTs were cut into 3 segments of 0.5  cm (Fig.  2). Each 
segment was used for a different analysis.

Colony forming unit counts and percentage of live cells. 
One segment was sonicated in 2 ml of buffer solution for 
1  min at 50  Hz and vigorously vortexed. Solution was 
then serially diluted and 100  µl were cultured on blood 
agar plates and incubated for 24 h at 37 °C. We scrubbed 
ETT surface of positive controls with a sterile swab and 
was introduced in 1  ml of PBS and 100  µl of the solu-
tion were plated on agar plates and incubated for 24 h at 
37 °C.

Colony counts were expressed as the number of cfu/ml 
with a limit of detection of < 10 cfu/ml. Live/dead analysis 
was performed by centrifuging the remaining sonicate to 
study the viability of bacteria. Pellet was resuspended in 
50 µl of sterile saline and stained with Live/Dead® Bac-
Light kit™ (0.5 µl of SYTO® 9, stock 3.34 mM in DMSO; 
and 0.5  µl propidium iodide, stock 20  mM in DMSO) 
(BacLight kit™; Invitrogen, Barcelona, Spain) for 15 min 
protected from light. A drop (5 µl) of each dilution was 
mounted on a coverslip and visualized using a confocal 
laser scanning microscopy (CLSM) in an inverted con-
focal fluorescence microscope (SPE, Leica Microsys-
tems) equipped with ACS APO 10x/0.30 and ACS APO 

Fig. 2  ETT analysis
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63X/1.30 objectives. Images were taken using an ACS 
APO 63X/1.30 objective. Three images containing over 
1000 cells per condition were taken from each sample. 
Quantification of live and dead cells was performed by 
using FIJI software (National Institute of Health, US). 
The percentage of live bacteria was calculated as the ratio 
between the number of live cells and the total number of 
cells × 100.

Visualization of biofilm biomass. Another segment 
was fixed by freezing at −80  °C for 72 h. After thawing 
for 30 min at room temperature, segments were stained 
with Live/Dead® BacLight kit™ (1.5 µl of SYTO® 9, stock 
3.34  mM in DMSO; and 1.5  µl propidium iodide, stock 
20 mM in DMSO in 1 ml of buffer solution) for 15 min 
protected from light [32]. Samples were visualized using 
CLSM at ACS APO 10X/0.3 objective. Images were 
edited using FIJI software (National Institute of Health, 
US).

Visualization of biofilm structure. The last segment was 
used to visualize biofilm structure by scanning electron 
microscopy (SEM). Segments were placed into 2% glu-
taraldehyde for 3  days and after dehydration in graded 
alcohol, samples were sputter-coated with gold atoms. 
The structure of the treated and non-treated biofilms was 
visualized using a scanning electron microscope (JEOL-
JSM 6400; Jeol, Tokyo, Japan).

Filtration testing
In order to assess whether “lock therapy” in ETT could 
leak past the cuff, our bench model was hold into a Fal-
con tube to recover any filtration of the SDD solution 
during the therapies.

Statistical analysis
Qualitative variables appear with their frequency dis-
tribution. Quantitative variables are expressed as the 
median and interquartile range (IQR). Non-normally dis-
tributed continuous variables were compared using the 
Kruskal–Wallis and Mann–Whitney tests.

All statistical tests were 2-tailed. Statistical significance 
was set at p < 0.05 for all the tests. The statistical analysis 
was performed with IBM SPSS Statistics 21.0 for Win-
dows (IBM, New York).

Results
Overall data
Overall data of the median (IQR) percentage and median 
(IQR) percentage reduction of live cells and log10 cfu/ml 
for ALT and ALP therapies for P. aeruginosa, E. coli, and 
S. aureus are shown in Table 1.

Reduction in live cells and cfu counts was statistically 
significant in both therapies for all microorganisms. 
Moreover, this reduction reached 100% for all microor-
ganisms in both therapies except for live cells of P. aerugi-
nosa and E. coli.

Treatment therapy (ALT)
Median (IQR) percentage reduction of live cells of P. 
aeruginosa, E.  coli, and S. aureus treated samples were, 
respectively (Table  1): 53.2% (39.4%—64.1%), 67.9% 
(46.7%–78.7%), and 100% (100%–100%), which cor-
responded to a statistical significant reduction on the 
percentage of live cells between treated and non-treated 
samples (p < 0.001, p = 0.002, and p = 0.007, respec-
tively) (Fig.  3). Percentage reduction of cfu/ml was 
100% for P. aeruginosa, E. coli, and S. aureus treated 

Table 1  Overall data of  live cells, cfu/ml counts, and  percentage of  reduction of  bacterial biofilms after  prophylaxis 
and treatment with selective digestive decontamination solution

P values were obtained using Mann–Whitney U test

MO microorganism, IQR interquartile range, cfu colony forming units, C +  positive control, ALT antibiotic lock therapy
a  No cells were recovered after therapy. Cfu/ml resulted to be 0 (0.0-0.0) for all microorganisms after every therapy being log10 of 0 in-calculated
b  No p75 value obtained
*  Limit of detection of cfu counting using conventional culture was 10 cfu/ml

**In prophylaxis therapy, no reduction could be measured, as there was no pre-formed biofilm. Results are expressed as absence

Therapy MO Median (IQR)  % live cells Median (IQR)  % 
reduction of live 
cells

P value Median (IQR) log10 
cfu/ml*

Median (IQR)  % 
reduction** of cfu/
ml*

P value

C+ ALT C+ ALT

Treatment P. aeruginosa 88.9 (84.4–93.4) 39.3 (30.1–50.9) 53.2 (39.4–64.1) < 0.001 7.5 (7.4– b) -a 100.0 (100.0–100.0) 0.002

E. coli 55.9 (49.6–67.3) 18.8 (12.5–31.2) 67.9 (46.7–78.7) 0.002 7.0 (6.7–7.4) -a 100.0 (100.0–100.0) 0.002

S. aureus 42.9 (28.7–57.5) 0.0 (0.0–0.0) 100.0 (100.0–100.0) 0.007 7.7 (7.5–7.9) -a 100.0 (100.0–100.0) 0.002

Prophylaxis P. aeruginosa 83.1 (77–88.4) 0.0 (0.0–0.0) 100.0 (100.0–100.0) < 0.001 7.4 (6.9–8.4) -a **Absence 0.004

E. coli 43.9 (34.1–46.1) 0.0 (0.0–0.0) 100.0 (100.0–100.0) <0.001 7.2 (6.9–7.34) -a **Absence 0.002

S. aureus 32.7 (23.7–49.7) 0.0 (0.0–0.0) 100.0 (100.0–100.0) 0.008 7.6 (7.4–7.8) -a **Absence 0.002
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samples (p = 0.002) (Table  1). Total number of cfu/ml 
are collected in supplementary material (Additonal file 1: 
Table S1). This represented that non-culturable cells were 
collected either from P. aeruginosa, E. coli, or S. aureus 
biofilms. Thickness and biofilm structure visualized by 
CLSM and SEM are shown in Fig. 4. Positive controls are 
characterized by a thickness layer of cells embedded into 
an extracellular matrix (ECM) whereas in treated sam-
ples, the ECM was disrupted, and abnormalities in cell 
size and shape were observed.

Prophylactic therapy (ALP)
In the ALP, there was absence of live cells of P. aerugi-
nosa, E. coli, and S. aureus treated samples, p < 0.001, 
p < 0.001, and p = 0.008, respectively (Table 1 and Fig. 5). 
Besides, there was also absence of cfu/ml counts for 
the 3 microorganisms (limit of detection < 10 cfu/ml) 

(p = 0.004 for P. aeruginosa and p = 0.002 for E. coli and 
S. aureus). Total number of cfu/ml are collected in Addi-
tional file (Additional file 1: Table S1). Figure 6 illustrates 
changes in thickness and biofilm structure after prophy-
lactic therapy with SDDs compared with positive con-
trols when visualized with CLSM and SEM. Using SEM 
we observed how ECM disappeared in treated samples, 
making bacteria vulnerable to antibiotics, and only anti-
biotic crystals and cell debris were presented on ETT sur-
face after the therapy.

Filtration testing
In the bench-top model the Falcon tube represented the 
trachea of the patient. We did not recovered any volume 
of SDDs or saline in the tube after finishing the ALT and 
ALP therapies. Hence, all the treatments were retained in 
the cuff of the ETT.

Fig. 3  Live cells of the different bacterial biofilm measured by CLSM after a treatment therapy with a selective digestive decontamination solution. 
C positive control; T treated sample
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Discussion
Ventilator-associated pneumonia still represents a chal-
lenge in ICU patients with an incidence up to 24%, an 
attributable mortality of 13% and an increase of hospital 
costs of around US$55,882 per patient [33, 34]. A wide 
variety of preventing measures have been proposed by 
the Society for Health Epidemiology of America (SHEA) 
and IDSA including daily oral care, semi-recumbent 
position, subglottic secretion aspiration, and SDD [19, 
34–36]. Most of these measures are based mainly on the 
decolonization of the internal surface of the ETTs. How-
ever, it has been demonstrated that bacterial biofilm can 
also be formed on the external surface of ETTs [37].

Under this basis, we conducted an in vitro study using 
a bench-top model of adult trachea intubation where we 
have demonstrated that SDD can be applied as lock ther-
apy for the prevention of biofilm formation in the exter-
nal surface of the subglottic space of ETT with an efficacy 

of 100% for P. aeruginosa ATCC 15442, E.coli ATCC 
25922, and S. aureus ATCC 29213. Based on the possi-
bility to prevent VAP, other authors have demonstrated 
other procedures to prevent biofilm formation. Machado 
et al., have recently described a novel way of preventing 
biofilm formation on ETT surface by nanomodifying 
polyvinyl with a fungal lipase [38, 39]. They also demon-
strated that these modifications reduced P. aeruginosa 
colonization by 2.7 log10 [40]. However, no total reduc-
tion was observed. In our study, no live or cultivable 
cells appeared after the prophylactic therapy with SDDs. 
Another study conducted by Wang et  al., an inhibition 
of P. aeruginosa biofilm formation was achieved using 
ultrasonic guided waves on a new model of ETT [41]. 
Although ultrasonic guided waves are a promising tech-
nology, it is still more cost effective than SDDs. Further-
more, we have previously demonstrated that promising 
results were obtained for P. aeruginosa biofilm reduction 

Fig. 4  CLSM and SEM images magnified at 3000X of bacterial biofilms after treatment therapy with SDDs. 1 Pseudomonas aeruginosa; 2 Escherichia 
coli; 3 Staphylococcus aureus; A positive control; B treated sample
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using SDDs as treatment therapy comparing single-dose 
and 5-day locking therapy in our model [42]. Thus, more 
studies are needed to test its efficacy against other micro-
organisms and to prove the application as a preventive 
measure.

P. aeruginosa, S. aureus, and E. coli are the three main 
representative microorganisms of VAP with an incidence 
of 13.1%, 28.3%, and 6%, respectively [43]. Literature 
about prevention of P. aeruginosa colonization in ETT 
is wide spread but ours is the first study in which pro-
phylactic therapy has been performed in three different 
microorganisms with successful results for all of them.

Another key point in the management of VAP is the 
treatment. Although preventing measures have been 
described of being efficient, bacteria biofilm is still 

difficult to eradicate from ETT surface due to chronic-
ity of infections and treatment failure [9]. We noted that 
SDDs reduced a pre-formed biofilm of P. aeruginosa, 
E. coli, and S. aureus. Although percentage of live cell 
reduction did not achieve 75% in P. aeruginosa and E. 
coli, it could be used as supportive treatment for actual 
therapies. In contrast, when measured by cfu counts, the 
percentage of reduction is 100%. We hypothesize that 
this issue is explained by the viable but non-culturable 
(VBNC) cell phenomena. It is characterized by the abil-
ity of bacteria of reducing their metabolic activity and 
change their membranes and walls to survive under unfa-
vorable conditions such as starvation or high stress [44]. 
During the 5 day ALT, bacteria are exposed to high doses 
of antibiotic leading to an adaptive response in a try of 

Fig. 5  Live cells of the different bacterial biofilm measured by CLSM after a prophylactic therapy with a selective digestive decontamination 
solution. C positive control; T treated sample
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survival making diagnose and treatment by classical 
methods more challenging. As commented in the study 
of Li et al., the role of VBNC cells is still under discussion. 
Some authors support the hypothesis that these cells are 
in a preliminary phase of dying and is believed to have no 
clinical impact. Other authors consider that VBNC cells 
would have the ability to revive. However, in the prophy-
lactic group of our study, neither cfu nor viable cells were 
recovered from any of the microorganisms tested. This 
means that VBNC cells were not present and therefore it 
would not have a negative impact in a clinical scenario.

In S. aureus, we have observed that SDDs supple-
mented with vancomycin eradicated bacteria biofilm in a 
100%. In a study presented by Fernandez-Barat et al., they 
evaluated the capacity of vancomycin versus linezolid to 
eradicate S. aureus methicillin-resistant biofilm on ETT 
surface o ventilated pigs [32]. They observed that i.v. lin-
ezolid was statistically significant better than vancomycin 

but no eradication was obtained. Thus, the administra-
tion of linezolid plus ALT with SDDs could achieve better 
results in vivo for VAP treatment. Although VBNC was 
not observed in S. aureus model, vancomycin and dap-
tomycin have shown to induce significant rates of viable 
but non-culturable S. aureus cells [45, 46].

Regarding the clinical application of this procedure, 
Penumatikos et  al. have previously demonstrated in a 
clinical study that VAP was significantly reduced when 
continuous infusion of antibiotic solution was applied 
at the subglottic space in trauma patients [29]. However, 
they administered the antibiotic solution by continuous 
infusion, which seems more difficult to manage in ICU 
patients. We consider a more easy-to-use regimen with a 
30 min-lock therapy applied per nursing shift (every 6 h) 
just immediately before subglottic aspiration. However, 
as we only demonstrated that there was no evidence of 
leaking past the cuff of the ETT in the in vitro model, it 

Fig. 6  CLSM and SEM images magnified at 3000X of bacterial biofilms after prophylactic therapy with SDDs. 1 Pseudomonas aeruginosa; 2 
Escherichia coli; 3 Staphylococcus aureus; A positive control; B treated sample
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is necessary to validate this finding in a real clinical sce-
nario to assess that this regimen would be a safety pro-
cedure to be performed in intubated critical patients. 
We consider that when a “lock therapy” at the subglot-
tic space is aimed it may not cause damage to the patient 
because of SDDs filtration to the lungs mainly because of 
the continuous cuff pressure monitoring > 20 cm H2O, as 
recommended by the guidelines [18].

Although our in  vitro bench-top model mimics the 
ETT subglottic conditions during patient-use of this 
device, it was a static model that may not simulate the 
real scenario in an intubated patient. Moreover, SDD 
could not reach the distal ETT and the cuff, however, as 
SDD is also applied by gastrointestinal and oral sources, 
it could reach other parts than the subglottic space. 
Methodologically, we have not used any neutralizer to 
inactivate the antibiotics before plating which may limit 
the VBNC bacteria growth although there is still no 
consensus about neutralizers and VBNC cells. Besides, 
guidelines do not contemplate its use in clinical samples 
except for decontamination before processing samples 
for mycobacteria cultures [44, 47, 48]. Another limitation 
of the study was the small amount of microorganisms 
used. We used the three main representative microor-
ganisms to cause VAP in our institution. However, these 
results may not be extrapolated to others institutions 
where P. aeruginosa, E.  coli and S. aureus represent low 
rates of VAP, and hence, further studies should be per-
form with other etiological pathogens. Our results must 
be validated in the real clinical practice by randomized 
clinical trials.

Conclusion
Ours is the first study to demonstrate that SDDs used 
as lock therapy in the subglottic space can represent an 
additional successful prophylactic measure against the 
biofilm of three of the most common microorganisms 
causing VAP. This means that it could be used in combi-
nation with traditional oral and digestive decolonization 
procedure, as it also demonstrated not to cause antibiotic 
resistance [26, 27, 49–51]. Further clinical investigations 
should be performed to evaluate its efficacy and safety in 
clinical settings.
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