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A B S T R A C T   

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) recently caused a pandemic outbreak called 
coronavirus disease 2019 (COVID-19). This disease has initially been reported in China and also now it is 
expeditiously spreading around the globe directly among individuals through coughing and sneezing. Since it is a 
newly emerging viral disease and obviously there is a lack of anti-SARS-CoV-2 therapeutic agents, it is urgently 
required to develop an effective anti-SARS-CoV-2-agent.Through recent advancements in computational biology 
and biological assays, several natural compounds and their derivatives have been reported to confirm their target 
specific antiviral potential against Middle East respiratory syndrome coronavirus (MERS-CoV) or Severe Acute 
Respiratory Syndrome(SARS-CoV).These targets including an important host cell receptor, i.e., angiotensin- 
converting enzyme ACE2 and several viral proteins e.g. spike glycoprotein (S) containing S1 and S2 domains, 
SARS CoV Chymotrypsin-like cysteine protease (3CLpro), papain-like cysteine protease (PLpro), helicases and 
RNA-dependent RNA polymerase (RdRp). Due to physical, chemical, and some genetic similarities of SARS CoV-2 
with SARS− COV and MERS− COV, repurposing various anti-SARS− COV or anti-MERS− COV natural therapeutic 
agents could be helpful for the development of anti− COVID-19 herbal medicine. Here we have summarized 
various drug targets in SARS− COV and MERS− COV using several natural products and their derivatives, which 
could guide researchers to design and develop a safe and cost-effective anti-SARS− COV-2 drugs.   

1. Introduction 

The outbreaks of coronavirus (CoV) infection that have already 
threatened the world by SARS and MERS in the first decade of 21st 
century have recently come up with a novel strain of lethal coronavirus 
named as 2019 novel coronavirus (SARS-CoV-2). In December 2019, the 
disease was originally started in the local seafood market of Wuhan of 
China (Hui et al., 2020; Perlman, 2020; Zhu et al., 2020). Since then this 
new coronavirus strain has spread across the globe very rapidly with the 
catastrophic effects. Coronaviruses are the non-segmented, enveloped 
viruses with positive-sense RNA as their genetic material belonging to 
the family Coronaviridae. They are pleomorphic and club-shaped spikes 
are present on their cell surface. The disease is characterized as respi-
ratory disorders with flu-like symptoms such as a sore throat, fever, cold, 
cough and severe pneumonia is also reported in more critical cases. 
SARS-CoV-2 can be transmitted through coughing and sneezing droplets 
of infected individuals; these virions containing droplets retained on the 
hard surfaces for a longer time and can spread to a fresh individual by 

direct inhalation or by touching the infected surfaces. As of 31st August 
2020, the complete number of affirmed COVID-19 cases reported glob-
ally is more than 25 million and the mortality has crossed more than 
850,600. 

Recently many efforts have been made to develop the therapeutic 
agents to control COVID-19, but so far no medicine is significantly 
effective against SARS-CoV-2 (Tu et al., 2020), and further supportive 
care is also needed to the individual for proper breathing. While the 
development of a vaccine may also take 12–18 months (Pandey et al., 
2020), repurposing of the drugs (from Ebola to malaria to arthritis) is the 
only feasible option for treating the patients in this current situation 
(Simsek Yavuz and Unal, 2020). Progress in drug discovery and devel-
opment largely depends on the identification of potential drug targets. 
For the management of COVID-19 infection, various molecular targets 
playing important role in the SARS-CoV-2 life cycle including host cell 
receptor-Angiotensin-converting enzyme ACE2 (PDB ID 3D0G) and viral 
proteins such as S protein (containing S1 and S2 domains) (PDB ID 
6XM0); various cysteine proteases such as papain-like cysteine protease 
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(PLpro) (PDB ID 6WX4) or Chymotrypsin like nprotease (3CLpro) (PDB ID 
1P9U), helicases and RNA-dependent RNA polymerase (RdRp) (PDB ID 
6M71) could be evaluated. 

Nature has provided us with an immense supply of natural products. 

Interestingly, the nutraceuticals market hugely depends on the success 
of natural drugs for the treatment of infectious diseases (Williamson 
et al., 2020). So these natural products and their derivatives could offer 
new scope for the control and prevention of various ailments including 

Fig. 1. A-Chemical structure of different natural compounds targeting Group I- Spike Protein; Group II- Helicase; Group III- Angiotensin-converting enzyme ACE2 
receptor. 
B-Chemical structure of natural compounds targeting SARS-CoV 3CL protease. 
C- Chemical structure of natural compounds targeting papain- like cysteine protease. 
D - Chemical structure of natural compounds having unknown targets in SARS-CoV and MERS-CoV. 
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Table 1A 
Various natural compounds targeting specific proteins in SARS-CoV.  

Compound IC50/EC50 Target Reference 

Emodin 200μM Spike Protein (S) (Ho, 2007) 
Tetra-O-galloyl-β-D-glucose (TGG) 50− 4.5 μM Spike Protein (S) (Yi, 2004) 
Luteolin 10.6μM Spike Protein (S) (Yi, 2004) 
Myricetin 2.5− 3.0 μM Helicase (Yu, 2012) 
Scutellarein 0.4− 1.24 μM Helicase (Yu, 2012) 
Baicalin 2.24 mM Angiotensin-converting enzyme 2 (ACE2) receptor (Deng et al., 2012) 
Scutellarin 44− 52 μM ACE2 receptor (Wang et al., 2016) 
Nicotianamine 84nM ACE2 receptor (Chen, 2020) 
Glycyrrhizin NA ACE2 receptor (Chen, 2020) 
Flavinoids: 

Herbacetin 
33.17μM Chymotrypsin like protease (3CLpro) (Jo, 2020) 

Rhoifolin 27.45 μM Chymotrypsin like protease (3CLpro) (Jo, 2020) 
Pectolinarin 37.78 μM Chymotrypsin like protease (3CLpro) (Jo, 2020) 
Amentoflavone  Chymotrypsin like protease (3CLpro) (Ryu, 2010) 
Sinigrin 217 μM Chymotrypsin like protease (3CLpro) (Lin, 2005) 
Indigo 752 μM Chymotrypsin like protease (3CLpro) (Lin, 2005) 
Beta-sitosterol 1210 μM Chymotrypsin like protease (3CLpro) (Lin, 2005) 
Hesperetin 365 μM Chymotrypsin like protease (3CLpro) (Lin, 2005) 
Aloe emodin 8.3μM Chymotrypsin like protease (3CLpro) (Lin, 2005) 
Tannic acid 3 μM Chymotrypsin like protease (3CLpro) (Chen, 2005) 
Isotheaflavin-3-gallate (TF2B) 7μM Chymotrypsin like protease (3CLpro) (Chen, 2005) 
Theaflavin-3,3′-digallate (TF3) 9.5 μM Chymotrypsin like protease (3CLpro) (Chen, 2005) 
Betulinic acid 10 μM Chymotrypsin like protease (3CLpro) (Wen, 2007) 
Savinin 25 μM Chymotrypsin like protease (3CLpro) (Wen, 2007) 
6. Baicalin 6.41 ± 0.95 μM Chymotrypsin like protease (3CLpro) (Su et al., 2020) 
Baicalein 0.94 ± 0.20 μM Chymotrypsin like protease (3CLpro) (Su et al., 2020) 
Isobavachalcone Cell-free cleavage- 39.4 ± 5.2 μM 

Cell-based cleavage-11.9 ± 2.8 μM 
Papain- like cysteine protease (PLpro) (Park et al., 2016) 

4-hydroxyderricin Cell free cleavage 81.4 ± 8.5 μM 
Cell based cleavage 50.8 ± 3.0 μM 

Papain- like cysteine protease (PLpro) (Park et al., 2016) 

Xanthoangelol Cell free cleavage38.4 ± 3.9 μM 
Cell based cleavage5.8 ± 0.63.0 μM 

Papain- like cysteine protease (PLpro) (Park et al., 2016) 

Xanthoangelol F Cell free cleavage34.1 ± 4.8 μM 
Cell based cleavage32.6 ± 2.2 μM 

Papain- like cysteine protease (PLpro) (Park et al., 2016) 

xanthoangelol D Cell free cleavage26.6 ± 5.2 μM 
Cell based cleavage9.3 ± 1.2 μM 

Papain- like cysteine protease (PLpro) (Park et al., 2016) 

Xanthoangelol E Cell free cleavage11.4 ± 1.4 μM 
Cell based cleavage7.1 ± 0.8 μM 

Papain- like cysteine protease (PLpro) (Park et al., 2016) 

Xanthoangelol B Cell free cleavage22.2 ± 6.5 μM 
Cell based cleavage8.6 ± 2.6 μM 

Papain- like cysteine protease (PLpro) (Park et al., 2016) 

Xanthoangelol G Cell free cleavage129.8 ± 10.3 μM Papain- like cysteine protease (PLpro) (Park et al., 2016) 
Xanthokeistal A Cell free cleavage44.1 ± 1.3 μM 

Cell based cleavage 9.8 ± 2.3 μM 
Papain- like cysteine protease (PLpro) (Park et al., 2016) 

Psoralen Cell free cleavage45 % at 200 μM Papain- like cysteine protease (PLpro) (Park et al., 2016) 
Bergapten Cell free cleavage40 % at 200 μM Papain- like cysteine protease (PLpro) (Park et al., 2016) 
Xanthotoxin Cell free cleavage 40 % at 200 μM Papain- like cysteine protease (PLpro) (Park et al., 2016) 
Isopimpinellin Cell free cleavage 

40 % at 200 μM 
Papain- like cysteine protease (PLpro) (Park et al., 2016) 

Bavachinin 12.99 μg/mL Papain- like cysteine protease (PLpro) (Kim, 2014) 
Neobavaisoflavone 5.9 μg/mL Papain- like cysteine protease (PLpro) (Kim, 2014) 
25.Isobavachalcone 7.3 ± 0.8 μM Papain- like cysteine protease (PLpro) (Kim, 2014) 
4′-O-methylbavachalcone 3.6 μg/mL Papain- like cysteine protease (PLpro) (Kim, 2014) 
Psoralidin 1.412 μg/mL Papain- like cysteine protease (PLpro) (Kim, 2014) 
Corylifol A 12.62 μg/mL Papain- like cysteine protease (PLpro) (Kim, 2014) 
Platyphyllenone >200μM Papain- like cysteine protease (PLpro) (Park, 2012) 
Hirsutenone 4.1 ± 0.3 μM Papain- like cysteine protease (PLpro) (Park, 2012) 
Platyphyllone >200μM Papain- like cysteine protease (PLpro) (Park, 2012) 
Platyphyllonol-5xylopyranoside >200μM Papain- like cysteine protease (PLpro) (Park, 2012) 
Hirsutanonol 7.8 ± 1.7 μM Papain- like cysteine protease (PLpro) (Park, 2012) 
Oregonin 20.1 ± 2.2 μM Papain- like cysteine protease (PLpro) (Park, 2012) 
Rubranol 12.3 ± 0.9 μM Papain- like cysteine protease (PLpro) (Park, 2012) 
Rubranoside B 8.0 ± 0.2 μM Papain- like cysteine protease (PLpro) (Park, 2012) 
Rubranoside A 9.1 ± 1.0 μM Papain- like cysteine protease (PLpro) (Park, 2012) 
Houttuynia cordata extract 251.1 μg/mL RNA dependent RNA polymerase (Fung, 2011) 
Ganoderma lucidum extract 41.9 μg/mL RNA dependent RNA polymerase (Fung, 2011)  
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viral infections (Fig. 1A-D and Tables 1A, 1B, 1C ) (Chen and Du, 2020; 
Ganjhu et al., 2015; Islam et al., 2020; Jo et al., 2020; Lin et al., 2014; 
Wang et al., 2014). This article gathers information on the use of 
herbal-based drugs and/or their derivatives for target-specific drug 
discovery against SARS CoV2 infection (Fig. 2). 

2. Various drug targets 

Initially, CoV was known to cause mild disease, but the recent out-
breaks (SARS-CoV outbreak of China and MERS-CoV outbreak of Saudi 
Arabia and now COVID-19 originated from Wuhan, Hubei, China) sig-
nifies the importance of understanding the structure, metabolism, and 
pathophysiology of CoV-associated diseases to identify major drug tar-
gets (J Alsaadi and Jones, 2019). 

The viral RNA codes for some conserved genes: ORF1a, ORF1b, 
OEF3S, E, M, and N gene. The ORF1a/b genes code for viral replicase 
polyproteins (PPs) PP1A and PP1ab. These PPs are further processed to 
form sixteen mature non-structural proteins (NSPs), which play a crucial 
role in the formation of the replicase transcriptase complex. Other 
structural proteins viz. membrane (M), envelope (E), spike (S), nucleo-
capsid as well as other accessory proteins are encoded by rest of the 
genome (McBride et al., 2014) and the beta-CoVs also have hemagglu-
tinin esterase (HE) glycoprotein (Hilgenfeld, 2014). All these proteins 

play a significant role in virulence and for viral multiplication. Hence 
these viral proteins could be the potential targets for the treatment of 
SARS CoV2 infection. 

2.1. Spike (S) glycoprotein 

Spike proteins are glycoprotein which facilitates the attachment of 
coronavirus to the target cells via a specific receptor present on the cell 
surface of host i.e. Angiotensin-converting enzyme ACE2 receptor in 
SARS-CoV(Li et al., 2003; Zhou et al., 2020) and dipeptidyl peptidase-4 
[DPP-4] in MERS-CoV(Mubarak et al., 2019). The coronavirus relies on 
the association of viral envelope protein with host cell membrane for 
delivering their nucleocapsid. The spike proteins (S) are responsible for 
viral entry inside the host cell and are accountable for disease progres-
sion in a specific types of host cells. During the fusion of S protein with a 
specific receptor on the host cell membrane, a crucial conformational 
change occurs in S glycoprotein (Belouzard et al., 2012). So the S- 
glycoprotein could be evaluated as a potential drug target. So far various 
natural compounds and their derivatives have been tested for 
anti-SARS-CoV activity against this protein (Ho et al., 2007). Several 
extracts/derivatives from the herbs belonging to family polygonaceae 
have been reported to inhibit the SARS-CoV S protein interaction with 
Angiotensin-converting enzyme ACE2 receptor. Anthraquinone com-
pound namely emodin (1), a plant extract isolated from genus Polyg-
onum, and Rheum has efficiently impeded the interaction of S protein 
and Angiotensin-converting enzyme ACE2 receptor. Moreover, it also 
hampered S protein-pseudo typed retrovirus infectivity to Vero E6 cells. 
These observations indicated the potential role of emodin as a drug 
candidate against S protein (Ho et al., 2007; Yi et al., 2004). Two 
naturally occurring compounds tetra-O-galloyl-β-D-glucose (TGG) (2) 
and luteolin (3) derived from Galla chinensis were reported to possess 
anti-SARS-CoV activities. TGG and luteolin have a high affinity for S2 
domain of spike protein. This indicates the anti-SARS activity of TGG 
and luteolin is due to inhibition of virus and host cell fusion however the 
exact mechanism remains unknown (Yi et al., 2004). These observations 
indicate that TGG and luteolin could be used for drug development 
against COVID-19 targeting S2 domain 

2.2. Helicase 

Helicase also known as NTPase is involved in the replication of viral 
genomic RNA as well as in transcription and translation (Frick and Lam, 
2006). SARS-CoV helicase is an enzyme of the SF1 family, which hy-
drolyzes all NTPs and utilizes ATP, dATP, and dCTP as substrates (Karpe 
and Lole, 2010). CoV helicase nsP13 has been reported to retain dsRNA 
unwinding activity with translocation along the nucleic acid by ATP 
hydrolysis (Adedeji et al., 2012). Various natural compounds have also 

Table 1B 
Various natural compounds having unknown targets in SARS-CoV.  

Compound IC50/EC50 Reference 

9. Glycyrrhizin 600− 2400 mg/L (Cinatl, 2003) 
52. Lycorine 4.5 ng/mL (Li et al., 2005) 
Saikosaponins: 

Saikosaponin A 
8.6 ± 0.3 μmol/L (Cheng et al., 

2006) 
Saikosaponin B2 1.7 ± 0.1 μmol/L (Cheng et al., 

2006) 
Saikosaponin C 19.9 ± 0.1 μmol/L (Cheng et al., 

2006) 
Saikosaponin D 0.02 ± 0.001 

μmol/L 
(Cheng et al., 
2006) 

R-Halitunal NA (Koehn et al., 
1991b) 

Diterpenes 
ferruginol 

0.40 μg/mL (Wen et al., 2007) 

dehydroabieta-7-one 4.00 μM (Wen et al., 2007) 
Sugiol NA (Wen et al., 2007) 
cryptojaponol >3.3 μg/mL (Wen et al., 2007) 
8β-hydroxyabieta-9(11), 13-dien-12- 

one 
0.44 μg/mL (Wen et al., 2007) 

7β-hydroxydeoxycryptojaponol 1.15 μM (Wen et al., 2007) 
6,7-dehydroroyleanone 5.55 μM (Wen et al., 2007) 
3β, 12-diacetoxyabieta-6, 81,113- 

tetraene 
0.48 μg/mL (Wen et al., 2007) 

pinusolidic acid 4.71 μM (Wen et al., 2007) 
forskolin 3.1 μg/mL (Wen et al., 2007) 
Sesquiterpenes 

cedrane-3β,12-diol 
>2.3 μg/mL (Wen et al., 2007) 

Cadinol 1.04 μg/mL (Wen et al., 2007) 
Triterpenes 

22. betulinic acid 
>4.5 μg/mL (Wen et al., 2007) 

betulonic acid 0.29 μg/mL (Wen et al., 2007) 
Lignins: 

71. hinokinin 
>10 μM (Wen et al., 2007) 

savinin 0.40 μg/mL (Wen et al., 2007) 
4,4′-O-benzoylisolariciresinol NA (Wen et al., 2007) 
Honokiol 6.5 μM (Wen et al., 2007) 
Magnolol 3.80 μM (Wen et al., 2007) 
75. Curcumin >10 μM (Wen et al., 2007) 
76. Niclosamide <0.1 μM (Wen et al., 2007) 
77. Valinomycin 1.82 μg/mL (Wen et al., 2007) 
78.Tetrandrine 0.21 μg/mL (Kim et al., 2019) 
79.Fangchinoline 1.01 μM (Kim et al., 2019) 
80. Cepharanthine 0.53 μg/mL (Kim et al., 2019) 
81. Tylophorine 58 nM (Yang et al., 2010) 
82. 7-methoxy - cryptopleurine 20 nM (Yang et al., 2010)  

Table 1C 
Various natural compounds having unknown targets in HCoV and other 
coronaviruses.  

Compound Test System IC50/EC50 Reference 

Saikosaponins: 
Saikosaponin A 

HCoV-229E 8.6 ± 0.3 μmol/L (Cheng et al., 
2006) 

Saikosaponin B2 HCoV-229E 1 1.7 ± 0.1 μmol/L (Cheng et al., 
2006) 

Saikosaponin C HCoV-229E 19.9 ± 0.1 μmol/L (Cheng et al., 
2006) 

Saikosaponin D HCoV-229E EC50− 0.02 ± 0.001 
μmol/L 

(Cheng et al., 
2006) 

R. Halitunal Coronavirus 
A59 

NA (Koehn et al., 
1991b) 

78. Tetrandrine HCoV-OC43 0.33 μM (Kim et al., 2019) 
79. 

Fangchinoline 
HCoV-OC43 1.01 μM (Kim et al., 2019) 

80. 
Cepharanthine 

HCoV-OC43 0.83 μM (Kim et al., 2019)  
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been reported to inhibit helicases of SARS-CoV-2. The activity of two 
naturally occurring flavonoids namely myricetin (4) and scutellarein (5) 
have been shown to inhibit potential against SARS CoV helicase nsP13. 
These compounds have been reported to inhibit helicase protein by 
affecting the ATPase activity (Yu et al., 2012).Therefore, helicases could 
be a potential drug target for anti− COVID-19 therapy. 

2.3. Human-based targets 

2.3.1. ACE2 receptor 
Angiotensin-converting enzyme ACE2 receptor is a human receptor 

to the SARS and SARS-CoV-2 (Zhang et al., 2020). 
Angiotensin-converting enzyme ACE2 receptor is mostly present as cell 
surface receptors and rarely circulates in soluble form. These receptors 
facilitate entry of three CoV strains (e.g. NL63, SARS-CoV, and 
SARS-CoV-2), which are present most abundantly in the lungs (pre-
dominantly in type 2 pneumocytes and macrophages), testis, brain, 
heart, blood vessels, and kidney (Verdecchia et al., 2020). The over-
expression of ACE2 receptor from human, pig, civet in HeLa cells 
permitted replication of SARS-CoV-2, thus proving it to be the principal 
receptor for CoV entry (Zhou et al., 2020). Drugs targeting the ACE2 
receptor could be efficient for anti CoV drugs. Various natural com-
pounds such as baicalin, (6) scutellarin (7), nicotianamine (8) (docking 
score -5.1) and glycyrrhizin (9) (docking score -9) (supplementary 
Table 1) have been reported to have potential anti-2019-CoV effects by 
preventing the attachment and entry of virus (Chen and Du, 2020), 
Particularly baicalin, extracted from plant Scutellaria baicalensis Georgi 
demonstrated an excellent antiviral and anti-SARS activity (Chen et al., 

2004). Another such compound scutellarin, is reported to reduce ACE2 
activity in brain tissues (Wang et al., 2016) and therefore this compound 
can also be evaluated as an ACE2 receptor inhibitor to block the entry of 
SARSCoV2. Stilbenoids belonging to other phenolic natural compounds 
were reported to possess inhibitory activity against ACE2 receptor 
(Wahedi et al., 2020). Furthermore, natural extracts isolated from garlic 
were also observed to have inhibitory effects against ACE2 receptor 
(Thuy et al., 2020). 

2.4. SARS-CoV chymotrypsin like protease (3CLpro) 

SARS-CoV Chymotrypsin protease (3CLpro) is mainly associated with 
the maturation process of the virus by cleavage of viral polyproteins 
(Koulgi et al., 2020). It releases the two important enzymes for repli-
cation, viz. RdRp and helicase from the precursors of polyprotein (Thiel 
et al., 2003). Because of its involvement in the SARS-CoV life cycle, the 
3CL protease could be a prominent drug target. Several natural com-
pounds derived from plants have been known to manifest 
anti-SARS-CoV activity against SARS-CoV 3CL protease. Rhizomacibotii; 
the dried rhizome of Cibotiumbarometz (CBM) and Dioscoreaerhizoma; 
the tuber of Dioscoreabatatas (DBM) displayed a significant reduction in 
protease activity of SARS-CoV 3CL (Wen et al., 2011). Flavonoids are 
polyphenolic plant secondary metabolites present in different fruits and 
vegetables. Recently flavonoids such as herbacetin (10) (Docking Score 
–9.263), rhoifolin (11) (Docking Score ––9.565), and pectolinarin (12) 
demonstrated anti-SARS-CoV 3CLpro activity (Jo et al., 2020). 3CLpro has 
3 domains at substrate binding site -S1, S2, and S3. S1 represents the 
polar site of 3CLpro, S2 represents the hydrophobic site, while S3 has no 

Fig. 2. Schematic representation of SARS-CoV-2 life cycle highlighting the various drug targets along with their potential inhibitors.  

P. Khare et al.                                                                                                                                                                                                                                   



Virus Research 290 (2020) 198169

6

strong tendency. Molecular docking showed the binding affinity of three 
flavonoids with 3 domains of 3CLpro (Jo et al., 2020). Another flavonoid 
amentoflavone (13) (Docking Score − 11.42) is the most effective 
flavonoid inhibiting SARS-CoV 3CLpro (Ryu et al., 2010) (supplementary 
Table 1). Thus, flavonoids could serve as a promising anti-CoV com-
pound and could be explored in the development of antiviral drugs. The 
root extracts of Isatis indigotica are also reported to have anti CoV activity 
by inhibiting the SARS-CoV 3CLpro enzyme (Lin et al., 2005). Various 
root extracts viz. sinigrin (14), Indigo (15) β-sitosterol (16), hesperetin 
(17) and, aloe emodin are (18) reported to be efficient in inhibiting the 
3CLpro activity in concentration-dependent manner (Lin et al., 2005). 
Further Houttuynia cordata extract (Lau et al., 2008) as well as tannic 
acid (19), isotheaflavin-3-gallate [(TF2B) (20)] and theaflavin-3, 
3′-digallate [(TF3) (21)] belonging to polyphenols of tea were re-
ported to exhibit antiviral properties by their inhibitory potential 
against 3CLPro (Chen et al., 2005). Triterpenes [betulinic acid (22) and 
savinin (23)] were reported to possess anti 3CLpro activity (Wen et al., 
2007). Recently, a sum of 28 natural compounds was identified from the 
Shuanghuanglian preparations. Out of which two major bioactive 
compounds baicalin (6) and baicalein, (24) were found to possess sig-
nificant inhibitory activity against SARS-CoV 3CLpro by inhibiting the 
proliferation in Vero E6 cells (Su et al., 2020) 

2.5. Papain- like cysteine protease (PLpro) 

The papain-like cysteine protease (PLpro) plays an important role in 
SARS-CoV viral genomic RNA replication. It cleaves the N terminal site 
of polyproteins (PPs) to generate three nonstructural proteins (NSPs-1, 
2, and 3) (Hilgenfeld, 2014; Lindner et al., 2005). PLpro also contains a 
catalytic core domain and a consensus sequence LXGG which is required 
for cleaving replicase substrate (Barretto et al., 2005). Thus PLpro could 
be used as a crucial drug target for anti-SARS drug development (Park 
et al., 2017). Recently 13 chalcones that includes isobavachalcone (25) 
(Dockind Score − 8.82), 4-hydroxyderricin (26) (Docking Score − 8.26), 
xanthoangelol (27) (Docking Score − 8.6), xanthoangelol F (28) (Dock-
ing Score − 7.84), xanthoangelol D (29) (Docking Score − 6.69), xan-
thoangelol E (30) (Docking Score − 7.45), xanthoangelol B (31) 
(Docking Score − 7.16), xanthoangelol G (32) (Docking Score − 9.43), 
xanthokeistal A (33) (Docking Score − 6.31), psoralen (34) (Docking 
Score − 7.42), bergapten (35) (Docking Score − 6.94), xanthotoxin (36) 
(Docking Score − 7.37) and isopimpinellin (37) (Docking Score- − 8.09) 
isolated from Angelica keiskei have exhibited anti-SARS CoV activity 
targeting PLpro. Moreover, chalcones 3 and 6 were most efficient in 
inhibiting the activity of PLpro-cleavage (Park et al., 2016). Further anti 
PLpro activity of phenolic compounds was evaluated isolated from seeds 
of Psoraleacorylifolia (Kim et al., 2014). Total 6 compounds bavachinin 
(38), neobavaisoflavone (39), isobavachalcone (25), 4′-O-methylba-
vachalcone (40), psoralidin (41), and corylifol-A (42) were identified. 
Among them, isobavachalcone and psoralidin demonstrated promising 
PLpro inhibitory activity. Hence, future studies targeting papain-like 
cysteine protease with these natural extracts may lead to the better 
management against COVID-19 infection. In another study, 9 diary-
lheptanoids namely platyphyllenone (43), hirsutenone (44), platy-
phyllone (45), platyphyllonol-5-xylopyranoside (46), hirsutanonol (47), 
oregonin (48) rubranol (49), rubranoside B (50) and rubranoside A (51), 
isolated from Alnus japonica have demonstrated anti SARS-CoV potential 
by blocking PLpro activity. Among them, the hirsutenone was found to 
manifest the highest anti PLpro activity (Park et al., 2012). 

2.6. RNA-dependent RNA polymerase (RdRp) 

The RNA-dependent RNA polymerase of SARS-CoV (SARS-CoV 
RdRp) is an important enzyme, which can be utilized for the synthesis of 
both sense and antisense RNA. This enzyme is needed for replication and 
is expected to possess accessory cellular and viral proteins (Thiel et al., 
2003). Only a few reports are available regarding the evaluation of 

RNA-dependent RNA polymerase as a drug target using natural com-
pounds. The anti-SARS-CoV RdRp activity was reported using natural 
Houttuynia cordata that effectively inhibited the polymerase (Lau et al., 
2008). Further, extracts from Ganoderma lucidum were also reported to 
be potent antiviral agents against SARS-CoV by targeting viral RdRp 
(Fung et al., 2011). 

2.7. Plant extracts with unknown targets 

Besides the target-specific herbal therapeutic agents, a large number 
of plant extracts have been reported to demonstrate anti-SARS and anti- 
MERS activity. Glycyrrhizin (9) that is isolated from liquorice roots and 
considered to be the active component is reported to have the antiviral 
activity. It inhibits replication, adsorption, and penetration of virus. The 
efficacy of glycyrrhizin was higher after the viral adsorption (Cinatl 
et al., 2003). The exact mechanism of viral inhibition is unknown but 
glycyrrhizin affects signaling pathways such as casein kinase II; protein 
kinase C; and transcription factors like nuclear factor κB and activator 
protein 1. The aglycone metabolite of glycyrrhizin (18β glycyrrhetinic 
acid) upregulates the nitrous oxide synthase and also increases the 
production of NO in macrophages (Jeong and Kim, 2002). Another 
compound lycorine (52) from the extracts of Lycoris radiate identified as 
an efficient and safe antiviral agent against SARS-CoV(Li et al., 2005). 

Saikosaponins A (53), B2 (54), C (55), and D (56) are natural tri-
terpene glycosides that are isolated from Bupleurumspp, Heteromorpha 
spp., and Scrophulariascorodoniaalso demonstrated anti− HCoV-22E9 
activity by inhibiting viral penetration into the host cells. So these 
compounds could be important for inhibiting the early stages of CoV 
infection (Cheng et al., 2006). Moreover, extracts from Nigella sativa, 
Anthemishyalina, and Citrus sinensisdemonstrated potent in vitro anti 
CoV activity (Ulasli et al., 2014). R. Halitunal (57) from Halimeda tuna 
was reported to inhibit Murine coronavirus A59. However, the precise 
target and mechanism are still unknown (Koehn et al., 1991). Evaluation 
of anti- SARS activity was also carried out using various phytochemicals 
such as diterpenes [ferruginol (58), dehydroabieta-7-one (59), sugiol 
(60), cryptojaponol (61), 8β-hydroxyabieta-9(11)13-dien-12-one (62), 
7β-hydroxydeoxycryptojaponol (63), 6,7-dehydroroyleanone (64), 3β, 
12-diacetoxyabieta-6, 81,113-tetraene (65), pinusolidic acid (66), for-
skolin (67)] ; sesquiterpenes [cedrane-3β 12-diol (68), Cadinol (69),] ; 
Triterpenes [betulinic acid (22) and betulonic acid (70)]; lignins 
[hinokinin (71), savinin (23), 4,4′-O-benzoylisolariciresinol (72), hon-
okiol (73), magnolol (74)] and curcumin (75), niclosamide (76), vali-
nomycin (77) which significantly inhibited the viral multiplication (Wen 
et al., 2007). Similarly, Toonasinensisaquas leaf extract was also reported 
to stop the replication of SARS CoV (Chen et al., 2008). Further tet-
randrine (78), fangchinoline (79), cepharanthine (80), alkaloids were 
also reported to inhibit HCoV− OC43-viral infection in MRC-5 human 
lung cell lines (Kim et al., 2019). Further two natural compounds, 
tylophorine (81) and 7-methoxycryptopleurine (82) derived from Tylo-
phoraindica reported to prevent the viral genomic RNA replication. 
Further, these compounds could also inhibit TGEV, SARS-CoV, MER-
S-CoV (Yang et al., 2010). Moreover, the natural plant extract com-
pounds with unknown targets that possess antiviral activities and are 
previously reported against SARS or MERS could serve to be a potential 
agent in the treatment of COVID-19. 

3. Discussion 

It is a big challenge to develop an effective antiviral therapeutic 
agent. Various inverse agonists are currently being explored against 
COVID-19. The nucleoside inhibitor (Gilead‘s Nuc inhibitor) which has 
shown disappointment in the treatment of Ebola is effective in the 
treatment of a 2019-CoV patient in the USA, but the higher rate of 
mutation in this virus have restricted the use of this drug for treating the 
n-Cov patients (Nguyen et al., 2020). Moreover, remdesivir another drug 
recommended for the treatment of Ebola and other RNA viruses have 
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also been found useful in some of the patients (Gordon et al., 2020; 
Hillaker et al., 2020; Shannon et al., 2020). Recently anti-influenza drug 
favipiravir or avigan was considered as an efficient treatment regimen 
for COVID-19 patients as compared to other antiviral agents (Chibber 
et al., 2020; Rosa and Santos, 2020; Zhu et al., 2020). Likewise, chlo-
roquine and hydroxychloroquine which is effective against malaria, 
lupus, and rheumatoid arthritis (Garcia-Cremades et al., 2020; Rosa and 
Santos, 2020; Zhu et al., 2020) have also been found effective in coro-
navirus infection (Wang et al., 2020). Only limited therapeutic options 
are available against SARS-CoV2. Due to the high failure rate of antiviral 
agents, there is an urgent need for innovative drug development stra-
tegies by acquiring knowledge from the natural products to combat viral 
diseases. So far the antiviral potential has been reported by various 
herbal-based drugs and their derivatives (Lin et al., 2014) viz. antiviral 
activity against hepatitis C virus was reported by Nigella sativa (Oyero 
et al., 2016), similarly some marine fungi also showed antiviral potential 
(Moghadamtousi et al., 2015) and further some other natural com-
pounds have demonstrated antiviral action against dengue and chi-
kungunya virus (Moghadamtousi et al., 2015; Oliveira et al., 2017). 
Moreover, some natural compounds and their synthetic derivatives 
(Neumann and Neumann-Staubitz, 2010) as well as marine based nat-
ural products (Wang et al., 2014) have also exerted significant antiviral 
potential. However, the potential of these natural drugs has not been 
much explored against SARS-CoV-2 but employing the computational 
approaches and advanced biotechnological assays, various herbal-based 
drugs and their derivatives have been evaluated and confirmed their 
anti-SARS-CoV and anti-MERS-CoV activity. Further due to physical, 
chemical and some genome sequence similarity between SARS CoV-2 
and SARS-CoV or MERS-CoV (Andersen et al., 2020), repurposing 
these anti SARA− COV and anti MERS− COV natural agents could lead to 
develop a cost-effective and safe anti− COVID-19 drug. Development of 
anti− COVID-19 agents not only fights against CoV but also provides 
efficient protection from the future viral attack. Due to the involvement 
of in silico approaches in pharmaceutical research, now it is quite 
possible to identify the specific drug targets and understanding the 
mechanism of action of various natural products and their derivatives 
(Supplementary information). In this review, we have summarized 
various drug targets for natural drugs and their synthetic compounds, 
which were used to treat SARS CoV and MERS CoV. We have discussed 
the importance of various herbal-based compounds that can inhibit viral 
infectivity by blocking the ACE2 receptor of host or interrupt the activity 
of various viral proteins/enzymes such as spike glycoproteins (S pro-
tein), 3CL protease, PLpro, helicase, and RNA dependent RNA polymer-
ase. We have documented the mechanism of action of various 
herbal-based drugs so; these natural compounds could be important 
substitutes of synthetic drugs for the treatment of viral infections due to 
their low cost and safety efficacy. 

4. Conclusion 

In summary, we have identified and discussed the target-specific 
antiviral potential of several natural compounds against various 
strains of CoV, which might directly impede the COVID-19 pandemics. 
Further pharmaceutical companies should also give more emphasis on 
natural product research for the development of novel therapeutic 
agents against various viral infections to achieve sustainable develop-
ment goals on health. 
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