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This paper attempts to provide methods to estimate the real scenario of the novel coro-
navirus pandemic in Brazil, specifically in the states of Sao Paulo, Pernambuco, Espirito
Santo, Amazonas and the Federal District. By the use of a SEIRD mathematical model with
age division, we predict the infection and death curves, stating the peak date for Brazil and
above states. We also carry out a prediction for the ICU demand in these states and for how
severe possible collapse in the local health system would be. Finally, we establish some
future scenarios including the relaxation on social isolation and the introduction of vac-
cines and other efficient therapeutic treatments against the virus.

© 2020 The Authors. Production and hosting by Elsevier B.V. on behalf of KeAi
Communications Co., Ltd. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

In December 2019, the city of Wuhan in mainland China started experiencing an outbreak of unknown pneumonia cases.
Later, the cause of this outbreak was identified as a virus belonging to the Orthocoronavidae subfamiliy and the Betacor-
onavirus genus (Cui et al., 2019), similar to the SARS-CoV virus that caused the SARS crisis in 2003 (Andersen et al., 2020). That
similarity suggested the name SARS-CoV-2 to the novel coronavirus, and COVID-19 to the disease (Coronavirus Disease -
2019).

The virus quickly spread to other countries, reaching several countries by the end of February and being declared as a
pandemic by theWorld Health Organization (WHO) on the 11th of March, being classified as a high risk threat for the world’s
population (WHO, 2020). Since then, several mathematical models were used to predict the dynamics of the pandemic crisis
in other countries. One of those models with the biggest impact was developed by Imperial College London (Ferguson et al.,
2020).

In Brazil, the first case registered dates back to February 25th, but in this study we suggest evidence that the infection
might have started 19e24 days before the official record. We then proceed to simulate the crisis in specific states and attempt
to estimate the real scale of the outbreak, predicting when the infections peak might occur as well as the curve for ICU
demand. Finally, we present some future scenarios based on how halting the intervention might affect the curve. We also
explore how the introduction of vaccines or available medication might change the infection curve since there are several
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studies beingmade to evaluate the possible use of pharmaceutical drugs to cure the disease (McCreary& Pogue, 2020), (Negri
et al., 2020) and (Tang et al., 2020).

2. Description of the model

Wemake use of a SEIRDmodel, dividing the population into 5 groups: Susceptible, Exposed, Infected, Recovered and Dead.
The exposed population differs from the infected population in the development of their symptoms; an individual with the
virus first enters first the exposed group, carrying the virus during its incubation period; then, after the incubation period, the
individual passes to the infected group. The rate of infection is proportional to the number of infected and a contact constant
b, which is given by the average number of contacts between individuals multiplied by the probability of contracting the virus
during each contact. The development rate of symptoms is proportional to the incubation period c�1. The rate of recovery g is
proportional to the percentage of people who recover divided by the average time taken from the onset of symptoms to
recovery, similarly to the death rate m. Another consideration is that people in the exposed group might infect susceptible
people with an infection rate kwhich is a small fraction of b, that is, k ¼ Pexpb, where Pexp determines the fraction of infections
caused by exposed individuals.

The following diagram represents the dynamics of these populations (Fig. 1):
This model is represented by the following set of differential equations

dS
dt

¼ � b

N
IðtÞSðtÞ � k

N
EðtÞSðtÞ (1)

dE b k

dt

¼
N
IðtÞSðtÞ þ

N
EðtÞSðtÞ � cEðtÞ (2)

dI

dt

¼ cEðtÞ � gIðtÞ � mIðtÞ (3)

dR

dt

¼gIðtÞ (4)

dD

dt

¼mIðtÞ (5)
where the recovery rate g and death rate m are represented in terms of the Infection Fatality Rate (IFR) PIFR and the average
time from the onset of symptoms to recovery tr and death td.

m¼ PIFR
td

(6)

1� PIFR
g¼
tr

(7)
Fig. 1. Representation of a SEIRD model, a susceptible person gets exposed to the virus, being infected afterwards and either dies or recovers from the disease.
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All equations described conserve the total population N, which is assumed constant and homogeneous for the model to be
valid. This, of course, presents a limitation of the model, since in reality N is not homogeneous. Therefore, here N has the role
of the effective population, being equivalent to the population which the virus might reach during an interval of some
months. Estimating the real N is not an easy task, and in next sections we discuss how we decided to estimate this number.

We then divided the population into age groups to better describe how these rates vary from group to group.With that, we
made the following changes to the model in accordance to what was proposed by (Rocha Filho et al., 2020):

PIFR / PIFRi
; i ¼ 1;2;/;M (8)

b/bi ¼
XM

j¼1

PInf Cij (9)

whereM is the number of age groups, Cij is the social contact matrix, representing the average contacts between a member of
the i-th group with all other j-th groups and PInf is the probability of being infected at each contact.

With these definitions, we represent non-pharmaceutical interventions such as social isolation and lockdown with a
decrease of b given by a logistic function of the type

b¼ Pdbi
1þ tet�tc

þ ð1� PdÞbi (10)

here, bi is the infection rate before the intervention, tc is the time when the intervention starts, Pd is the fraction of reduction
in infection rate achieved and t is a constant related to the time taken from the start of the intervention until Pd is reached.

When simulating the curve for infections and deaths in Brazil and in the states of Pernambuco, Espirito Santo, Sao Paulo,
Amazonas and the Federal District, we used the model described above. Meanwhile, when simulating the ICU demand, we do
not apply the age division for lack of specific data for each age group, thus, we apply the simple SEIRDmodel with b extracted
from the fitting of data of each state and PIFR, tr and td appropriate for COVID-19 patients in the ICU.

3. Estimating the percentage of lost cases

3.1. Number of hospitalizations by SARS

According to (Salje et al., 2020), 3.6% of COVID-19 infections are severe and require hospitalization of which 30% are critical
and require an ICU unit. Some studies found a hospitalization rate of around 14% (Wu &McGoogan, 2020). Yet another study
found similar percentages, stating that 19% of the infections resulted in hospitalizations (COVID & Team, 2020). However,
these studies calculate these fractions according to the registered cases, which are undernotified in many regions.

With the emergence of the novel coronavirus, the number of hospitalizations by SARS per week increased when compared
to the years of 2019, 2018 and 2017. It is important to state that SARS hospitalizations here should not be misunderstood as
caused by the SARS-CoV virus, responsible for the SARS epidemic in 2002 (Marra et al., 2003). In Brazil, the term SARS is also
used to describe severe acute respiratory infection, independent of the etiological agent. Using the number of hospitalizations
by SARS during these years, we build a value for the background behavior, that is, the expected number of hospitalizations due
to other respiratory diseases (Fig. 2). The number reported by the Health Ministry per week is subject to alterations due to the
Fig. 2. Hospitalizations by SARS in Brazil in the years of 2017, 2018 and 2019. The 18 weeks correspond to the period of January 01, 2017 to May 06, 2017 for 2017
(green), December 31, 2017 to May 05, 2018 for 2018 (blue) and December 30, 2018 to May 04, 2019 for 2019 (purple).
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fact that new results in the following weeks may be related to previous ones, as new results are released. For example, by the
end of the 6th week of the year 2018, the official report estimates a number of hospitalizations of around 50 people, but later
on, this number was corrected to be close to 200. Because of this uncertainty in the most recent data, we use the values
available from four weeks before the most recent report (Fig. 3).

Fig. 3 shows an increase in hospitalizations by SARS in Brazil. Due to the definitions of SARS infection used by Brazils
Health Ministry, most cases of hospitalizations by COVID-19 are diagnosed as SARS. Therefore, we assume that the large
increase of SARS hospitalizations in comparison to the background is mainly caused by COVID-19. When comparing the years
of 2018 and 2019, the latter presented an average increase (during the epidemiological weeks considered) of 10% in hospi-
talizations by other causes (Influenza, etc). We assume the same increase could be found from 2019 to 2020, thus, we consider
that COVID-19 is responsible for 90% of the increase.

We observed that by the 6th week of 2020, the number of hospitalizations by SARS was 121 hospitalizations higher,
compared to the upper error bar of the background value, and higher even than the year of 2019 by 106 hospitalizations,
representing an increase of 31%, evidencing the likely existence of COVID-19 hospitalizations. According to a study performed
on COVID-19 patients in Shanghai, the hospitalization occurs on average 4 days after the symptoms onset, ranging from 2 to 7
days (Chen et al., 2020). The study, together with the increase of SARS hospitalizations by the 6th week of 2020 suggests the
possible existence of COVID-19 cases in Brazil between February 1st and February 6th, 19e24 days before the official record of
the first case on the 25th of February.

Following the increase of hospitalizations, by the end of the 13th epidemiological week of 2020 (March 28, 2020), the
number of hospitalizations by SARS in Brazil was already, 12260, while the background’s upper error bar of reaches a value of
merely 1028, and only 1123 were registered in the year of 2019. From our assumption, 90% of the excessive hospitalizations
are attributed to COVID-19, resulting in 10023e10108 hospitalizations by infections of the SARS-CoV-2 virus, which translates
into 278416 to 280777 infections between March 21, 2020 and March 26, 2020 (According to the average time taken to be
hospitalized). Comparing these estimates with the official numbers reported trough this period, we find a real number of
infections 90 to 200 times bigger than the official number (125 times, using the average). That represents a loss of 99.2%
(99.0e99.5) of actual infections. By comparison, a study done in China found that 86% infections were undocumented in-
fections prior to 23rd january (Li et al., 2020a).

3.2. Number of tests performed

A study of Imperial College London estimated the number of infections in 11 European countries until March 28th, based
on the basic reproduction number of the disease, found to be between 2 and 3 (Zhang et al., 2020), (Zhao et al., 2020), (Liu
et al., 2020) and (Read et al., 2020), and the type of non-pharmaceutical intervention done by the countries on specific dates
(Flaxman et al., 2020). With these estimations, wemay find the percentage of lost cases, that is, infections not documented, in
these countries until the 28th of March by comparing the estimated number of people infected with the official data available
on the 28th of March. Comparing these percentages with the number of tests done per 1000 inhabitants and the number of
tests done per day per 1000 inhabitants, we found a linear relation between the number of total tests done per 1000 in-
habitants and the number of tests performed per day per 1000 inhabitants in a country, as well as and the percentage of lost
cases (Figs. 4 and 5).

The number of points on each graph is different because, although the study considered 11 countries, not all of them had
data of tests per day available at (Max Roser& Ortiz-Ospina, 2020). The correlation between the number of tests per day with
the fraction of undocumented infections is �0.90, and the correlation between the number of total tests with the fraction of
undocumented infections is �0.79. A F-Test applied to the data set of both relations rejected the null hypothesis and that the
Fig. 3. Number of hospitalizations by SARS in Brazil in the year of 2020, 2019 and the background average.
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Fig. 4. Relationship between the number of tests performed per day per 1000 inhabitants and the fraction of lost cases.
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variation of tests and the variation of undernotification are not significantly correlated (p < 0.05). We also compared the
undocumented cases with the progression of the outbreak in each country and the day on which the non-pharmaceutical
interventions were imposed, but found no correlation. We evaluated the effect of the increasing rate of testing as well, but
it had no observable effect. From this comparison, a country needs to perform 4 (0.94e17 tests) tests per day per 1000 in-
habitants in order to obtain a excellent track of infections. Here, the large margin for the higher values of testing arises from
the low density of data points on the bigger values of the x-axis in Fig. 4.

The last official registration of the total number of tests done per 1000 inhabitants in Brazil of was 3.46, which corresponds
to 97% of cases being lost (89e99.2%). However, the highest value released on the closest date to the 13th epidemiological
week, reports 1.37 tests per 1000 inhabitants, corresponding to 98.8% of infections being undocumented (95.6e99.7%). A
more precise number could be achieved with the data of tests per day per 1000 inhabitants, allowing a 2-dimensional
regression. Unfortunately, we found no record of this information. Still, when fitting the data to a 2-dimensional regres-
sion algorithm, the resulting function states that the most important factor controlling the uncertainty of cases is that of tests
per day per 1000 inhabitants. That could also be observed by looking at the graphs individually, the number of total tests
performed per 1000 inhabitants decreases the percentage of undocumented infections at a much lower rate than the number
of tests per day per 1000 inhabitants.

Both methods found a region of agreement (99.5%e99.7%) of undocumented infections in Brazil. Since both methods
match closely, we decided to accept the estimate for undocumented infections in Brazil and moved on to the simulations of
infection and death curves of the country and of some of its specific regions.
4. Simulations

For the simulation of the whole of Brazil, we used theWorld Population Prospects from the United Nations (UN) to evaluate
the age distribution in Brazil in the year of 2020 (United Nations & Affairs, 2019) (This distribution will be used when
simulating the expected scenario for the whole country; when considering more specific age distributions for each state, we
acquired data from the Brazilian Institute of Geography and Statistics (IBGE) census, mentioned in the following sections
regarding each state). We found no studymeasuring the social contact matrix for the country, but the study (Deps et al., 2006)
evaluated the high levels of social contact in Brazil as an important factor for the spreading of leprosy. Therefore, we decided
to use the social contact matrix foundwith the highest entries among those available (Poland) due to the Brazilian’s culture of
proximity.

For the values of g and m we choose to use the ones found in the data of South Korea, Germany, Iceland and Taiwan, since
these countries are performingmore tests per 1000 inhabitants than Brazil, making their datamore reliable (Figs. 6 and 7). For
each country, we acquired the average values for td and tr , knowing the CFR.

Data from Taiwan presented large fluctuations in the behavior of m and g, even with a almost constant Case Fatality Rate
(CFR) of 1:3%±0:2%, making the values for td and tr inconclusive. That might be explained by the early intervention made by
the local government, drastically changing the values for the parameters. Clinical studies performed onWuhan patients found
td on average 18 days (6e32) (Ruan et al., 2020), and 20 days (17e24) (Wu et al., 2020).

When fitting the data of those countries with the model to extract b (Table 1, Table 2), we took into consideration in the
simulations the non-pharmaceutical intervention in each country in order to better describe b. The value of bwas used to set a
reference to compare with the ones found with the fitting of data from each state.

For the incubation period c�1, we took an average of the values found in previous studies (Table 3).
The value for kwas set to 44% of b based on the findings that showed that presyntomatic cases were responsible for 44% of

the infections (He et al., 2020). The parameter PIFR for each age group was set by re-scaling the international average of the
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Fig. 5. Relationship between the number of tests performed in total per 1000 inhabitants and the fraction of lost cases.

Fig. 6. Tests per day per 1000 inhabitants. Taken from (Max Roser & Ortiz-Ospina, 2020).
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case fatality rate (CFR) (WorldMeters, 2020) with the estimated infection fatality rate of 0.7% (Salje et al., 2020), ranging from
0.001% for those younger than 20 years old to 10.1% to those older than 80 years old (Table 4), while Psurvival ¼ 1� PIFR.

To simulate the ICU population, we added the hospitalized population H to the set of differential equations (1)e(5). The
introduction of this compartment is done by removing individuals from (3) with rate Ph=th, where Ph is the fraction of in-
fections that are critical and require ICU units, and th is the average time from the symptoms onset to admission to the ICU.
Inside the H compartment, individuals are removed to the death compartment with the rate mh ¼ Pdh=tdh, where Pdh is the
probability of dying upon ICU entry and tdh is the average time from ICU admittance to death. Similarly, individuals are also
removed to the recovered group with the analogous rates gh ¼ ð1 � PdhÞ=trh. The result is the following modification in
equations (3) to (5)

dI
dt

¼ cEðtÞ� ð1� PhÞgIðtÞ� ð1� P� hÞmIðtÞ � Ph
th

(11)
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Fig. 7. Total number of tests per 1000 inhabitants. Taken from (Max Roser & Ortiz-Ospina, 2020).
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dH
dt

¼ Ph
th

� ghHðtÞ � mhHðtÞ (12)

dR

dt

¼gIðtÞ þ ghHðtÞ (13)

dD

dt

¼mIðtÞ þ mhHðtÞ (14)
Table 5 contains the parameters for the simulation of the ICU population.

5. Results

In the simulation for the whole country, we considered N to be 5% of the total population based on an international
behavior for the total number of infections in other countries (Salje et al., 2020). We also selected PInf ¼ 14% according to
(Rocha Filho et al., 2020).

In order to add the effect of the use of masks by a large number of individuals to the simulation, we use a logistic function
to decrease the value of Pinfec by 50% based on (MacIntyre et al., 2011), the slope of the decreasing region was set to be 10x
slower than the one simulated with social distancing. We also choose Pd ¼ 0:5, taking the national average for the population
in social isolation (inloco, 2020).

The curve (Fig. 8) shows a good agreement with the estimated values by the number of SARS hospitalizations in the last
weeks of March, shown by theþmark on the graph.We also predict that the peak of the infection curve in Brazil should occur
100 days after the first case, which we considered to be at the beginning of February. Therefore, the peak should be in the
middle to end of May with 2.4 million infections, ranging from 2.2 to 2.7 million. The number of deaths is estimated to be
around 126 thousand, ranging from 114 to 139 thousand. By the end of the first wave, we estimate 8 million infections,
ranging from 6.4 to 9.6 million.

The shaded areas represent a 10% deviation from the simulated curve. The value of the deviationwas chosen as a reflection
of the uncertainty in the value for the effective population N.

5.1. Pernambuco

Online data available from the local government in (CIEVSPE, 2020) states a total of 0.84 tests per 1000 inhabitants and an
average of 0.05 tests per day per 1000 inhabitants, meaning thatmore than 90% of infections are being undocumented. For the
726



Table 1
Average values of td and tr acquired from data.

Country td tr

Iceland 14.3 ± 4.3 days 11.5 ± 4.5 days
South Korea 13.5 ± 5.6 days 21 ± 10 days
Germany 13.6 ± 5.8 days 17.5 ± 8 days
Average 13.8 ± 5.2 days 16 ± 7.5 days

Table 2
Values of b.

Country b

Taiwan 0.427 ± 0.066
Germany 0.483 ± 0.025
South Korea 0.534 ± 0.040
Iceland 0.685 ± 0.121
Average 0.532 ± 0.063

Table 3
Incubation time of the disease according to other studies with an average of 5.1 days.

incubation time 95% confidence Reference

6.4 days 5.6e7.7 Backer et al. (2020)
5.2 days 4.1e7 Li et al. (2020b)
5 days e Linton et al. (2020)
4 days e Guan et al. (2020)
5.1 days 4.5e5.8 Lauer et al. (2020)

Table 4
IFR of COVID-19 for different ages.

Age (years) Infection Fatality Rate

0e9 0.001
10e19 0.001%
20e29 0.001%
30e39 0.06%
40e49 0.12%
50e59 1.2%
60e69 2.5%
70e79 7.0%
þ80 10.1%

Table 5
Parameters for the simulation of the ICU population.

Parameter Value Reference

Ph 0.015 adapted from (Salje et al., 2020)
th 3.5 days Arentz et al. (2020)
trh 16 ± 4 days Chen et al. (2020)
tdh 7 (3e11) days Yang et al. (2020)
Pdh 0.52 Arentz et al. (2020)

H.P.C. Cintra, F.N. Fontinele Infectious Disease Modelling 5 (2020) 720e736
simulation, we acquired data regarding the age and geographical distribution of the population from the last census from
IBGE (IBGE, 2017a, 2017b, 2017c, 2017d).

The official record for the first case dates to the 12th of March, however, data from (CIEVSPE, 2020) now shows a ICU entry
of a 71 year old man in the capital of the state, Recife, diagnosed with the virus SARS-CoV-2 before this date. The patient
started having symptoms onMarch 1st. We choose to set this date as the starting point of the simulation. According to (inloco,
2020), the isolation index, which measures the fraction of the population in social isolation is on average 50%.

The simulation shows a peak close to the 50th day, in the beginning of May, with 8000 infections, ranging from 6000 to
10000 cases. The number of deaths estimated is 1400 (1167e1680). Herewe increased themargin of error to 20%, to represent
a larger uncertainty on N at specific locations (Fig. 9).
727



Fig. 8. Simulation of the COVID-19 pandemic crisis in Brazil. Red curve shows the number of deaths caused by COVID-19 while orange curve represents the active
number of infections. The shaded area represents the variation margin around the prediction. The smaller window on the top right corner shows an enlargement
of the region close to the estimated number of infections described in section 3.
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Despite the large number of cases lost, when fitting the data with a simulated curve, the value of b is 0:460± 0:050, which
agrees with the international standards. That indicates that the good tracking of the rate of change of the infection curve is
good in Pernambuco. The state might not have the precise values of the real infections, but it has a good knowledge of their
growth. This is an important feature for the state to be able to say that its data might represent the real scenario on a smaller
scale.

The state of Pernambuco has a total of 1315 ICU beds according to a census carried by the Brazilian Association of Intensive
Medicine (AMIB) in the year 2016 (A. deMedicina Intensiva Brasileira, 2016). However, recent news point to 80% of these beds
already being occupied, bringing the available number of ICU beds to 263.

From Fig. 10 we expect a higher ICU demand than the maximum capacity for Pernambuco, however, the capacity may be
increased with the construction of campaign hospitals.
5.2. Espirito Santo

In Espirito Santo, the online data provided by the government states a total of 6.70 tests per 1000 inhabitants realized,
placing the uncertainty percentage close to 88% (78e98). There are also 161 ICU units available for COVID-19 cases (G. do
Estado do Espírito Santo, 2020). The population data for the simulations was retrieved from a local census done by IBGE
(IBGE, 2017a, 2017b, 2017c, 2017d). The isolation index is on average 45% (inloco, 2020).

Like Pernambuco, the fitting on the Espirito Santo data reveals a good agreement of bwith international parameters, b ¼
0:436±0:199. However, the large error margin of the data lowers the confidence in it.

We found no record of previous hospitalizations due to COVID-19 prior the first case announced on March 6th, as we did
for Pernambuco. Therefore, we chose the official day as the starting point of the disease. The first infectious individual was in
the 30e39 years old age group.

The peak in Espirito Santo is close to 70 days after the start, close to May 15th, with a maximum infection number of
around 40000 (48000 - 32000) as shown in Fig. 11. The number of deaths is estimated to 700 (560e840).

Regarding the ICU demand we expect minor or no issues for the state, according to the current levels of social isolation
(Fig. 12).
5.3. Federal District

Recent data from the government reveals 20716 tests, meaning 6.8 tests per 1000 inhabitants, meaning the state most
likely has 86% (78.5e94.2) of undocumented infections. Unfortunately, no record of tests per day was found, so better ac-
curacy on lost cases was not possible. The first registration of COVID-19 on the region is from the 5th of March, with non-
pharmaceutical interventions starting on the 10th of March (S. de Saúde do Distríto Federal, 2020).

Like in the previous states, the IBGE census was used to extract the population’s distribution (IBGE, 2017a, 2017b, 2017c,
2017d).

The fit of the data with the simulations returns an efficiency of 88% of social isolation, but b and td are off the margin of
acceptance, indicating that the state is not efficiently tracking the rate of the increase of deaths and cases, possibly inva-
lidating the estimated percentage of the efficiency of the social isolation. The isolation index according to (inloco, 2020) is on
average 50%.
728



Fig. 9. Simulation of the COVID-19 pandemic crisis in Pernambuco. The black dots are the reported number of active infections, done by subtracting the deaths
and recoveries from the number of cumulative infections, the blue curve shows the behavior of the active infections data considering 90% loss of infections, that
is, dividing the reported data by 0.1.

Fig. 10. Simulation of the population in the ICU in Pernambuco due to COVID-19.

Fig. 11. Simulation of the COVID-19 pandemic in Espirito Santo.

H.P.C. Cintra, F.N. Fontinele Infectious Disease Modelling 5 (2020) 720e736
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Fig. 12. Simulation of the population in the ICU in Espirito Santo due to COVID-19. The blue curve represents the data according the 88% of undocumented
infections.
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The simulation shows that the Federal District is currently at its highest number of infections, around 10000
(8000e12000). The maximum number of deaths is projected to reach 190 (158e228). Also, with the current number of
infections, the Federal District is losing 89% of its cases (87e91%), in agreement with the margin estimated by the number of
tests performed (Fig. 13).

From the AMIB census, the state possesses 659 ICU beds. We assume an occupation of 80% before the disease reached the
state.

According to the simulation for the Federal District, at the current social distancing level, it is not expected to encounter
hospitalization issues (Fig. 14).

5.4. Sao Paulo

The state of Sao Paulo also provided online data gathered by the government (G. do Estado de S~ao Paulo, 2020). The first
infection notified dates from the 26th of February. Studies done with cellphone data from Sao Paulo inhabitants saw an
average of 53:6%±3:4% of the population is respecting the social isolation imposed by the local government on 24thMarch (G.
do Estado de S~ao Paulo, 2020).

When fitting the data with the model, considering a non-pharmaceutical intervention starting 27 days after the first case,
we found an efficiency of 58:3%±7% in social isolation measures, in agreement of the study. We also found b ¼ 0:454± 0:52.
Unfortunately, the government did not display data on infections, but with such a high mortality rate of, around 8%, the
number of infections is probably 4x bigger than the official number (meaning 75% of undocumented infections), assuming
that the number of deaths is in good agreement with the real scenario. However, given the behavior of previous states, and the
general scenario of Brazil, it is most likely that Sao Paulo finds itself in a 90% loss scenario.

The state has its peak projected to be around the 70th day of infection, or close to the 7th of May (Figs. 15 and 16). The peak
number of infections should be 260000 (208000e312000). For the number of deaths, the estimate is close to 6500
(5200e7800).

From the AMIB census, the state of Sao Paulo has a total of 7312 ICU beds and recent news point to 53% of them already
being occupied, leaving around 3400 ICU beds available for COVID-19 treatment.

Fig. 17 predicts a long period of hospitalizations problems for the state of Sao Paulo, with a peak demand of ICU units twice
as high as the current capacity.

5.5. Amazonas

For Amazonas, the fitting of data acquired from the Health Ministry yields b ¼ 0:406±0:096 and td ¼ 16± 6, showing that,
despite the high number of undocumented infections, the state is in the same situation found in other states; knowing the
behavior of the curve, but not the true number of each point on the curve. The difference from previous states is that the value
of td is also in agreement with international values. The average isolation index for Amazonas is around 51%.

The census from IBGE (IBGE, 2017a, 2017b, 2017c, 2017d) was also used here to acquire population data for the state.
From the AMIB census, Amazonas possesses 249 ICU beds, with 55% of them being occupied before the outbreak. Un-

fortunately, no data on tests was found for Amazonas, therefore we consider a 90% loss of infections.
Amazonas peak is estimated to occur on May 16th, with a 20000 infections peak (16000e24000). Deaths are estimated to

reach 500 in total (400e600) (Fig. 18). Several hospitalization issues are expected during the pandemic through the region
(Fig. 19); given the concentration of indigenous tribes throughout the Amazon rain forest territory, it should be expected for
there to be a high density of cases in the indigenous population.
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Fig. 13. COVID-19 scenario for the Federal District. The blue curve represents the behavior of the data considering the 86% loss of infections.

Fig. 14. ICU demand in the Federal District due to COVID-19.

Fig. 15. Simulation of the COVID-19 pandemic in Sao Paulo. The blue curve represents the 90% loss of data in Sao Paulo considering a constant testing rate.
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Fig. 16. Simulation of the COVID-19 pandemic in Sao Paulo for recent data (April 23rd).
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6. Future scenarios

Simulating the halting of non-pharmaceutical interventions is equivalent to making b increase up to it’s initial value. By
making such simulations, we observe an increase of cases, that is, a second peak of the disease right after the halt.

Fig. 20 shows that to drastically diminish the second peak, the social isolation must endure about 220 days supposing an
efficiency of 70%. It is equivalent to stating that in Brazil, quarantine should hold out until October, while for a total prevention
of the second peak, social isolation must take place until December. That is expected and agrees to other simulations made by
another group from the University of Harvard which projected that, to prevent a second peak in theworld and the possible re-
incidence of the virus, social isolation must hold until the beginning of 2021 and social distancing until 2022 or 2024 (Kissler
et al., 2020).

However, that scenario might drastically change with the introduction of vaccines or efficient medicine in the population.
As shown in the simulations (Figs. 21 and 22), such pharmaceutical interventions are able to rapidly decrease the infection
curve. In order to simulate the effect of medicine in the population, we started decreasing the death probability PIFR and time
taken from the symptoms onset to the recovery tr from a specific date, until it reaches a maximum value. We supposed that
the introduction of medicine decreased both PIFR and tr by half in the period of 10 days after the introduction in the
population.

For the vaccines, we added the term �vSðtÞ in (1), which takes out individuals from the susceptible group at a rate v called
vaccination rate, and added the term vSðtÞ in (4), adding those individuals on the recovery group, granting them immunity
against the virus. The vaccination rate vwas chosen to behave according to a logistic function starting at t ¼ 0, and gradually
increasing to 0.2 after a specific time.

From the simulations, the safest method is not to stop the intervention and introduce the vaccines or drugs into the
population, and then wait a small period of 10 days before halting the intervention.
7. Discussion with other studies

Other studies performed for Brazil found interesting results regarding the action of intervention policies, Bastos and Daniel
simulated an epidemic scenario for Brazil with social isolation and found that if social isolation does not last long enough, the
effect of decreasing the infection curve is instead substituted by a shift in the peak of the infection curve (Bastos & Cajueiro,
2003, p. 14288). Furthermore, previous models considering the implementation of public policies of social isolation have
managed to show a direct relation of the reduction of daily infections in Brazil to social isolation (Crokidakis, 2020).

Simpler simulations using a different compartmental model suggest a possible infection peak of 108 cases in Brazil
(Crokidakis, 2020), however they do not consider the introduction of the incubation period, causing a higher growth rate for
the disease (Cintra et al., 2020), which in turn causes a tendency of predicting the infection peak sooner than expected.

Ourwork proposes not only expected scenarios, but includes an evaluation of undernotified cases and ICU demand. Finally,
Brazil being a tropical country means changes in temperature affect the spread of the virus throughout the national territory
(Prata et al., 2020). Future research could be performed combining the average temperature during the pandemic to better
forecast viral spread.
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Fig. 17. Simulation of the ICU demand in the state of Sao Paulo.

Fig. 18. Simulation of the COVID-19 pandemic in Amazonas.

Fig. 19. Simulation of the ICU demand in the state of Amazonas.
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Fig. 20. Height of the second peak for different times at which social isolation is halted.

Fig. 21. Behavior of the infection curve if the vaccination/medication occurs at the same time of intervention stopping.

Fig. 22. Behavior of the infection curve if the vaccination/medication occurs 10 days before halting the intervention.
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8. Conclusion

Simulations of the COVID-19 outbreak vary from model to model, here we try to find balance between the most precise
model, which could be achieved considering also a group of asymptomatic infections, and the availability of data. With this
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objective, we decided to simulate the behavior of the disease in Brazil based on international parameters under the
assumption that they would not differ much from Brazil, for example the average time from the onset of symptoms to
hospitalization found in Shanghai, and the main aspects regarding the transmission would be intervention policies, popu-
lation demographics and social contact. This assumption might prove to be limited if is later found that climate effects
strongly alters the spread, since Brazil is a tropical country with a higher average temperature when compared to Europe and
Asia, where many parameters of the simulations were found.

Another limitation of the model is in the assumption of a homogeneous population. We tried here to counter act this
limitation by estimating the effective populationN according to international parameters and bywidening the errormargin of
the predictions. A better estimate of the outbreak could be done by assessing cities individually, however that would
represent a loss of data, since demographics available by IBGE aremainly on states andmajor cities. Another outtakewould be
the testing data, the states which provided testing data, did only for the whole state but not for individual cities. We did not
consider comorbidities in the population such as diabetes and cancer, however the age of the individual seems to be the most
important factor in determining mortality factors (N. U. Kingdom, 2020).

We also state here that the nature of the process is stochastic, allowing fluctuations from the deterministic model used to
run the simulations. Thus, this study present an estimate of the real situation and expected behavior given the parameters
associated with the disease and the efficiency of the intervention. The above results present the dimension of the real sce-
nario, but due to possible initial fluctuations in the stochastic behavior in reality, we might find some deviations from the
expected.

Even with limitations, the model has proven efficient in generating curves that agree with the estimated loss of cases for
each state. From the states studied here, Sao Paulo, Amazonas and Pernambuco present the highest risk of collapse in the
health system, while Espirito Santo and the Federal District should have minor issues with system collapse or none at all. The
blue curve representing the behavior of the official data considering the error percentage for Amazonas exhibited a growth far
from the simulation region, however, it falls perfectly inside this regionwhen data is translated by 10 days, meaning that if the
infection in Amazonas begun 10 days earlier than previously thought, the data fits the simulated curve.

In the case of the duration of social isolation, the safer situation is to hold the isolation for as long as possible in order to
decrease the second peak height, while increasing the number of tests performed. All simulations considered here did not
assume the end of the intervention, therefore, numbers of deaths may be higher. Should any efficient drugs in combating the
virus come along, the simulations show the safer way is to first introduce them in the populationwithout breaking the social
isolation, and about 10 days later start the process of reopening.

SUPPLEMENTARY MATERIAL

Source code used for some simulations and with didatic example of predictions available at https://github.com/
PedroHPCintra/Coronavirus.
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