Skip to main content
. Author manuscript; available in PMC: 2021 Jun 21.
Published in final edited form as: Nanoscale. 2020 Jun 3;12(23):12346–12356. doi: 10.1039/d0nr01614d

Table 3.

A summary of input parameters in the two Monte Carlo models for the cuvette experimental data analysis and laser warming of a GNP-loaded droplet simulation.

Parameters Cuvette experimental data analysis Laser warming of droplets
nd Refraction index of solutions 1.333 (water); 1.35553 (egg white) 1.3554, 55 (droplet)
na Refraction index of air 1.00 1.00
ra 1/e2 radius of Gaussian beam (mm) 0.562 mm * 1 *
Io Laser energy density (W m−2) Pinπra2 * 1.83×109 *
PW Pulse width of laser beam (ms) 0.5*
Ep Photon energy at 1064 nm (eV) 1.211 1.211
Nphotons Flux of photons (#m2s) I0/Ep I0/Ep
μt,medium Extinction coefficient of medium 1Lln(PoutPin), Eq. (S9) without GNPs *
μs,medium Scattering coefficient of medium 0 (water); or characterized same as GNPs
μt,tot Attenuation coefficient of GNP solutions 1Lln(PoutPin), Eq. (S9) with GNPs * μa,tot + μs,tot
μa,tot Absorption Coefficient of GNP solutions N * Cabs + μa,medium, Eq. (1) 5 cm−1**
μs,tot Scattering Coefficient of GNP solutions N * Csca + μs,medium, Eq. (2) 0.3 cm−1 (GNR) **, 11 cm−1 (GNS) **, or other assume values
η0 Photothermal conversion efficiency of GNP Varied to find experimental fit **
g Scattering anisotropy factor 0 (GNS)56 **; 0.25 (GNR)57 ** 0 (GNS)56 **; 0.25 (GNR)57 **
*

Measured values

**

Assumed values. The other unmarked values are either known constants or derived from the measured or assumed values. The choice of scattering anisotropy factors for different GNPs is explained in section S2.2 Part (1).