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Targeting molecular pathways for the treatment of 
inherited retinal degeneration

Introduction
Inherited retinal degeneration (IRD) is a group of diseases 
characterized by progressive loss of photoreceptor cells 
which affects vision and ultimately leads to complete blind-
ness (Broadgate et al., 2017). The complexity of genetic 
variations in this group of diseases demands for gene-in-
dependent therapeutic strategies and requires a strong 
collaboration among ophthalmologists, geneticists and bio-
technologists (Wubben et al., 2019). The pathophysiological 
events occurring at the subcellular and molecular levels in 
the degenerating photoreceptors have been partially char-
acterized and represent possible targets for neuroprotective 
therapeutic strategies. Specifically, Ca2+ overloads have 
been recently identified as harmful events at early stages of 
photoreceptor degeneration. Interestingly, increased intra-
cellular Ca2+ was detected in animal models caused by mu-
tations in different genes, identifying high intracellular Ca2+ 
as a common mechanism during the degeneration process 
(Power et al., 2019). A rationale for developing neuropro-
tective approaches can be the treatment with either calcium 
pump blockers or molecules able to boost calcium pumps 
favoring the extrusion of the ion from the photoreceptor 
cell (Frasson et al., 1999; Comitato et al., 2018). The topic 
of this review is the discussion of recent characterizations 
of the molecular events activated during photoreceptor 
degeneration and how these molecules can be targeted by 
neuroprotective approaches.

Search Strategy and Selection Criteria
The databases used to select the most relevant papers in-
cluded in this article were: https://www.ncbi.nlm.nih.gov/
pubmed and https://sph.uth.edu/retnet/. Keywords for 
searching (selection criteria): retinal degeneration, photo-
receptors, rods, neuroprotection, gene therapy, cell replace-
ment, optogenetics, retinal prosthesis, calcium, calpains, 
PEDF. We set dates of searching: 2000–2019.

Inherited Retinal Degeneration
IRD is a group of diseases that can lead to vision loss and 
eventually to blindness due, primarily, to photoreceptor 
cell death (Broadgate et al., 2017). The incidence of IRD is 
estimated 1:2000, thus being the most common cause for 
visual loss in the working population of the industrialized 
world (Cremers et al., 2018). The term IRD groups several 
diseases in which photoreceptors are affected and can be 
stationary, as for congenital stationary night blindness and 
achromatopsia, or progressive as in retinitis pigmentosa (RP), 
Leber’s congenital amaurosis (LCA) and Stargardt disease 
(Verbakel et al., 2018). IRD are genetically and clinically 
heterogeneous retinopathies. More than 100 different genes 
have been linked to the disease and each of them can bear 
different mutations (https://sph.uth.edu/retnet/). There is a 
great functional diversity in the types of genes that have been 
implicated in IRD and they can be eye specific (e.g., compo-
nents of the visual transduction cascade or of the retinoid 
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cycle, involved in outer segment renewal, photoreceptor spe-
cific structural proteins, transcription factors) or ubiquitous-
ly expressed (e.g., splicing factors, contributing to nucleotide 
metabolism) (Daiger et al., 2013). The genetic and functional 
multiplicity of the involved proteins might cause the activa-
tion of distinctive molecular mechanisms for the different 
forms of RP. However, the most recent findings suggest that 
some common mechanisms are associated to photoreceptor 
demise in the animal models for IRD analyzed so far (Marigo, 
2007). 

While the mutations behind many of the disease types are 
known, only one treatment based on gene therapy for the 
RPE65 gene is available for Leber’s congenital amaurosis, 
and some other gene therapy treatments are developing for 
mutations in specific genes (Trapani and Auricchio, 2019). 
Nevertheless, development of gene therapy strategies for 
each mutated gene or, even, for specific mutations in one 
gene is not feasible and requires such highly personalized 
therapy approaches, that only few patients may benefit from 
every single new treatment that will be generated. Other-
wise, recent studies characterized cell death mechanisms in 
several models of IRD, either caused by dominant or reces-
sive mutations, and found some events that play key roles in 
all the analysed retinas, such as increases of cyclic guanosine 
monophosphate (cGMP) and high levels of intracellular 
calcium ions (Power et al., 2019). Based on this evidence, 
development of new treatments targeting the characterized 
common molecular mechanisms leading to photoreceptor 
cell death may benefit a larger cohort of patients (Marigo, 
2007). 

In IRD, the causative mutations frequently affect rods but 
degeneration of diseased rods leads to a secondary loss of 
cones, even if cones are genetically unaffected (Campochiaro 
and Mir, 2018). There are several evidences that preservation 
of rods, although not functional, can save sight, because 
vision in humans is mainly mediated by cones (Sahel and 
Léveillard, 2018; Vighi et al., 2018). The purpose of neuro-
protection is, indeed, based on preservation of rod photore-
ceptor cells and consequently cones to save vision.

Therapeutic Prospects for Retinal 
Degeneration
The slow progression of the disease allows a wide time win-
dow for treatments but different stages of the disease may 
be more appropriate to be targeted by different therapeutic 
approaches (Figure 1). At early stages of the disease, when 
the retinal structure and histology are still not fully degen-
erated and photoreceptor cells are present, gene therapy 
and neuroprotection are the most appropriate approaches 
(Pardue and Allen, 2018). In fact, a successful gene therapy 
based on AAV2 delivery was recently approved for patients 
bearing mutations in the RPE65 gene and was applied to pa-
tients that, based on optical coherent tomography analysis, 
showed a preserved photoreceptor cell layer (Trapani and 
Auricchio, 2019). When most of photoreceptors are lost, cell 
replacement is an option. Transplantation of photoreceptors 

in patients is not in clinical trials yet, but several studies 
evaluated photoreceptor transplantation in wild type or IRD 
mutant mice (Jayakody et al., 2015). Seminal studies showed 
that post-mitotic photoreceptor precursor cells or mature 
photoreceptors can integrate in the degenerating retina of 
murine models of IRD, express photoreceptor markers, are 
light sensitive and improve function (MacLaren et al., 2006; 
Lakowski et al., 2010; Gust and Reh, 2011). The challenges 
of these studies are to obtain long-term survival of trans-
planted cells and sufficient integrated cells for improved 
functionality. Endogenous sources of photoreceptors are the 
ciliary epithelium and Müller glia cells (Tropepe et al., 2000; 
Giannelli et al., 2011), and recent studies provided evidences 
that the regenerative ability of Müller glia cell may represent 
a new therapeutic approach for retinal degeneration (Langhe 
and Pearson, 2019). While several protocols have been de-
veloped to differentiate rod-like cells from embryonic stem 
cells (Osakada et al., 2008; Lamba et al., 2009), induced plu-
ripotent stem cells (Osakada et al., 2009; Lamba et al., 2010; 
Tucker et al., 2014) and adult retinal stem cells (Coles et al., 
2004; Giordano et al., 2007; Demontis et al., 2012), none of 
these differentiation protocols can, at the moment, provide 
cells in number and integration capacity appropriate for 
an efficient transplantation of photoreceptors (Marigo and 
Casarosa, 2014; Gasparini et al., 2019). Differently, trans-
plantation of in vitro differentiated retinal pigment epitheli-
um is at a much more advanced stage and in clinical trials, 
as differentiated human embryonic stem cells-derived retinal 
pigment epithelium cells have been transplanted in patients 
with age-related macular degeneration and Stargardt disease 
(Bertolotti et al., 2014; Schwartz et al., 2015). An autologous 
transplant of retinal pigment epithelium derived from in-
duced pluripotent stem cells was performed in a patient with 
age-related macular degeneration (Mandai et al., 2017). One 
year after surgery, the transplant demonstrated to be safe but 
with no improved visual acuity. Perception of light can also 
be restored by optogenetic approaches in advanced stages of 
degeneration (Fortuny and Flannery, 2018). Optogenetics is 
a biotechnological approach to allow light perception by a 
light-sensitive protein ectopically expressed in retinal cells 
that are not photoreceptors. The idea behind optogenetics is 
that, provided the complete loss of the light-sensitive photo-
receptors in IRD, new light-sensitive cells can be generated 
by misexpression of proteins, that can be membrane integral 
ion channels, i.e., channelrhodopsin and halorhodopsin, 
or retinal G-protein coupled receptor, like opsins, that can 
change membrane potential upon light stimuli (Ostrovsky 
and Kirpichnikov, 2019). The low light sensitivity of chan-
nelrhodopsin and halorhodopsin was recently overcome by 
the finding that cone opsin can activate a G-protein-coupled 
inward-rectifier potassium channel and transduce the signal 
(Berry et al., 2019). The delivery of the genes encoding for 
optogenetic tools was based on viral delivery, like in gene 
therapy, in animal models of IRD. The targets of the optoge-
netic gene therapy are second-order neurons, such as bipolar 
cells, or retinal ganglion cells, third-order neurons, because 
IRD leads to loss of photoreceptors but the rest of the retina 
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can be preserved for long time (Stefanov et al., 2019). 
In case degeneration reaches a terminal stage with com-

plete photoreceptor loss, implant of a retinal prosthesis 
needs to be evaluated (Bloch et al., 2019). Advances in 
retinal prostheses increased in the last decades thanks to 
improved microelectronics, biomaterials and retinal surgery 
methodologies. Retinal prostheses can be recorded in two 
major groups: epiretinal prostheses and subretinal prosthe-
ses. Epiretinal prostheses are implanted on the vitreal side 
of the retina to stimulate retinal ganglion cells, the neurons 
that form the optic nerve and connect the eye to the brain. 
Clinical trials with hundreds of patients enrolled for the 
Argus II Retinal Prosthesis System (Second Sight Medical 
Products Inc., Sylmar, CA, USA), approved by the Food and 
Drug Administration in 2013, demonstrated statistically im-
proved quality of life and functional vision tasks (Dagnelie 
et al., 2017; Duncan et al., 2017). Subretinal prostheses are 
implanted on the side of photoreceptor cells with the aim 
of stimulating the retinal interneurons and possibly benefit 
from retinal signal amplification. Clinical trials with the Al-
pha IMS by Retinal Implant AG (Reutlingen, Germany) re-
ported safety and improvements in quality of life and object 
recognition (Kitiratschky et al., 2015). 

These new biotechnological approaches are attracting a lot 
of attention for patients with no residual photoreceptors left 
and thus at a stage of complete blindness. 

Patients at early stages of the disease and still presenting 
photoreceptor cells can aspire to a treatment to delay degen-
eration. Pharmacological approaches are mostly based on 
neuroprotection aimed at slowing the progression of the dis-
ease by interfering with inflammation or oxidative stress or 
apoptosis (Dias et al., 2018). The purpose of neuroprotection 
is the survival and maintenance of neurons and, in the case 
of IRD, of photoreceptors. The neuroprotective treatment 
is suitable for the slow degenerative progress characterizing 
IRD, however, at the moment, no pharmacological therapy 
demonstrated enough efficacy to restore vision. Some neu-
roprotective approaches have been attempted by injection of 
stem cells. Exogenous sources of stem cells are non-retinal 
stem cells such as mesenchymal stem cells, derived from 
adipose tissue, bone marrow or dental pulp. Recent studies 
showed that injections of these types of cells have neuropro-
tective effects without any replacement of photoreceptors in 
the murine retina (Mead et al., 2015). Genetically modified 
bone marrow mesenchymal stromal cells overexpressing 
brain derived neurotrophic factor, injected in the rd6 IRD 
mouse model, could effectively rescue the damaged retina 
by neuroprotective means (Lejkowska et al., 2019). Some 
clinical trials are now undergoing based on injections of 
autologous mesenchymal stem cells in IRD patients (Labra-
dor-Velandia et al., 2016). We should keep in mind that the 
therapeutic possibilities of mesenchymal stem cells can be 
unpredictable because these cells are often derived from pa-
tients for autologous transplants and their ability to secrete 
neuroprotective molecules will vary from one individual to 
the other. 

Neuroprotection is, otherwise, often achieved by the de-

livery of small molecules at specific concentrations either lo-
cally in the eye or systemically (Sieving et al., 2006; Perusek 
and Maeda, 2013; Scholl et al., 2015; Vighi et al., 2018). 
This requires prolonged administration of the drug and one 
treatment is usually not definitive. Therefore, appropriate 
delivery systems, necessary to allow the drug to reach the 
neural retina, need to be developed based on the chemical 
characteristics of the different neuroprotective molecules 
(Himawan et al., 2019). The promising aspects of neuropro-
tective approaches are based on the fact that neuroprotection 
is not driven by a specific mutation in one gene but aims at 
targeting common cell stress pathways for the treatment of 
a broad spectrum of patients in a mutation-independent 
modality. This therapeutic approach allows also combined 
therapies and is less dependent on the stage of the disease 
because it will target cells that, at the specific moment of 
the treatments, are facing molecular and metabolic changes 
associated to cell death. Production of promising neuropro-
tective drugs requires a deep knowledge of the physiological 
and metabolic changes as well as molecular pathways acti-
vated in photoreceptor cells during the degenerative process.

Cell Death Mechanisms in Rod Photoreceptor 
Cells
The definition of whether different genetic lesions trigger 
similar cell death mechanisms and the identification of the 
crucial players during the degenerative process are strategic 
matters to be addressed for the development of new treat-
ments for this genetically heterogeneous but phenotypically 
similar group of diseases.

The role of apoptotic pathways engaging executioner 
caspases during photoreceptor degeneration has been quite 
controversial. Caspase 3 and caspase 7, both executioner of 
apoptosis, were found activated in transgenic rats and mice 
with a mutation in the Rhodopsin (Rho) gene (Liu et al., 
1999; Gorbatyuk et al., 2010; Comitato et al., 2019b). Several 
data, otherwise, on different models of the disease indicated 
that a caspase-independent mechanism is triggered during 
retinal degeneration (Donovan and Cotter, 2002; Doonan 
et al., 2003; Comitato et al., 2019b). The limited impact of 
caspase 3 in IRD was confirmed by taking advantage of 
caspase 3-deficient mice, in which knock-out of caspase 3 
provided only transient photoreceptor protection (Zeiss et 
al., 2004). Supporting this hypothesis were in vivo treatments 
with a pan-caspase inhibitor, such as Z-VAD-FMK, that 
offered very limited neuroprotection in murine models of 
IRD (Sanges et al., 2006; Comitato et al., 2019b). The focus 
on caspases was based on the fact that BCL2-associated X 
protein (BAX) had been found activated in the degenerating 
retinas of animal models of IRD. Our studies extensively 
evaluated BAX activation in at least three models of RP, the 
rd1 mouse bearing a recessive mutation in the Pde6b gene, 
the Rho knock-out mouse and a transgenic mouse express-
ing the P23H mutation in RHO, and demonstrated that its 
function is mainly related to the efflux of the apoptosis in-
ducing factor (AIF) from mitochondria and not to caspase 



1787

Kutluer M, Huang L, Marigo V (2020) Targeting molecular pathways for the treatment of inherited retinal degeneration. 
Neural Regen Res 15(10):1784-1791. doi:10.4103/1673-5374.280303

activation (Comitato et al., 2014). These and other studies 
suggested that executioner caspases may be activated but 
they are not critical in mediating retinal degeneration in 
vivo. Based on these evidences the use of the term “apoptosis” 
for photoreceptor cell death in IRD is, thus, considered not 
appropriate and scientists in the field prefer to refer to pho-
toreceptor cell death or photoreceptor degeneration for these 
events (Power et al., 2019). 

Accumulating evidences from our and other laboratories 
implied that mitochondria and the endoplasmic reticulum 
(ER) are major points of integration of cell death signals. 
These two organelles contribute to tides and ebbs in calcium 
ions leading to unbalance of Ca2+ fluxes triggering cell de-
mise. Intracellular Ca2+ levels are strictly regulated because 
they can affect neuronal survival (Yamashima and Oikawa, 
2009). Several studies on models for photoreceptor cells 
death reported that the molecular pathways following calci-
um overload differ from classical caspase mediated apopto-
sis and engage calpains (Paquet-Durand et al., 2006, 2019; 
Sanges et al., 2006; Comitato et al., 2019b; Figure 2). 

Calpains are cysteine proteases sensitive to intracellular 
calcium and are activated by increases in intracellular [Ca2+]. 
Inactive calpains are heterodimers, composed of an 80 kDa 
proteolytic subunit and a 28 kDa regulatory subunit (Ravu-
lapalli et al., 2009). In the ER the heterodimer is associated 
with an endogenous calpain inhibitor called calpastatin. 
Calpastatin release and Ca2+ stimulated dissociation of the 
regulatory subunit lead to the activation of the calpain en-
zymes (Hood et al., 2004). Activation of calpains has been 
associated to cell death in IRD (Marigo, 2007; Paquet-Du-
rand et al., 2019). Calpains do not directly cause chromatin 
condensation but they are proteases with a broad spectrum 
of substrates such as cytoskeleton components, AIF and 
BAX (Goll et al., 2003; Comitato et al., 2014) (Figure 2). AIF 
is a flavoprotein localized in the mitochondrial intermem-
brane space. Upon proper cell death stimuli, AIF exits the 
mitochondrion through BAX-formed pores and translocates 
to the nucleus where induces chromatin fragmentation (Ar-
noult et al., 2003; Comitato et al., 2014). Cleavage and release 
of AIF from mitochondria are regulated by calpain 1 and can 
occur in the absence of cytochrome c release, an event that 
otherwise induces apoptosis (Polster et al., 2005; Ozaki et al., 
2009). In several neuronal degeneration models, including 
retinal degeneration, activation of AIF and its transloca-
tion to the nucleus had been observed (Cande et al., 2002; 
Sanges et al., 2006; Cao et al., 2007; Mizukoshi et al., 2010; 
Rosenbaum et al., 2010; Comitato et al., 2016, 2019b). The 
activated form of AIF recruits Cyclophilin A for chromatin 
fragmentation that culminates in cell death (Arnoult et al., 
2003; Cande et al., 2004). 

Dysregulation of different photoreceptor factors may cause 
calcium overloads leading to calpain activation. Recessive 
mutations in the Pde6b gene in the rd1 mouse model cause 
lack of PDE6 enzyme activity. PDE6 is a key enzyme in the 
phototransduction cascade. PDE6 hydrolyses cGMP in re-
sponse to light and rhodopsin (RHO) activation. Impaired 
PDE6 activity causes elevated levels of cGMP (Farber and 

Lolley, 1974; Vighi et al., 2018). The correlation of elevated 
intracellular cGMP and photoreceptor cell death is quite 
well documented and appears to underlie photoreceptor cell 
demise caused by mutations in several genes linked to IRD 
(Power et al., 2019). In healthy photoreceptors, cGMP binds 
and keep open the cGMP-gated channels, channels regulat-
ing entrance of cations and, among them, Ca2+. Excessive 
cGMP, thus, results in elevated intracellular calcium (Sanges 
et al., 2006). Increased cGMP, on the other hand, can also ac-
tivate cGMP-dependent protein kinase enzymes that trigger 
cell death mechanisms (Paquet-Durand et al., 2009; Vighi et 
al., 2018; Figure 2). 

Mutations that cause misfolding of the RHO protein have 
been also associated with increased intracellular Ca2+ in rod 
photoreceptors (Shinde et al., 2016; Comitato et al., 2019b). 
Dominant mutations in RHO account for 20–25% of the 
dominant forms of RP and most of these mutations lead 
to misfolding of the protein and retention in the ER (Beh-
nen et al., 2018). Dominant mutations in RHO have been 
studied for several years and numerous murine models are 
available as transgenic or knock-in mice. Activation of ER 
resident sensors, such as IRE (inositol-requiring enzyme 1), 
ATF6 (activating transcription factor-6) and PERK (protein 
kinase R-like ER protein kinase) have been reported but the 
functions of these sensors in  the unfolded protein response 
to activate protective mechanisms or in ER-stress leading to 
cell death are still not completely defined in degenerating 
photoreceptors (Lin et al., 2007; Kunte et al., 2012; Chiang 
et al., 2015; Athanasiou et al., 2017; Comitato et al., 2018). 
In transgenic mice, in which expression of mutant RHO 
is combined with RHO protein overexpression, ER-stress 
sensors linked to apoptosis are activated (Gorbatyuk et al., 
2010; Kunte et al., 2012; Comitato et al., 2016). Differently, 
in RHO recessive mutations, as in the knock-out mouse of 
the Rho gene, no ER-stress could be revealed but high [Ca2+] 
was reported (Comitato et al., 2016). Interestingly, in murine 
models of IRD with an equal gene dosage of wild type and 
mutant proline 23 to histidine (P23H) Rho, such as in the 
P23H knock-in mouse (RhoP23H/+), activation of the ER resi-
dent sensors, i.e. phosphorylated IRE1 and PERK, could be 
detected but this activation appeared to be related to ER-as-
sociated protein degradation and unfolded protein response 
and not to cell death (Chiang et al., 2015; Comitato et al., 
2019b). Specifically, we defined that activation of PERK leads 
to phosphorylation of the nuclear factor erythroid 2-relat-
ed factor 2 transcription factor, which is a mediator of the 
antioxidant response and possibly a protective mechanism 
during photoreceptor degeneration (Comitato et al., 2019b). 
On this line of evidences, inhibition of the PERK pathway 
revealed to be detrimental, suggesting that PERK sustains 
unfolded protein response and is a compensatory response 
in the degenerating retina (Athanasiou et al., 2017; Comitato 
et al., 2019b). These data are relevant for the studies on IRD 
because the RhoP23H/+ knock-in mouse models the degenera-
tive progression of photoreceptors similarly to what found in 
RP patients bearing the P23H mutation in RHO, i.e., with a 
slow degeneration starting from the ventral side of the retina 
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(Sakami et al., 2011). 
Altogether the studies suggest common mechanisms of 

cell demise in dominant and recessive forms of RP caused by 
mutations in the PDE6B and RHO genes. In murine models 
of these types of RP intracellular increase of calcium ions 
and activation of calpains have been pinpointed as key play-
ers triggering photoreceptor degeneration.

Targeting Cell Death Mechanisms for 
Neuroprotection of Degenerating 
Photoreceptors
Several studies demonstrated that targeting calpains can be 
a promising therapeutic neuroprotective option for the de-

generating retina. We showed that, in the rd1 mouse model 
with a recessive mutation in the Pde6b gene, calpain 1 ap-
pears to play a major role in the activation of the cell death 
pathway leading to AIF nuclear translocation (Comitato 
et al., 2014). Several calpain inhibitors have been tested in 
this mouse model of IRD and many of them showed neuro-
protective effect in short-term delivery (Paquet-Durand et 
al., 2006, 2010; Sanges et al., 2006). However, some calpain 
inhibitors, such as CX295 and SJA6017, demonstrated to be 
toxic when the retina was exposed for a prolong time period 
to the inhibiting compounds (Paquet-Durand et al., 2010). 
In healthy tissue, calpain 1 and calpain 2 are maintained in 
an inactive state by binding to calpastatin, a highly specific 
endogenous inhibitor (Hood et al., 2004). A peptide derived 
from the natural inhibitor calpastatin was tested in the de-
generating eyes and provided neuroprotection in recessive 
and dominant models of IRD after short and prolonged 
exposure times in vitro, on retinal explants, and in vivo after 
intravitreal injection (Paquet-Durand et al., 2010; Comitato 
et al., 2014, 2016). Neuroprotection by in vivo injection in 
the eye of the calpastatin peptide gave variable results in 
different models of IRD, with effects ranging from 30% to 
80% reduction of dying cells (Paquet-Durand et al., 2010; 
Comitato et al., 2014, 2019a). A possible explanation is the 
high specificity of calpastatin for two types of calpains, i.e., 
calpain 1 and calpain 2. In case other calpains are activated, 
calpastatin cannot block them. In fact, while in the knock-in 
mouse RhoP23H/+ we found 80% correlation of calpain activa-
tion with the cell death marker terminal deoxynucleotidyl 
transferase dUTP nick end labeling at the peak of degenera-
tion, calpastatin peptide could reduce cell death only by 30% 
(Comitato et al., 2019a). We reasoned that other calpains, 
aside calpain 1 and calpain 2, might be activated during reti-
nal degeneration caused by the P23H mutation in RHO and 
found that a different calpain inhibitor (PD150606), which 
can target the majority of calpain types, could protect the 
retina from cell death by 65%. The strong neuroprotective 
activity of PD150606 suggests that different calpains are ac-
tivated in retinas bearing different mutations leading to IRD. 
Nevertheless, the common mechanism activated by changes 
in [Ca2+] appears to be shared by several models of the dis-
ease and, thus, lowering calcium ions should also be evaluat-

Figure 1 Stages of photoreceptor degeneration and applicable therapies.
Degeneration is represented in a graph showing the reduction in photoreceptors cells during degeneration. Below we report the time windows of 
different therapeutic options. Gene therapy is appropriate for early stages of photoreceptor degeneration and neuroprotective strategies can treat 
ongoing photoreceptor cell degeneration. Both these treatments act on endogenous photoreceptors. Cell replacement, optogenetics and retinal 
prosthesis are strategies to treat patients at advanced/late stages of degeneration.

Figure 2 Cell death mechanisms.
The calcium-calpain pathway plays a major role in photoreceptor de-
mise linked to IRD. Increases of intracellular calcium trigger calpain 
proteases which, by acting on AIF, lead to cell death through BAX ac-
tivation. High intracellular Ca2+ can be caused by increases of intracel-
lular cGMP, which can also activate PKG, as well as by protein misfold-
ing, such as in photoreceptors bearing mutations in rhodopsin (RHO). 
High intracellular cGMP can be a consequence of loss of function in 
the phosphodiesterase 6 enzyme (PDE6), which idolizes cGMP. AIF: 
Apoptosis inducing factor; BAX: BCL2-associated X protein; cGMP: 
cyclic guanosine monophosphate; IRD: inherited retinal degeneration; 
PKG: cGMP-dependent protein kinase. 
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ed as new therapeutic avenue (Comitato et al., 2019b). 
In a recent study we confirmed the hypothesis that de-

creasing intracellular calcium can be neuroprotective in 
models of IRD. We and others showed that the pigment 
epithelium derived factor (PEDF) can preserve the degen-
erating retina of recessive and dominant models of IRD 
(Holekamp et al., 2002; Wang et al., 2013; Kenealey et al., 
2015; Polato and Becerra, 2016; Comitato et al., 2018). 
Short-term treatments by intravitreal injection of human re-
combinant PEDF restrained cell death in the rd1 mutant ret-
ina by binding the PEDF receptor encoded by the PNPLA2 
gene (Kenealey et al., 2015) and a small peptide of 17 amino 
acids (17mer) was identified as the neurotrophic domain of 
the protein. PEDF or the 17mer were demonstrated to act 
by targeting the PMCA pumps at the plasma membrane of 
photoreceptors and, thus, by favoring calcium efflux with a 
consequent reduction of intracellular [Ca2+] below toxic lev-
els (Comitato et al., 2018). Interestingly, the PEDF receptor 
is an integral membrane protein with a phospholipase A2 
activity stimulating the release of the omega-3 fatty acid do-
cosahexaenoic acid from phospholipids (Subramanian et al., 
2013; Pham et al., 2017). Docosahexaenoic acid  was proven 
in myocytes and cardiomyocytes to support PMCA pumps 
and to interfere L-type Ca2+ channels counteracting calcium 
overload (Pepe et al., 1994; Mączewski et al., 2016). We, thus, 
propose that PEDF neuroprotective activity for degenerating 
photoreceptors acts by releasing intracellular docosahexae-
noic acid, which increases PMCA pump activity to extrude 
calcium ions. The decrease of intracellular [Ca2+] induced by 
PEDF attenuate the cell death mechanism with lowered cal-
pain activation and reduced mitochondrial BAX and nuclear 
translocation of AIF (Comitato et al., 2018). Altogether, the 
central cell death mechanism triggered by high intracellular 
[Ca2+] is diminished by PEDF. The open question that needs 
to be addressed is whether long-term exposure to PEDF can 
support photoreceptor survival or may have undesired side 
effects which will preclude the use of PEDF in therapy.

Perspectives and Conclusions
A limiting aspect in designing a cure for IRD is the high ge-
netic heterogeneity found by molecular diagnosis in patients 
and the high percentage of isolated instances. General and 
common factors activated by mutations in different genes 
can be keystones for translational research. We identified 
activation of calpains, engaged by high intracellular Ca2+, as 
features shared by several murine models of IRD. In order 
to plan effective treatments to stop cell death during reti-
nal degeneration we need specific studies aimed at defining 
whether high Ca2+ and calpains activate all the downstream 
catastrophic events leading to cell death or whether they 
cooperate with other proteases. The identification and char-
acterization of molecules acting on these events needs also to 
be complemented by the development of appropriate delivery 
systems for the retina (Himawan et al., 2019). In fact, the dif-
ferent chemico-physical properties of neuroprotective agents 
tested in mice by short-term delivery will require specific 
and differentiated delivery systems. A second challenge will 

be a specific delivery either to rod or to cone photoreceptors 
to avoid side effects, such as bioconjugated compounds, in 
case of synthetic molecules (Wadhawan et al., 2019) or vi-
ral pseudotypes and rod-specific promoters in case of gene 
therapy approaches (Auricchio et al., 2001; Mussolino et al., 
2011). Treatments with neuroprotectants targeting cell death 
mechanisms can delay photoreceptor degeneration but may 
also be of interest for combined treatments. In fact, gene 
therapy for recessive forms of IRD is in the clinic but appears 
to be more effective in young individuals and thus on cells at 
an early stage of degeneration (Trapani and Auricchio, 2019). 
A healthier photoreceptor appears to be a better target for 
gene therapy. Neuroprotection could, thus, be envisaged as a 
treatment to prolong sight but also for combined therapies to 
enhance the effectiveness of gene therapy approaches. Simi-
larly, we may expect that also cell transplantation may have 
more chance of integration in a retinal tissue with a limited 
stressed status and low inflammation. 
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