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Abstract

Using a sample from a population to estimate the proportion of the population with a certain 

category label is a broadly important problem. In the context of microbiome studies, this problem 

arises when researchers wish to use a sample from a population of microbes to estimate the 

population proportion of a particular taxon, known as the taxon’s relative abundance. In this paper, 

we propose a beta-binomial model for this task. Like existing models, our model allows for a 

taxon’s relative abundance to be associated with covariates of interest. However, unlike existing 

models, our proposal also allows for the overdispersion in the taxon’s counts to be associated with 

covariates of interest. We exploit this model in order to propose tests not only for differential 

relative abundance, but also for differential variability. The latter is particularly valuable in light of 

speculation that dysbiosis, the perturbation from a normal microbiome that can occur in certain 

disease conditions, may manifest as a loss of stability, or increase in variability, of the counts 

associated with each taxon. We demonstrate the performance of our proposed model using a 

simulation study and an application to soil microbial data.

Keywords

Relative abundance; microbiome; correlated data; overdispersion; high throughput sequencing; 
beta-binomial

1. Introduction

Estimating the proportion of a population that belongs to a certain category—the relative 

abundance—is a problem spanning fields as broad as social science, population health and 

ecology. For example, researchers may be interested in estimating the proportion of low-

income students who attend competitive higher-education institutions (Bastedo and Jaquette 
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(2011)), child mortality rates in Sub-Saharan African regions (Mercer et al. (2015)), or the 

proportion of diseased leaf tissue in coastal grasslands (Parker et al. (2015)). In most of 

these settings, it is not possible to sample the entire population of interest, and it is necessary 

to estimate the true proportion based on a sample of individuals from the population. In this 

paper we consider the general problem of estimating the prevalence of a category within a 

population when the category labels of the observed individuals may be correlated.

While this problem is of broad interest, our method is particularly motivated by the ever-

increasing number of studies of microbiomes. A microbiome is the collection of microscopic 

organisms (microbes), along with their genes and metabolites, that inhabit an ecological 

niche (Poussin et al. (2018)). Microbes live on and in the human body, and in fact, microbial 

cells may outnumber human cells (Sender, Fuchs and Milo (2016)). Because of this, the 

relative abundance of a microbe—or a taxon, which refers to a biological grouping of 

microbes—is a common marker of host or environmental health. For example, the species G. 
vaginalis has been found to correlate with symptomatic bacterial vaginosis (Callahan et al. 

(2017)); different genera of Cyanobacteria flourish in response to precipitation and irrigation 

runoff (Tromas et al. (2018)); and Parkinson’s disease has been associated with reduced 

levels of the family Prevotellaceae (Hill-Burns et al. (2017)). Accurate and precise 

estimation of microbial abundances is critical for disease diagnosis and treatment (Qin et al. 

(2014), Grice (2014), Gevers et al. (2014), Shi et al. (2015)).

A particularly challenging aspect of estimating microbial abundances is that the category 

labels of microbes are known to be correlated. Microbial communities are spatially 

organized, with a member of one taxon more likely to be observed close to the same taxon 

than close to a different taxon (Welch et al. (2016)). In this paper we argue that a correlated-

taxon model is a natural approach to estimating relative abundances in this setting. It 

successfully explains the large number of unobserved taxa in many samples, as well as 

overdispersion in the abundance of observed taxa relative to models where the occurrences 

of individual microbes are uncorrelated.

An additional advantage of our method is that it provides a statistical framework for testing 

for dysbiosis. Dysbiosis describes a microbial imbalance, or a deviation from a healthy 

microbiome (Petersen and Round (2014), Hooks and O’Malley (2017)). In particular, the 

term is often used to refer to a change in the stability of a microbiome. For example, 

inflammatory bowel disease (IBD) has been associated with increases in the variability of 

the gut microbiome (Halfvarson et al. (2017)), and the microbiomes of IBD patients are 

often referred to as dysbiotic (Tamboli et al. (2004)). Unlike many methods for modeling 

relative abundances of microbial taxa, the method that we propose provides a natural 

framework for hypothesis testing for dysbiosis via the parameters of a heteroskedastic model 

for taxon abundances. Specifically, we can test whether the variability in a taxon’s counts is 

associated with some covariate of interest.

Our paper is laid out as follows. In Section 2, we review several existing regression models 

for microbial abundances. In Section 3, we propose our model, and discuss parameter 

estimation. We propose approaches for testing for differential abundance and differential 

variability in Section 4. In Section 5, we show via simulation that our hypothesis testing 
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framework is valid, even with small sample sizes. We apply our method to data from a soil 

microbiome study in Section 6, and we close with a discussion of our method in Section 7. 

Software for implementing our model and hypothesis testing procedures is available in the R 

package corncob, available at github.com/bryandmartin/corncob and provided in 

Supplement A of the Supplementary Material (Martin, Witten and Willis (2020a)).

2. Literature review

Modeling of population proportions, or relative abundances, has a long history in the 

statistical literature, and includes basic methods such as z-tests for proportions, and logistic 

regression. However, modeling microbial abundance data brings with it a number of 

challenges. For example, the dynamic nature of the microbiome commonly gives rise to a 

large number of microbial taxa that are only present in a small number of samples, but are 

highly abundant when present (DiGiulio et al. (2015), Dethlefsen and Relman (2011)). Some 

microbes may be so rare that they consistently evade detection or are observed at low 

abundances in all samples (Sogin et al. (2006)). In addition, the number of taxa (typically on 

the order of thousands) is generally substantially less than the number of samples (typically 

less than one hundred). Finally, the number of counts that are observed in each sample may 

differ substantially, and thus the amount of information contained in each sample may differ.

Thus, we focus our literature review on models for microbial abundances. We broadly 

categorize these models into two approaches: jointly modeling multiple taxa, and modeling 

each taxon individually. While our proposal pertains to the latter, both approaches are 

common and each has its advantages and disadvantages, which we now review.

Jointly modeling multiple taxa is a popular approach because it represents the entire 

microbial community with a single model. However, since these communities are often very 

diverse (the total number of taxa is large), and different taxa exhibit differing levels of 

variability, a large number of parameters is typically needed to obtain a good model fit 

(Kurtz et al. (2015), Sankaran and Holmes (2017)). Hierarchical models of absolute 

abundances are often used to constrain the number of parameters (e.g., La Rosa et al. (2012), 

Holmes, Harris and Quince (2012), Chen and Li (2013), Sankaran and Holmes (2017), Cao, 

Zhang and Li (2017)). However, modeling the variance structure is challenging with few 

parameters (Sankaran and Holmes (2017)). Many joint taxon models make use of the log-

ratio or centered log-ratio transformations to model relative abundances. However, these 

approaches typically cannot be applied to zero-valued observations (Aitchison (1986), 

McMurdie and Holmes (2014), Willis and Martin (2018)). Since many taxa are typically 

unobserved in each sample, these methods commonly make use of pseudo-counts to replace 

zeros, or incorporate a zero-inflation component into their model (Xia et al. (2013), Mandal 

et al. (2015), Li et al. (2018), Willis and Martin (2018)). In the case of pseudo-counts, 

parameter estimation depends on an arbitrarily chosen hyperparameter, while zero-inflated 

models may lack interpretability.

Because simultaneously modeling large numbers of microbial taxa is challenging, an 

alternative approach is to model individual taxa one-by-one. We further classify individual 

taxon models into models for observed relative abundances (the proportion of the observed 
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counts that corresponds to the specific taxon), and models for absolute abundances (the 

number of observed counts of the taxon). A particularly common model for observed 

relative abundances is the beta distribution, which is a natural choice since it is supported on 

(0, 1). Zero-inflated beta regression models have been proposed to account for the large 

number of zeros often observed in microbial abundance data, corresponding to the absence 

of a taxon in a sample (Peng, Li and Liu (2016), Chen and Li (2016), Chai et al. (2018)). 

Nonparametric models for observed relative abundances (White, Nagarajan and Pop (2009), 

Segata et al. (2011)) and Gaussian models for transformed observed relative abundances 

(Morgan et al. (2012, 2015)) have also been proposed.

Another option is to model the absolute abundance of a taxon. Popular methods originally 

designed for RNAseq data, such as DESeq2 (Love, Huber and Anders (2014)) and EdgeR 

(Robinson, McCarthy and Smyth (2010)), make use of the negative binomial distribution. 

These models can be extended with random effects and a zero-inflation component to 

account for correlation across subjects and to model additional overdispersion of the counts 

(Zhang et al. (2017), Fang et al. (2016)). Alternative approaches to modeling absolute 

abundances include the use of transformations such as cumulative sum scaling (Wahba et al. 

(1995), Paulson et al. (2013)), trimmed mean of M-values (Robinson and Oshlack (2010), 

Law et al. (2014)) and ratio approaches (Sohn, Du and An (2015), Chen et al. (2018)).

All of the papers mentioned thus far focus on an association between mean abundance and 

covariates. In this paper, we propose a beta-binomial regression model for microbial taxon 

abundances. To the best of our knowledge, this is the first regression model that allows for 

an association between the variance of a taxon’s abundance and covariates, rather than only 

an association between the mean abundance and covariates. In addition, our model can 

accommodate the absence of a taxon in samples, variability in the total number of counts 

across samples and high variability in the observed relative abundances.

3. The beta-binomial regression model

3.1. A hierarchical model for microbial abundances

In this section, we present a beta-binomial regression model for microbial abundance data. 

While the beta-binomial model has been extensively studied in the statistics literature 

(Skellam (1948), Kleinman (1973), Williams (1975), Prentice (1986), McCullagh and 

Nelder (1989), Aerts et al. (2002), Dolzhenko and Smith (2014), Wagner, Riggs and 

Mikulich-Gilbertson (2015)), to our knowledge, we are the first to propose a regression 

framework that can link both discrete and continuous covariates to both a relative abundance 

parameter and a correlation/overdispersion parameter, as well as the first to apply this model 

to the analysis of microbial data. We summarize the notation and definitions defined in this 

section in Table 1.

Suppose we have n samples of microbial communities, indexed by i = 1, …, n. Let Mi be the 

sequencing depth, or the number of total counts (or reads) across all taxa, in the ith sample. 

Let Yi,j for j = 1, …, Mi be an indicator that the jth read corresponds to the taxon of interest. 
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Therefore, W i = ∑j = 1
Mi Y i, j is the observed absolute abundance of the taxon of interest in the 

ith sample.

It is natural to consider the model

W i ∣ Zi, Mi ∼ Binomial Mi, Zi , (3.1)

and to perform inference on Zi, where Zi is the probability of observing the taxon of interest 

in the ith sample. However, this model is insufficiently flexible to model microbial 

abundance data. For example, Figure 1 (left) shows 95% prediction intervals from a 

binomial model fit to the relative abundance of a strain of Rhizobium in 16 experimental 

replicates of sampling microbes in soil (see Section 6 for details). We see that the data are 

substantially overdispersed relative to the binomial model, which provides a very poor fit 

(see McMurdie and Holmes (2014) for further discussion on overdispersion of microbial 

abundance data).

The overdispersion of the observed relative abundances compared to a binomial model 

motivates a more flexible model. We propose the following model:

W i ∣ Zi, Mi ∼ Binomial Mi, Zi , (3.2)

Zi ∼ Beta a1, i, a2, i , (3.3)

where a1, i ∈ ℝ+, a2, i ∈ ℝ+. In the model (3.2)–(3.3), Zi is itself a random variable, 

representing the latent relative abundance of the taxon. As we will demonstrate, this 

hierarchical approach to modeling relative abundance is a major advantage of our approach.

Using the parameterization

μi = a1, i
a1, i + a2, i

, (3.4)

it can be shown that

E W i ∣ Mi = Mi × E Zi = Mi × μi . (3.5)

Thus μi ∈ (0, 1) is the expected relative abundance of the taxon in the ith sample. In 

addition, using the parameterization

ϕi = 1
a1, i + a2, i + 1, (3.6)

it can be shown that

Var W i ∣ Mi = Mi × μi × 1 − μi × 1 + Mi − 1 × ϕi . (3.7)
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The multiplicative factor (1 + (Mi − 1) × ϕi) is therefore the overdispersion of the absolute 

abundance of the taxon for the ith sample relative to a binomial random variable. 

Furthermore,

Corr Y i, j, Y i, j* = ϕi for 1 ≤ j < j* ≤ Mi, (3.8)

so ϕi can also be interpreted as the correlation between the taxon indicator variables within 

the ith sample (Prentice (1986)).

We then link the expected relative abundance, μi, and the overdispersion, ϕi, to covariates. 

We define link functions

g μi = β0 + Xi
Tβ, (3.9)

ℎ ϕi = β0* + Xi
* Tβ*, (3.10)

where Xi, the ith row of the covariate matrix X = Xij ∈ ℝn × k, represents k covariates 

associated with μi; Xi*, the ith row of the covariate matrix X* = Xij* ∈ ℝn × k*, represents 

the k* covariates associated with ϕi; β = (β1, …, βk)T; and β* = β1*, …, βk** T . X and X* may 

be identical, or they may be non- or partially-overlapping.

Throughout this paper, we choose the logit transformation for the link functions in (3.9) and 

(3.10), so that

g(x) ≡ ℎ(x): = log x
1 − x .

This link function is convenient as it is a bijection between [0, 1] and ℝ. Other choices for 

the link functions can be used as well, and the link functions for μi and ϕi need not be 

identical.

This hierarchical model has three key advantages over other approaches. First, the use of a 

beta random variable as a model for the binomial probability allows us to incorporate 

overdispersion. Second, the overdispersion parameter (rather than just the mean) can be 

modeled with covariates. As we will see in Section 6, this is a key advantage of our 

approach. Finally, our model makes direct use of the absolute abundance (W1, …, Wn) and 

the total number of counts (M1, …, Mn), rather than simply transforming these quantities 

into the observed relative abundance (W1/M1, …, Wn/Mn), which would amount to throwing 

away valuable information about the sequencing depth across in each sample. We show the 

95% prediction intervals from a beta-binomial model for the soil microbiology study in 

Figure 1 (right).

3.2. Model fitting

Given n samples from the model (3.2)–(3.3), the log-likelihood is
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logL(θ ∣ W , M)

= ∑
i = 1

n
log

Mi
W i

B a1, i + W i, a2, i + Mi − W i
B a1, i, a2, i

= ∑
i = 1

n
log

Mi
W i

B( e−β0* − Xi* Tβ*

1 + e−β0 − XiTβ
+ W i, e−β0* − Xi* T β*

1 + eβ0 + XiT β
+ Mi − W i)

B( e−β0* − Xi* T β*

1 + e−β0 − XiT β
, e−β0* − Xi* T β*

1 + eβ0 + XiT β
)

,

(3.11)

where W ∈ ℝn, M ∈ ℝn, β ∈ ℝk, β* ∈ ℝk*, θ = β0, βT , β0*, β * T T
, and B(·, ·) is the Beta 

function given by B(x, y) = ∫0
1tx − 1(1 − t)y − 1dt for x ∈ ℝ and y ∈ ℝ+. We fit the model by 

maximum likelihood using the trust region optimization algorithm (Fletcher (1987), Nocedal 

and Wright (1999), Geyer (2015)), which has accelerated computation relative to a line 

search method.

In this iterative algorithm, a “trust region” is defined around the parameter estimate at each 

iteration. The algorithm then updates the parameter estimate by minimizing a second-order 

Taylor series expansion of the objective function, subject to the constraint that the solution is 

within the trust region. If a proposed update is infeasible (i.e., it is outside of the parameter 

space), then it is rejected and the trust region shrinks. The minimization of the objective 

function then repeats with the new constraint. If a proposed update is close to the boundary 

of the trust region, the trust region expands in the next iteration. We implement the trust 

algorithm for minimizing the negative log-likelihood using the R package trust (Geyer 

(2015)).

The log-likelihood is not concave in θ (see Appendix A), so trust region optimization does 

not guarantee convergence to the global minimum of the objective function. However, under 

mild conditions, the limit points of the trust algorithm are guaranteed to satisfy the first- and 

second-order conditions that are necessary for a local minimum (Fletcher (1987), Nocedal 

and Wright (1999)). We use multiple initializations and select the estimate that has the 

largest log-likelihood. In practice, there is little difference in the parameter estimates across 

initializations.

Each iteration of the trust region optimization algorithm makes use of the gradient and 

Hessian of (3.11). These are given in Appendix B for the case of logit link functions for g(·) 

and h(·) in (3.9) and (3.10).

4. Hypothesis testing

We now discuss inference on θ. We consider the null hypothesis that Aθ = b, where 

A ∈ ℝr × k + k* + 2  has full row rank and r < k + k* + 2, b ∈ ℝr, and where θ is the 

parameter vector introduced in (3.11). Note that this general form for the null hypothesis 

allows us to test arbitrary subsets and linear combinations of the parameters within 

θ = β0, βT , β0*, β * T T
. The Wald test statistic is
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T Wald = n(Aθ − b)T Aℐ(θ)n
−1AT −1

(Aθ − b), (4.1)

where

θ = argsup
θ

log L(θ ∣ W , M) (4.2)

and ℐ(θ)n is the observed Fisher information evaluated at θ:

ℐ(θ)n = − 1
n ∑

i = 1

n ∂2

∂θ∂θT logL(θ ∣ W , M)
θ = θ

. (4.3)

Algorithm 1

Parametric Bootstrap Wald Test of H0 : Aθ = b

   Require: W, M, X, X*, a large integer B (e.g., B = 10,000)

1: Estimate θ and θ0 as in (4.2) and (4.5), respectively, with the trust region optimization procedure.

2: Compute T Wald as in (4.1) using A, b and θ.

3: for b = 1, …, B do

4:   Simulate W b
 with elements W i

b
 drawn from a beta-binomial distribution with Mi draws and parameters θ0.

5:   Estimate θb
 as in (4.2) using W b

 and M with the trust region optimization procedure.

6:   Compute T Wald
b

 as in (4.1) using A, b and θb
.

7: Calculate the p-value:

p 1
B + 1 1 + ∑

b = 1

B
1 TWald

b ≥ T Wald .

8: return p

Under the null hypothesis that Aθ = b, we find empirically that T Wald is well-approximated 

by a χr2 distribution if n is large (Section 5.1). Alternatively, we can test Aθ = b using a 

likelihood ratio test statistic, defined as

T LRT = 2 logL(θ ∣ W , M) − logL θ0 ∣ W , M , (4.4)

where

θ0 = argsup
θ:Aθ = b

logL(θ ∣ W , M) . (4.5)
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When n is large and Aθ = b, we find that the distribution of T LRT is well-approximated by a 

χr2 distribution (Section 5.1).

In practice, we often do not have the sample size necessary to use the χr2 approximation. For 

this reason, we also implement a parametric bootstrap hypothesis testing procedure. Our 

parametric bootstrap Wald testing procedure is given in Algorithm 1; the parametric 

bootstrap likelihood ratio test procedure is provided in Appendix C.

For certain realizations of W, Wald-type inference is uninformative. For example, if k = k* = 

1, Xi = Xi* ∈ 0, 1  for i = 1, …, n, and ∑i:Xi = 1W i = 0, then a parameter estimate diverges 

to −∞ (see Lemma D.1 in Appendix D for details). This limitation is not unique to our 

model, and hypothesis testing using Wald tests in the case of complete or quasi-complete 

separation in logistic regression is known to have the same issue (see Albert and Anderson 

(1984), Heinze and Schemper (2002), Heinze (2006) for further discussion). In this case, we 

instead use the likelihood ratio test to test hypotheses about β, such as β = 0. However, in 

this setting, even the likelihood ratio test does not provide a useful test of certain hypotheses 

about β*, such as β* = 0 (see Appendix D). Since it is often the case that a taxon is 

unobserved in certain experimental conditions, the default behaviour for our software in this 

setting is to return a test statistic of zero for Wald-type tests to indicate that inference is 

uninformative and the null hypothesis should not be rejected.

While (4.4) and Algorithms 1–2 hold for any A and b, they require solving (4.5). This may 

be difficult to do for certain A and b. In this case, an approximate solution could be obtained 

by maximizing the likelihood subject to a penalty on Aθ − b  by (e.g., see Fiacco and 

McCormick (1968), Ryan (1974)). Alternatively, approximating the distribution of (4.1) 

with a χr2 distribution does not require restricted maximum likelihood estimation.

In summary, we implement four hypothesis testing procedures: the Wald test, the likelihood 

ratio test, the parametric bootstrap Wald test and the parametric bootstrap likelihood ratio 

test. The Wald and likelihood ratio tests permit faster inference than the parametric bootstrap 

tests. However, the parametric bootstrap procedures successfully control Type 1 error in 

small sample sizes. We now demonstrate the performance of all of these hypothesis testing 

procedures in simulation.

5. Simulation study

We now investigate the performance of our approach, which we call count regression for 

correlated observations with the beta-binomial, or corncob, under simulation. We study the 

Type I error rate and the power when testing for both differential abundance and differential 

variability. We generate sequencing depths M ∈ ℝn with elements Mi simulated from the 

empirical distribution of the observed sequencing depths in the data set discussed in Section 

6, which ranges from 7821 to 58,655. We use sample sizes n ∈ {10, 30, 100} and a binary 

covariate Xi = Xi* = 0 for i = 1, …, n/2 − 1 and Xi = Xi* = 1 for i = n/2, …, n. We then 

simulate absolute abundances W ∈ ℝn with elements Wi simulated under the data generating 

model (described below). The parameter values were selected by fitting corncob to the genus 
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Thermomonas in the data set discussed in Section 6 so that simulated data are similar to 

what might be observed in a real-world experiment. For each simulation, we calculate 

10,000 p-values using all four of the hypothesis testing procedures outlined in Section 4: the 

Wald test, the likelihood ratio test, the parametric bootstrap Wald test and the parametric 

bootstrap likelihood ratio test. We use 1000 bootstrap iterations for the parametric bootstrap 

testing procedures.

5.1. Type I error rate

We first confirm that corncob controls Type I error at the nominal level. We generate data 

using the beta-binomial model with logit link functions for mean and overdispersion, under 

three settings for β. In the first simulation setting, we test the null hypothesis 

H0: β1, β1* = (0, 0). We generated model parameters by fitting a model to the genus 

Thermomonas without using soil amendment as a covariate, yielding parameters 

(β0, β1, β0*, β1*) = ( − 5.75, 0, − 5.24, 0). In the second simulation setting, we test the null 

hypothesis H0:β1* = 0. We generated model parameters by fitting a model to the genus 

Thermomonas using soil amendment as a covariate for μi, yielding parameters 

(β0, β1, β0*, β1*) = ( − 5.36, − 1.12, − 5.69, 0). In the third simulation setting, we test the null 

hypothesis H0 : β1 = 0. We generated model parameters by fitting a model to the genus 

Thermomonas using soil amendment as a covariate for ϕi, yielding parameters 

(β0, β1, β0*, β1*) = ( − 5.51, 0, − 5.38, 0.70). For all three simulation settings, the null hypotheses 

are true, so we would expect p-values obtained from testing the null hypotheses to be 

uniformly distributed.

The results are shown in Figure 2. For sample sizes of 30 and 100, all testing procedures 

resulted in approximately uniform p-values, and Type I error is controlled. This suggests that 

for this experiment, a sample size of 30 is sufficient to approximate the distribution of the 

Wald and likelihood ratio test statistics using a χ2 distribution.

Example quantiles from each of the simulation settings are shown in Table 2 in Appendix E. 

For a sample size of 10, only the parametric bootstrap procedures resulted in approximately 

uniform p-values and successful Type I error control. The p-values obtained using the Wald 

and likelihood ratio tests were anti-conservative, suggesting that for this experiment, a 

sample size of 10 is too small to approximate the distribution of the test statistics using a χ2 

distribution. Therefore, to obtain reliable inference, we recommend the parametric bootstrap 

procedure when n is smaller than 30.

5.2. Power

We now investigate the power of corncob to reject (i) the null hypothesis H0 : β1 = 0, as well 

as (ii) the null hypothesis H0:β1* = 0. We consider two cases: varying the value of β1, and 

varying the value of β1*. For both settings, we generated model parameters by fitting a model 

to the genus Thermomonas using soil amendment as a covariate for μi and ϕi, yielding 

parameters (β0, β1, β0*, β1*) = ( − 5.17, − 2.46, − 5.13, − 3.88). In the first case (Setting 4 in 
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Figure 3), we set β0, β1, βn*, β1* = (β0, cβ1, βn*, β1*) using c ∈ {0, 0.05, …, 1}. In the second 

case (Setting 5 in Figure 3), we set β0, β1, β0*, β1* = (β0, β1, β0*, cβ1*) using c ∈ {0, 0.05, …, 1}.

The results of the power analyses are shown in Figure 3. For both null hypotheses, all 

sample sizes, and all hypothesis testing procedures, the power increases as both the sample 

size and the magnitude of the coefficient being tested increases. For sample sizes of 30 and 

100, there is little difference in power across the four testing procedures. This is not 

surprising, given that in the simulations in Section 5.1, all procedures performed similarly 

with sample sizes of 30 and 100. We do not show results for the procedures that rely on the 

asymptotic distribution of the test statistics for n = 10, as we saw in Section 5.1 that these 

procedures did not properly control Type I error.

6. Application to soil data

We now consider a study of the association between soil treatments and soil microbiome 

composition (Whitman et al. (2016)). In this experiment, there are three groups of soil 

treatments: no additions, biochar additions and fresh biomass additions. For each treatment 

group, multiple experimental replicates were taken at three time points: on the first day, after 

12 days and after 82 days. The data include n = 119 samples with sequencing depths ranging 

from 8830 to 194,356. After quality control (as described in Whitman et al. (2016)), a total 

of 7770 operational taxonomic units were identified using the UPARSE workflow (Edgar 

(2013)), and taxonomy was assigned using reference databases. Using the assigned 

taxonomy, we aggregated counts to the genus level, giving 241 genera.

We are interested in applying our method to compare the microbiome of soil with no 

additions after 82 days (n = 15) to the microbiome of soil with biochar additions after 82 

days (n = 16). We remove 13 genera for which the total number of counts in these 31 

samples is zero. We apply corncob using soil addition as a covariate for μi and ϕi as in (3.9) 

and (3.10). We calculate p-values using the parametric bootstrap likelihood ratio test 

(Algorithm 2) with B = 106 bootstrap iterations. We compare the results of corncob to those 

from DESeq2 (Love, Huber and Anders (2014)), EdgeR (Robinson, McCarthy and Smyth 

(2010)), metagenomeSeq (Paulson et al. (2013)) and a zero-inflated beta (ZIB) regression 

model (Peng, Li and Liu (2016)).

6.1. Detection of differential abundance

We first compare p-values obtained from testing for differential abundance across soil 

addition group. Roughly speaking, each of the approaches tests for a difference in abundance 

of a single taxon across conditions, although the details of the model used vary across 

methods. In the context of corncob, testing for differential abundance amounts to testing the 

null hypothesis H0 : β = 0, using the notation defined in (3.9). Scatter plots of the negative 

log-10 p-values for each approach are shown in Figure 4.

Overall, as p-values calculated using corncob decrease, so do those calculated using other 

approaches. We observe moderate to strong correlations across the different approaches, 

with Spearman’s correlation coefficients between the p-values obtained from corncob (H0 : 

β = 0) and DESeq2, edgeR, metagenomeSeq and ZIB, respectively, of 0.854, 0.783, 0.552, 
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0.705. corncob calculated a lower p-value for 53.9%, 43.6%, 63.8% and 58.3% of genera 

compared to DESeq2, edgeR, metagenomeSeq and ZIB, respectively. Median p-values 

across all genera for corncob, DESeq2, edgeR, metagenomeSeq and ZIB are 0.273, 0.318, 

0.297, 0.491 and 0.320, respectively. Therefore, while the p-values produced by corncob are 

on a similar scale to the other approaches, they may be higher or lower for any given taxon. 

While each of the approaches uses a different model and makes use of a different test 

statistic, they are all testing for some difference in the mean abundance of the taxon across 

the soil addition. Thus, it is unsurprising that the p-values are similar across the approaches.

6.2. Detection of differential variability

We now test for differences in the variability of the abundance of a single taxon across 

conditions, which we refer to as differential variability. Using corncob and the notation in 

(3.9)–(3.10), this amounts to testing the null hypothesis H0 : β* = 0. As far as we know, 

corncob is the only approach that explicitly tests for differential variability. Thus, in this 

section, we investigate whether testing for differential variability allows us to identify new 

genera beyond what we identify when testing only for differential abundance.

We compare the results of testing for differential variability to the results of testing for 

differential abundance using the methods investigated in Section 6.1. Figure 5 shows scatter 

plots of the negative log-10 transformations of the p-values for testing differential abundance 

from DESeq2, metagenomeSeq, ZIB and corncob against the p-values for testing differential 

variability with corncob. We see from Figure 5 that there is only a weak association between 

the p-values for differential variability obtained using corncob and the p-values for 

differential abundance obtained using the other approaches. In particular, Spearman’s 

correlation coefficients are 0.127, 0.234, 0.132, 0.215 and 0.362 between corncob p-values 

for H0 : β* = 0 and p-values from DESeq2, edgeR, metagenomeSeq, ZIB and corncob for 

H0 : β = 0, respectively. We omit from Figure 5 the scatter plot comparing the corncob p-

values for H0 : β* = 0 to the edgeR p-values because the p-values from edgeR are similar to 

those from DESeq2. We conclude that applying corncob to test H0 : β* = 0 leads to the 

discovery of a very different set of genera than those discovered by applying corncob or 

other approaches to test for differential abundance.

To obtain greater insight into the results shown in Figure 5, we consider the 3 highlighted 

genera, which we further investigate in Figure 6. The first, Thermomonas, has small p-values 

for both differential abundance (p = 1.00 × 10−6) and differential variability (p = 1.00 × 

10−6) using corncob. The second, Flavisolibacter, has a small p-value for differential 

abundance (p = 7.44 × 10−4) and a large p-value for differential variability (p = 0.404). The 

third, Myxococcus, has a large p-value for differential abundance (p = 0.244) and a small p-

value for differential variability (p = 8.83 × 10−3), so it would not be identified using the 

competing approaches (see Table 3 in Appendix F for p-values from all approaches). Figure 

6 indicates a clear visual difference between genera that are identified as differentially 

abundant but not differentially variable, differentially variable but not differentially 

abundant, and both differentially abundant and differentially variable. Researchers can use 

corncob to distinguish between these three possibilities.
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In practice, a data analyst will apply a multiple testing procedure to adjust the p-values for 

multiple comparisons, so we also investigative the number of genera identified as either 

differentially abundant or differentially variable after applying the Benjamini–Hochberg 

procedure (Benjamini and Hochberg (1995)) to the p-values obtained using corncob to test 

H0 : β = 0 and H0 : β* = 0. The results are shown in Figure 7. We see that for a given false 

discovery rate, in this data set we detect more genera as being differentially abundant than 

differentially variable; this can also be seen in the right-most panel of Figure 5. All code for 

performing this analysis is available in the supplementary materials available at github.com/

bryandmartin/corncob_supplementary and provided in Supplement B of the Supplementary 

Material (Martin, Witten and Willis (2020b)).

7. Discussion

In this paper, we have proposed a beta-binomial regression model for abundance data. Our 

model extends existing beta-binomial models by allowing discrete and continuous covariates 

to be linked to both a relative abundance parameter and an overdispersion parameter. Our 

method is particularly well-suited to modeling microbial abundance data for a number of 

reasons. First, microbial taxa are commonly unobserved in many samples. For example, in 

the data set examined in Section 6, 34% of absolute abundances were zero. Our model can 

accommodate this without requiring a zero-inflation component or pseudocounts. Second, 

studies of microbial populations often have small sample sizes. Our simulation study in 

Section 5 suggests that our parametric bootstrap inference methods (Algorithms 1 and 2) 

give valid inference even with small samples. Third, the interpretation of μi as the expected 

relative abundance and of ϕi as the within-sample correlation of taxon labels (i.e., 

ϕi = Corr Y ij = Y ij′ , see Section 3) are intuitive and complement ecological theory (Welch et 

al. (2016)). Finally, regression models for contrasting microbial populations commonly 

focus on differential abundance. By conducting inference about ϕi, our model is also able to 

identify differences in microbial populations associated with differential variability.

Many studies (e.g., see Gerber (2014), Faust et al. (2015), Zhou et al. (2015), among others) 

employ a longitudinal design to investigate the dynamics of microbial populations over time. 

To accommodate this setting, future work could incorporate random effects into (3.9) and 

(3.10).

Our proposed approach models a single taxon’s abundance. A limitation of this approach is 

that it does not enforce the compositionality constraint (i.e., the estimated expected relative 

abundances need not sum to 1 across all microbes in the population). Future work could 

consider a multivariate extension of our approach to enforce the compositionality constraint 

or incorporate between-taxon correlations.

All methods proposed in this paper are implemented in an R package available at 

github.com/bryandmartin/corncob and provided in Supplement A of the Supplementary 

Material (Martin, Witten and Willis (2020a)). Code to reproduce all simulations and data 

analyses are available at github.com/bryandmartin/corncob_supplementary and provided in 

Supplement B of the Supplementary Material (Martin, Witten and Willis (2020b)).
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APPENDIX A: NONCONCAVITY OF THE BETA-BINOMIAL LOG-LIKELIHOOD

We show that (3.11) is not guaranteed to be concave in θ. Let n = 1, W ≡ W1 = 15 and M ≡ 

M1 = 2000. Suppose further that θ = β0, β0*
T . Let θ1 = (−3 −5)T and θ2 = (−1 −5)T. Then

logL θ1 ∣ W 1, M1 = − 8.481,
logL θ2 ∣ W 1, M1 = − 9.816,

logL 0.5θ1 + 0.5θ2 ∣ W 1, M1 = − 9.251.

Therefore there exists θ1, and θ2 such that

logL 0.5θ1 + 0.5θ2 ∣ W , M < 0.5logL θ1 ∣ W , M + 0.5logL θ2 ∣ W , M ,

which establishes that (3.11) is not concave in θ.

APPENDIX B: ANALYTIC EXPRESSIONS FOR THE GRADIENT AND 

HESSIAN

Let γi =
ϕi

1 − ϕi
 for all i, and define ψ(x) = ∫0

∞ e−t
t − e−xt

1 − e−t dt for x ∈ ℝ+ to be the digamma 

function, the derivative of the logarithm of the gamma function. Define Zi = (1 Xi) and 

Zi* = 1 Xi*  to be the design matrices for covariates associated with μi and ϕi, respectively, 

including intercept terms. Then the expression for the gradient of (3.11) is given by
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∂logL(θ ∣ W , M)
∂β

= ∑
i = 1

n
γi−1μi 1 − μi Zi ψ 1 − μi

γi

− ψ Mi + 1 − μi − W iγi
γi

+ψ W i + μi
γi

− ψ μi
γi

,

(B.1)

∂logL(θ ∣ W , M)
∂β*

= ∑
i = 1

n
γi−1Zi* ψ Mi + 1

γi
− ψ 1

γi

+ (μi − 1) ψ Mi + 1 − μi − W iγi
γi

− ψ 1 − μi
γi

+ μi ψ μi
γi

− ψ W i + μi
γi

.

(B.2)

Let ψ(1)(x) = ∂
∂x ψ(x) be the trigamma function. Define Y i = Zi

T 0 T ∈ ℝk + k* + 2 and 

Y i* = 0 Zi
* T T ∈ ℝk + k* + 2. Then the expression for the Hessian of (3.11), H, is given by

H = ∑
i = 1

n
c1, iμi2 1 − μi

2Y iY iT + c2, i μi 1 − μi Y iγiY i* T

+γiY i*μi 1 − μi Y iT + c3, i γiY i*γiY i* T

+c4, i μi 1 − μi 1 − 2μi Y iY iT + c5, i γiY i*Y i* T ,

where

c1, i = ψ(1) Mi + 1 − μi − W iγi /γi − ψ(1) 1 − μi /γi
+ψ(1) W i + μi/γi − ψ(1) μi/γi γi−2,

c2, i = γi ψ Mi − μi + W iγi − 1 /γi − ψ 1 − μi /γi + γi ψ μi/γi
−ψ μi/γi + W i + μi − 1 ψ(1) 1 − μi /γi
−ψ(1) Mi − μi + W iγi − 1 /γi + ψ(1) μi/γi
−ψ(1) μi/γi + W i γi−3,
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c3, i = 2γiψ 1/γi + ψ(1) 1/γi − 2γiψ Mi + 1/γi − ψ(1) Mi + 1/γi
+ μi − 1 2ψ(1) Mi − μi + W iγi − 1 /γi
− 2γi μi − 1 ψ Mi − μi + W iγi − 1 /γi − μi2ψ(1) μi/γi
+ μi2ψ(1) μi/γi + W i − μi − 1 2ψ(1) 1 − μi /γi
+ 2γi μi − 1 ψ 1 − μi /γi − 2γiμiψ μi/γi
+2γiμiψ μi/γi + W i γi−4,

c4, i = ψ 1 − μi /γi − ψ Mi − μi + W iγi − 1 /γi + ψ μi/γi + W i
−ψ μi/γi /γi,

c5, i = ψ Mi + 1/γi − ψ 1/γi + μi ψ μi/γi − ψ μi/γi + W i
+ μi − 1 ψ Mi − μi + W iγi − 1 /γi − ψ 1 − μi /γi γi−2 .

APPENDIX C: PARAMETRIC BOOTSTRAP LIKELIHOOD RATIO TEST

We present Algorithm 2 to conduct a parametric bootstrap likelihood ratio test.

APPENDIX D: LIKELIHOOD RATIO TESTING WITH A ZERO-COUNT GROUP

We prove that testing the null hypothesis H0 : β* = 0 results in a test statistic of zero under 

certain conditions. We first prove in Lemma D.1 that the log-likelihood of the model (3.2)–

(3.3) is equal to zero under certain conditions. We use this to prove our main claim in 

Theorem D.2.

Algorithm 2

Parametric Bootstrap Likelihood Ratio Test of H0 : Aθ = b

   Require: W, M, X, X*, a large integer B (e.g., B = 10,000)

1: Estimate θ and θ0 as in (4.2) and (4.5), respectively, with the trust region optimization procedure.

2: Compute T LRT as in (4.4) using W, M, θ and θ0.

3: for b = 1, …, B do

4:   Simulate W b
 with elements W i

b
 drawn from a beta-binomial distribution with Mi draws and parameters θ0.

5:   Estimate θb
 as in (4.2) using W b

 and M with the trust region optimization procedure.

6:   Estimate θ0
b

 as in (4.5) using W b
 and the trust region optimization procedure.

7:   Compute T LRT
b

 as in (4.4) using W b
, M, θb

 and θ0
b

.

8: Calculate the p-value:
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p 1
B + 1 1 + ∑

b = 1

B
1 TLRT

b ≥ T LRT .

9: return p

Lemma D.1. Consider the model (3.2)–(3.3) with parameters as in (3.4)–(3.6) and link 

functions as in (3.9)–(3.10) in the simplified setting with no covariates for μi, so that 

θ = β0, β0*, β * T T
. Suppose that ∑iW i = 0. Then

sup
β0

logL(θ ∣ W , M) = 0.

Proof. We write the log-likelihood

logL(θ ∣ W , M)

= ∑
i = 1

n
log

Mi
W i

B(e−β0* − Xi* Tβ*

1 + e−β0
+ W i,

e−β0* − Xi* Tβ*

1 + eβ0
+ Mi − W i)

B(e−β0* − Xi* Tβ*

1 + e−β0
, e−β0* − Xi* Tβ*

1 + eβ0
)

.

Substituting Wi = 0, using the definition of B(·, ·), and taking the limit in β0 gives

lim
β0 − ∞

logL(θ ∣ W , M) = lim
β0 − ∞

∑
i = 1

n
log Γ e−β0* − Xi* Tβ*

1 + eβ0
+ Mi

+ log Γ e−β0* − Xi* Tβ*

1 + e−β0
+ e−β0* − Xi* Tβ*

1 + eβ0

− log Γ e−β0* − Xi* Tβ*

1 + e−β0
+ e−β0* − Xi* Tβ*

1 + eβ0
+ Mi

− log Γ e−β0* − Xi* Tβ*

1 + eβ0
= 0

≥ sup
β0

logL(θ ∣ W , M),

where the last inequality is because the log-likelihood associated with a discrete distribution 

cannot exceed 0.

Therefore,

sup
β0

logL(θ ∣ W , M) = lim
β0 − ∞

logL(θ ∣ W , M) = 0.

□
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Theorem D.2. Consider the model (3.2)–(3.3) with parameters as in (3.4)–(3.6) and link 
functions as in (3.9)–(3.10). Assume that k = k* = 1 and Xi = Xi* ∈ 0, 1  for i = 1, …, n. 

Suppose that ∑i:Xi = 0W i = 0 and ∑i:Xi = 1W i > 0. Then the likelihood ratio test statistic 

for testing the null hypothesis that β1* = 0 is equal to 0.

Proof. Let Li represent the likelihood of the ith sample, so that

∑
i = 1

n
logLi β0, β1, β0*, β1* ∣ W i, Mi ≡ logL β0, β1, β0*, β1* ∣ W , M . (D.1)

We wish to show that the likelihood ratio test statistic

sup
β0, β1, β0*, β1*

∑
i = 1

n
logLi β0, β1, β0*, β1* ∣ W i, Mi

− sup
β0, β1, β0*

∑
i = 1

n
Li β0, β1, β0*, β1* = 0 ∣ W i, Mi = 0.

(D.2)

First, we notice that for all i, the parameters β0* and β1* enter the likelihood Li(·) only though 

the term β0* + β1*Xi. This term is equal to β0* for all i such that Xi = 0, and β0* + β1* for all i 

such that Xi = 1. Similarly, the parameters β0 and β1 enter the likelihood Li(·) only through 

the term β0 for all i such that Xi = 0, and β0 + β1 for all i such that Xi = 1. Therefore, we can 

write the first term in (D.2) as the sum of two sub-problems,

sup
β0, β1, β0*, β1*

∑
i = 1

n
logLi β0, β1, β0*, β1* ∣ W i, Mi

= sup
β0, β1, β0*, β1*

∑
i:Xi = 0

logLi β0, β1, β0*, β1* ∣ W i, Mi

+ sup
β0, β1, β0*, β1*

∑
i:Xi = 1

logLi β0, β1, β0*, β1* ∣ W i, Mi

= sup
β0, β1, β0*, β1*

∑
i:Xi = 1

logLi β0, β1, β0*, β1* ∣ W i, Mi ,

where the last equality results from Lemma D.1. Similarly, we can write the second term in 

(D.2),

sup
β0, β1, β0*

∑
i = 1

n
logLi β0, β1, β0*, β1* = 0 ∣ W i, Mi

= sup
β0, β1, β0*

∑
i:Xi = 1

logLi β0, β1, β0*, β1* = 0 ∣ W i, Mi .

Thus, to show (D.2), it suffices to show that
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sup
β0, β1, β0*, β1*

∑
i:Xi = 1

logLi β0, β1, β0*, β1* ∣ W i, Mi

− sup
β0, β1, β0*

∑
i:Xi = 1

logLi β0, β1, β0*, β1* = 0 ∣ W i, Mi = 0.

This follows directly from the fact that the parameters β0* and β1* enter the likelihood Li(·) 

only though the term β0* + β1* for all i such that Xi = 1. This completes our proof of Theorem 

D.2. □

APPENDIX E: QUANTILES OF TYPE I ERROR RATE SIMULATIONS

We present Table 2 to display sample quantiles from the type I error rate simulations 

discussed in Section 5.1. We show the 5, 25, 50, 75 and 95% quantiles of each test.

Table 2

The 5, 25, 50, 75 and 95% quantiles of p-values from the type I error rate simulations 
discussed in Section 5.1. The Wald and LRT procedures use a χ2 distribution to approximate 
the distributions of the test statistics (4.1) and (4.4), respectively. The PB Wald and PB LRT 
procedures are the parametric bootstrap hypothesis testing procedures discussed in 
Algorithms 1 and 2, respectively

Null hypothesis Sample size Procedure 5% 25% 50% 75% 95%

(β1, β1*) = (0, 0) 10 Wald 0.002 0.089 0.329 0.647 0.929

PB Wald 0.046 0.246 0.499 0.749 0.952

LRT 0.013 0.132 0.360 0.655 0.929

PB LRT 0.049 0.247 0.496 0.748 0.953

30 Wald 0.027 0.202 0.453 0.713 0.941

PB Wald 0.050 0.250 0.497 0.739 0.947

LRT 0.035 0.213 0.458 0.716 0.941

PB LRT 0.049 0.250 0.498 0.741 0.947

100 Wald 0.039 0.234 0.485 0.738 0.947

PB Wald 0.047 0.247 0.498 0.745 0.949

LRT 0.042 0.238 0.486 0.738 0.947

PB LRT 0.046 0.247 0.498 0.744 0.949

β1* = 0 10 Wald 0.006 0.124 0.381 0.688 0.934

PB Wald 0.039 0.242 0.497 0.754 0.949

LRT 0.014 0.146 0.393 0.689 0.934

PB LRT 0.048 0.248 0.502 0.752 0.948

30 Wald 0.031 0.212 0.472 0.735 0.949

PB Wald 0.047 0.245 0.499 0.751 0.952

LRT 0.035 0.215 0.473 0.735 0.949

PB LRT 0.048 0.245 0.499 0.750 0.953

100 Wald 0.045 0.244 0.487 0.740 0.947
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Null hypothesis Sample size Procedure 5% 25% 50% 75% 95%

PB Wald 0.051 0.254 0.496 0.744 0.947

LRT 0.047 0.245 0.488 0.740 0.947

PB LRT 0.050 0.253 0.494 0.743 0.950

β1 = 0 10 Wald 0.002 0.123 0.387 0.685 0.935

PB Wald 0.048 0.248 0.498 0.745 0.949

LRT 0.015 0.157 0.401 0.687 0.935

PB LRT 0.047 0.251 0.497 0.746 0.949

30 Wald 0.030 0.216 0.470 0.740 0.953

PB Wald 0.050 0.246 0.496 0.755 0.955

LRT 0.037 0.221 0.472 0.741 0.953

PB LRT 0.049 0.246 0.496 0.752 0.955

100 Wald 0.044 0.24 0.492 0.747 0.952

PB Wald 0.052 0.249 0.499 0.752 0.953

LRT 0.048 0.242 0.492 0.746 0.952

PB LRT 0.049 0.248 0.501 0.752 0.953

APPENDIX F: HYPOTHESIS TESTING RESULTS FOR EXAMPLE GENERA

We present Table 3 to display the results from the hypothesis tests conducted on the 

Thermomonas, Flavisolibacter and Myxococcus genera discussed in Section 6.2.

Table 3

Results from the hypothesis tests conducted on the genera discussed in Section 6.2

Genus Method p-value

Thermomonas corncob (H0 : β = 0) 1.00 × 10−6

corncob (H0 : β* = 0) 1.00 × 10−6

DESeq2 3.58 × 10−15

edgeR 4.96 × 10−13

metagenomeSeq 0.0543

ZIB 0.00163

Flavisolibacter corncob (H0 : β = 0) 0.000735

corncob (H0 : β* = 0) 0.403

DESeq2 0.00387

edgeR 0.143

metagenomeSeq 0.759

ZIB 0.000941

Myxococcus corncob (H0 : β = 0) 0.243

corncob (H0 : β* = 0) 0.00871

DESeq2 0.0018

edgeR 0.0017

metagenomeSeq 0.0016
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Genus Method p-value

ZIB 0.0015
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Fig. 1. 
The relative abundance of a strain of Rhizobium in 16 biological replicate samples in a soil 

microbiology study, and 95% prediction intervals based on a binomial model (left) and the 

proposed beta-binomial model (right). The data is clearly overdispersed relative to the 

binomial model, motivating the development of our beta-binomial model.
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Fig. 2. 
Quantiles of p-values obtained from the Type I error rate simulation settings compared to 

quantiles of a Uniform(0, 1) distribution. We test the null hypotheses H0: β1, β1* = (0, 0)

(left), H0:β1* = 0 (middle) and H0 : β1 = 0 (right). A 45-degree line is shown (black). p-

values were obtained using Wald (red), likelihood ratio (green), parametric bootstrap Wald 

(blue) and parametric bootstrap likelihood ratio (purple) tests. Sample sizes used were 10 

(dashed), 30 (dotted) and 100 (solid). Quantiles of each test are shown in Table 2 in 

Appendix E.
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Fig. 3. 
Power curves of p-values obtained from the power simulations. Setting 4 (left) tests H0 : β1 

= 0. Setting 5 (right) tests H0:β1* = 0. A horizontal dashed line is shown at 0.05. p-values 

were obtained using Wald (red), likelihood ratio (green), parametric bootstrap Wald (blue) 

and parametric bootstrap likelihood ratio (purple) tests. Sample sizes used were 10 (dashed), 

30 (dotted) and 100 (solid).
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Fig. 4. 
The negative log-10 p-values obtained by testing for differential abundance using corncob 

(H0 : β = 0) compared to those from DESeq2 (left-most, Spearman’s correlation coefficient 

ρ = 0.854), EdgeR (middle-left, ρ = 0.783), metagenomeSeq (middle-right, ρ = 0.552) and 

ZIB (right-most, ρ = 0.705). A 45-degree line is shown. We see that the p-values are on a 

similar scale overall. Thermomonas (green), Flavisolibacter (red) and Myxococcus (blue) 

are further examined in Figure 6.
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Fig. 5. 
The negative log-10 p-values obtained by testing for differential variability using corncob 

(H0 : β* = 0) compared to the negative log-10 p-values obtained by testing for differential 

abundance using DESeq2 (left-most, Spearman’s correlation coefficient ρ = 0.127), 

metagenomeSeq (middle-left, ρ = 0.132), ZIB (middle-right, ρ = 0.215) and corncob (H0 : β 
= 0) (right-most, ρ = 0.362). A 45-degree line is shown. Thermomonas (green), 

Flavisolibacter (red) and Myxococcus (blue) are further examined in Figure 6. We omit a 

scatter plot showing p-values for edgeR (ρ = 0.234); results are similar to DESeq2.

Martin et al. Page 29

Ann Appl Stat. Author manuscript; available in PMC 2020 September 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
The observed relative abundances of the genera Thermomonas (left), Flavisolibacter 

(middle) and Myxococcus (right) in 31 soil samples. Each of these genera is highlighted in 

each panel of Figures 4 and 5. In each panel, the first 16 samples correspond to the biochar 

additions group (darker color), and the remaining 15 samples correspond to the no additions 

group (lighter color). 95% prediction intervals for the relative abundances from a corncob fit 

using soil addition as a covariate for μi and ϕi are shown. Using corncob to test H0 : β = 0 

and H0 : β* = 0 indicates that Thermomonas is both differentially abundant (p = 1.00 × 

10−6) and differentially variable (p = 1.00 × 10−6), Flavisolibacter is differentially abundant 

(p = 7.44 × 10−4) and not differentially variable (p = 0.404), and Myxococcus is 

differentially variable (p = 8.83 × 10−3) and not differentially abundant (p = 0.244). See 

Table 3 in Appendix F for p-values from all approaches.
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Fig. 7. 
The estimated false discovery rate using the Benjamini–Hochberg procedure, as a function 

of the number of genera identified as differentially abundant and differentially variable. For 

a given false discovery rate, we identify fewer genera that are differentially variable than 

differentially abundant.
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Table 1

The notation for the observed random variables, latent random variables and parameters of our proposed beta-

binomial model. The subscript i refers to the i th sample. Notations are defined for each taxon

Notation Definition

Yi,j indicator that the j th read corresponds to the taxon of interest

Wi observed counts, or observed absolute abundance, of the taxon of interest

Mi sequencing depth, or total number of counts, across all taxa

Wi/Mi observed relative abundance of the taxon of interest

Zi latent relative abundance of the taxon of interest

μi expected relative abundance of the taxon of interest

ϕi overdispersion, or within-sample correlation of the taxon of interest
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