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Abstract

Treatment for depression is complex, requiring decisions that may involve trade-offs between 

exploiting treatments with the highest expected value and experimenting with treatments with 

higher possible payoffs. Using patient claims data, we show that among skilled doctors, using a 

broader portfolio of drugs predicts better patient outcomes, except in cases where doctors’ 

decisions violate loose professional guidelines. We introduce a behavioral model of decision 

making guided by our empirical observations. The model’s novel feature is that the trade-off 

between exploitation and experimentation depends on the doctor’s diagnostic skill. The model 

predicts that higher diagnostic skill leads to greater diversity in drug choice and better matching of 

drugs to patients even among doctors with the same initial beliefs regarding drug effectiveness. 

Consistent with the finding that guideline violations predict poorer patient outcomes, simulations 

of the model suggest that increasing the number of possible drug choices can lower performance.
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1. INTRODUCTION

UNDERSTANDING DOCTOR DECISION MAKING is central to improving health and reducing health 

care costs. This paper examines variations in doctor decision making in the context of the 

prescribing of anti-depressant medications in the United States. Anti-depressants are one of 

the largest and fastest growing classes of drug treatments. In the U.S., 13% of the adult 

population had taken an anti-depressant in the past 30 days in 2011/2012, up from 6.8% 

in1999/2000 (Kantor, Rehm, Haas, Chan, and Giovannucci (2015)). Other countries have 

seen a similar increase in anti-depressant use over time. For example, the EU average 

utilization rate rose from just under 3% to almost 6% between 2000 and 2010.1 Depression 

has been blamed for rising suicide rates in the United States, with suicide ranking as the 10th 

leading cause of death in 2016.2

Janet M. Currie: jcurrie@princeton.edu. 
1See http://www.oecd.org/els/health-systems/Item10_Trends-in-antidepressant-consumption_NIPH.pdf.
2See https://www.nimh.nih.gov/health/statistics/suicide.shtml.
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Depression is an especially interesting context for studying doctor decision making. First, 

there are 33 separate anti-depressant drug molecules available over our study period. Since 

every patient responds differently to each drug, and there is no one drug that dominates all 

others for all patients, finding the best option necessarily requires experimentation. However, 

experimentation is costly in the sense of subjecting patients to sub-optimal drug choices, so 

expanding the drug choice set does not necessarily improve patient welfare within a fixed 

treatment window. Hence, guidelines that limit choice may be welfare-improving. Second, 

as Frank and McGuire (2000) observed, the assessment of patient condition is often more 

difficult in the case of mental illness than for many physical illnesses, suggesting that doctor 

diagnostic skill plays an important role. We show that there is a link between doctor skill and 

the payoff to experimentation, which implies that the best choice of treatment for a patient at 

a point in time depends in part on the doctor’s skill level. Third, prices (and “detailing,” i.e., 

marketing of drugs directly to doctors) are relatively unimportant in decision making about 

anti-depressants today since most anti-depressants are available as generics and many 

patients face the same cost (a small co-pay) for many drug choices. Anti-depressants belong 

to the large and interesting category of markets that clear largely without the aid of price 

signals (Roth (2018)). Hence, the usual economic approach of seeking to set prices 

“correctly” is unlikely to improve doctor decision making in this setting.

The goal of this paper is to better understand doctor practice style and to ask how decision 

making is related to patient outcomes. A closely related question is whether patient 

outcomes can be improved by limiting physician decision making through the imposition of 

guidelines. We begin with an exploratory analysis of the relationship between doctor 

practice style, guidelines, and patient outcomes using novel data formed by merging 

information on all anti-depressant prescriptions for each doctor to national administrative 

claims data for hundreds of thousands of patients treated with anti-depressants. One 

advantage of using claims data (and a contribution of our paper) is that we can examine 

emergency room (ER) visits and hospitalizations as patient outcomes, rather than relying on 

suicides as the outcome measure as in previous studies (Berndt, Gibbons, Kolotilin, and 

Taub (2015), Ludwig, Marcotte, and Norberg (2009)). Suicides are thankfully relatively rare, 

making it difficult to compare doctors in terms of this patient outcome.

We characterize practice style for anti-depressant prescribing in terms of how dispersed it is 

(i.e., how many different drugs doctors use), and in terms of whether the doctor violates 

national and international guidelines for prescribing. Doctors vary widely on these two 

measures. Our main empirical findings are as follows: (1) Among patients seeing skilled 

doctors, more dispersed prescribing is associated with better patient outcomes; (2) Among 

patients seeing less skilled physicians, more dispersed prescribing is not associated with 

better patient outcomes; and (3) Violating guidelines about drug transitions is associated 

with worse outcomes in all patients. These results demonstrate that there is significant 

variation in these two measures of doctor practice style, and that they are related to patient 

outcomes.

We then develop an economic model of decision making in order to link dispersion in 

prescribing to physician behavior and performance. Thompson (1933) recognized that drug 

choice can be viewed as a statistical decision problem involving estimation of the means and 
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variances of treatments and updating them over time. Since the doctor can only observe one 

treatment at a time, the problem takes the form of a multi-armed bandit in which the patient 

is like a “slot machine,” and the drug choice each period corresponds to the question of 

which arm of the machine to pull (Robbins (1952)). The practitioner does not know the best 

drug for a particular patient in advance, and learns by trial and error. At any point in time, 

there is a trade-off between choosing the treatment with the highest expected value, and 

experimenting to learn more about treatments that may be better for a particular individual.

There is an extensive literature on optimal decision rules for a multi-armed bandit. However, 

finding the solution is computationally challenging (Kendrick, Amman, and Tucci (2014)). 

Doctors face time constraints and must make a drug choice for a particular patient within a 

few minutes. Hence, they are not likely to be solving a complex dynamic programing 

problem. In computer science, a rapidly developing area of research builds on the adaptive 

learning model of Lai and Robbins (1985) to develop practical solution methods that achieve 

solutions which are close to optimal (see Bubeck and Cesa-Bianchi (2012), Sutton and Barto 

(2018)). In these models, drug choice depends on both the expected value of a choice and on 

beliefs about the variance in outcomes for that choice. For example, if there are two drugs A 

and B, and A has a higher expected value but the variance of B is believed to be higher, then 

a doctor may choose drug B because there is more to learn regarding its effectiveness. When 

the doctor chooses B, this reduces her uncertainty about B, and, depending on the outcome, 

she will either stick to B or go back to A. We adopt this general approach to model learning, 

and assume that doctors update their beliefs using Bayes’s rule.

The novel insight from our model is that the trade-off between experimentation and 

choosing the drug with the highest expected value depends on the physician’s diagnostic 

skill. Intuitively, if a physician is not able to correctly assess a patient’s condition, then there 

is little to be learned from experimenting and the patient is likely to be better off without it. 

In contrast, if a physician is highly skilled in the sense of being able to correctly assess a 

patient’s condition, that is, has excellent diagnostic skill, then the potential gains from 

experimentation are larger. It follows that there will not necessarily be a single correct 

treatment even for identical patients since the best treatment will also depend on the doctor’s 

characteristics. Other things being equal, a skilled diagnostician should be more 

experimental than a less skilled diagnostician. Physicians who are more skilled will use a 

wider variety of drugs for their patients, and physicians with better diagnostic skills stand to 

learn more from experimentation and so should be more experimental.

Finding the optimal treatment entails experimentation, and hence may involve some choices 

that turn out to have been sub-optimal ex post. Experimentation may make it more likely 

that the physician finds the optimal treatment, but it may also make it more likely that the 

physician violates prescribing guidelines, with potentially negative consequences for 

patients. Hence, guidelines that rule out some choices may improve patient welfare over a 

fixed treatment window. Simulations of our model demonstrate exactly this point, 

consistently indicating that restrictions on physicians’ choice sets (guidelines) can be 

welfare-improving over a finite treatment horizon.
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Our empirical findings (1 and 2) are consistent with the result that experimentation is more 

beneficial when physicians have more skill. The third empirical finding suggests that there is 

a limit to the benefits of experimentation: Violating guidelines is associated with worse 

patient outcomes even in patients seeing skilled physicians.

The agenda of the paper is as follows: Section 2 provides some background and further 

discussion of the literature. Section 3 discusses the data, while the empirical results are 

discussed in Section 4. Section 5 introduces the model details, and how one can connect 

doctor diagnostic skill and learning with observed performance. We conclude with Section 

6.

2. BACKGROUND: PREVIOUS WORK ON DOCTOR DECISION MAKING 

AND PRACTICE STYLE

While differences between patients are obviously an important driver of heterogeneity in 

treatment, there is increasing evidence that variation in doctor decision making is important. 

For example, Cutler, Skinner, Stern, and Wennberg (2019) documented large differences in 

doctor beliefs about appropriate treatment. Similarly, previous studies have found little 

evidence that patient demand drives the large differences in C-section rates across U.S. 

providers (McCourt, Weaver, Statham, Beake, Gamble, and Creedy (2007)). Finkelstein, 

Gentzkow, and Williams (2015) suggested that at least half of the observed variation in 

procedure use among the elderly is due to supply-side factors.

Doctor peer effects are one potential source of area-level variation in treatment choices. 

Models of peer effects such as Chandra and Staiger (2007) imply that the practice styles of 

doctor peers should converge over time, though the evidence on that front is mixed perhaps 

because of the difficulty of defining peers (see Molitor (2016), Donohue et al. (2018), 

Epstein and Nicholson (2009), Dranove, Ramanarayanan, and Sfekas (2011), and Chan 

(2015)). The mixed results suggest that proximity alone is not enough to drive spillovers in 

practice style, and that variation in practice style is likely to depend upon sub-specialty and 

detailed features of the environment in which doctors work.

Fear of litigation is another frequently cited reason for variations in doctor decision making. 

The idea that doctor decisions are shaped primarily by fear of litigation remains popular, 

even though it has been repeatedly debunked. For example, Baicker and Chandra (2005) 

found no evidence that treatment responds to changes in legal liability, except for some 

screening procedures.

Our focus is on the prescribing behavior of physicians. Starting with Stern and Trajtenberg 

(1998), several previous studies used concentration in a doctor’s prescribing as a measure of 

practice style. Frank and Zeckhauser (2007) cited survey data showing that the most 

prescribed medication for a specific condition was responsible for about 60% of a doctor’s 

prescriptions for that condition. Patient demographics had little explanatory power. Berndt et 

al. (2015) used data on prescriptions of anti-psychotics. They showed that most doctors have 

a favorite drug and that on average 66% of their prescriptions are for this drug.
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Other studies treat prescription choice as an application of consumer demand theory. 

Crawford and Shum (2005) studied the market for ulcer drugs and estimated a structural 

model of drug choice. In their model, all of the differences in treatment are driven by patient 

needs or preferences. As Crawford and Shum (2005) (p. 1147) stated: “… all doctors in our 

model have the same probability of prescribing a given drug to a patient with a given 

diagnosis in a given time period.” Dickstein (2015) used a similar methodology to model 

how drug choices are affected by differences in patient co-payments across insurance plans. 

Over his time period (2003–2005), branded drugs were a larger share of the anti-depressant 

market and the insurer’s price paid varied from $8.00 to $110.00 per month. However, co-

pays only varied from about $10.00 to $20.00 per month, and drugs with a wide range of 

prices had similar co-pays, suggesting that price differences could only be a partial 

explanation of drug choice. Neither study allows differences in doctor practice style per se to 

explain the choice of prescription drugs.

Since we have doctor identifiers, we are able to document variation in physician practice 

style, and connect it to patient outcomes. Differences in prescribing practices have led to 

calls for stronger practice guidelines, especially in psychiatry. Meehl (1954), Grove, Zald, 

Lebow, Snitz, and Nelson (2000), and Kahneman and Klein (2009) argued that algorithms 

could do as least as well as a psychiatrist in the treatment of mental illness, and the 

development of algorithms for treatment is an active area of ongoing research (see Adli et al. 

(2017)). On the other hand, Frank and Zeckhauser (2007) expressed concern that guidelines 

could prevent doctors from providing care that is sufficiently individualized, while 

Cosgrove, Shaughnessy, and Shaneyfelt (2018) worried that guidelines may be influenced by 

pharmaceutical companies. More generally, management practices have been shown to be 

strongly related to outcomes in health care settings, and the question of how best to structure 

guidelines for doctors is an important one (see Bloom, Propper, Seiler, and Van Reenen 

(2015) and Tsai, Jha, Gawande, Huckman, Bloom, and Sadun (2015)).

The challenge is to provide ways to measure practice style that can be linked to patient 

outcomes in order to assess doctor performance. Currie and MacLeod (2017) and Currie, 

MacLeod, and Parys (2016) developed a framework for studying individual doctor decision 

making in contexts where doctors make zero/one choices and there is little scope for 

learning about individual needs over time. In addition to showing variation in skill, they 

found that there is a great deal of variation across physicians in both responsiveness to a 

patient’s condition and in the aggressiveness of treatment choices; moreover, these 

characteristics of doctors are fairly stable over time. More recently, Chan, Gentzkow, and Yu 

(2019) documented a similar finding for radiologists, who vary greatly in their ability to 

correctly diagnose pneumonia.

This paper extends this work to a more complex case where learning is important. In our 

model, a doctor’s practice style can be characterized in terms of their diagnostic skill (which 

corresponds to how responsive doctors are to a patient’s condition) and their reservation 

probabilities (which provide a summary measure of a doctor’s taste for experimentation and 

risk preferences). This paper builds on our previous work by showing how diagnostic skill 

helps doctors to learn about the effectiveness of treatment when there are many potential 

treatments and the best choice can only be determined by trial and error.3 Moreover, even 
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given a trial, it may not be obvious whether a particular drug is working or not. Randomized 

controlled trials of drug treatments for depression can yield very noisy results: In most cases, 

the placebo effect of giving a drug accounts for about 80% of the total measured effect.

Like us, Frank and Zeckhauser (2007) observed that the treatment of depression can be 

viewed as a bandit problem in which one learns about the best course of action by carrying 

out trial and error learning with different anti-depression drugs. Rothschild (1974) showed 

that in a market setting, trial and error learning leads to a stable equilibrium with significant 

price heterogeneity. This heterogeneity arises because, at some point, it is no longer 

profitable to explore further choices, so that individuals with different consumption histories 

can settle on different choices. Aghion, Bolton, Harris, and Jullian (1991) studied the 

optimal search strategy with learning and highlighted the trade-off between exploitation 

(continuing with the same choice), or exploration (trying a new choice). They found that in a 

setting without discounting, parties will eventually learn the true demand functions facing 

firms. Bergemann and Välimäki (1996) extended these results to the case of endogenous 

investment into learning.

Cohen, McClure, and Yu (2007) suggested that humans solve this type of problem using an 

index rule—for each drug choice, the physician assigns a valuation that is a combination of 

the expected treatment effect and the potential information to be gained by prescribing the 

drug. In contrast to dynamic programming which works backwards from the potential last 

period of treatment to the present, forward-looking algorithms compute the valuation using 

currently available information. Sutton and Barto (2018) provided a review of the literature 

on such rules beginning with Gittins (1979) and Lai and Robbins (1985).4 One of the most 

successful algorithms is based on computing the “upper confidence bound” for a given arm 

(Bubeck and Cesa-Bianchi (2012), Srinivas, Krause, Kakade, and Seeger (2012), Srivastava, 

Reverdy, and Leonard (2015)). These “UCB algorithms” are used to model human decision 

making in a variety of contexts, including laboratory experiments with bandit choice 

(Reverdy, Srivastava, and Leonard (2014)), decision making in complex games (Wu, Schulz, 

Speekenbrink, Nelson, and Meder (2018)), and advertising (Schwartz, Bradlow, and Fader 

(2017)).

The model we introduce in Section 5 uses the idea of an upper confidence bound from this 

literature to introduce the concept of a “reservation probability,” p, that defines a valuation 

qd for choice d. We are inspired by Simon (1955)’s idea of satisficing, the basis of 

contemporary labor market models of search. In these models, workers search until they 

receive a wage offer that exceeds their reservation wage. In our model, the probability that 

the effect of drug d is larger than qd is p. A doctor’s practice style can be summarized by this 

reservation probability: The doctor will try new drugs until the probability that a new drug is 

better than the current drug falls below the reservation probability. We show below that this 

simple rule provides a good approximation to an optimal strategy.

3A unique feature of treating depression is that observable patient physical characteristics, such as sex or medical condition, have very 
little predictive power. People with particular genotypes may have adverse drug responses, but genetic tests are not currently 
recommended as part of standard practice (Zeier et al. (2018)).
4See also Erev and Roth (2014)’s discussion of the earlier literature using reinforcement learning in economics.
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An implication of the model is that optimizing agents operating in the same environment 

exhibit a great deal of variation in their choices. In our case, the doctor is solving a matching 

problem which involves trying to find the best treatment for each patient given unobserved 

patient characteristics. It is important that different patients should be given different 

treatments. Hence, better doctors will have more dispersed drug choices. To make this idea 

more precise, we introduce a model of drug choice that incorporates diagnostic skill. We 

then discuss the implications of variations in diagnostic skill and reservation probabilities for 

patient outcomes and for the within-doctor dispersion of drug choices.

3. DATA

In order to examine the relationship between doctor skill, practice style, and patient 

outcomes, we use a new national sample of claims data from Blue Cross Blue Shield 

Alliance for Health Research (BCBS), a collaborative effort involving most of the regional 

BCBS plans. The administrative claims data come from a limited data set made available 

through a secure data portal and are drawn from Blue Cross Blue Shield (BCBS) Axis®, the 

largest source of commercial insurance claims data in the United States.5 We first selected a 

10% sample of all of the member numbers (for members aged between 18 and 64 as of 

January 2013) in the system between January 2013 and September 2016. BCBS data had 

about 99 million members aged between 18 and 64 who had any claims over our sample 

period. Of the 9.9 million members we selected, about 4.5 million ever had a pharmacy 

claim, and of these, 723,818 members were ever prescribed anti-depressants over the sample 

period. These members constitute our initial BCBS data sample. For each of these members, 

we generate a panel of data with a record for each month and year that they appeared in the 

claims data. In each time period, we know whether they are taking any anti-depressant drug, 

what drug it was, who prescribed it, claims for drugs, outpatient visits, emergency room 

(ER) visits, inpatient visits, and total health care costs generated by summing all claims 

across inpatient, outpatient, and pharmacy data bases. We focus on ER visits as an outcome 

because in the United States, patients with mental health crises are uniformly advised to 

proceed to the nearest ER for assessment. ER visits (and subsequent hospitalizations) for 

mental health indications are much more numerous than suicides and have a substantial 

impact on health care costs.6

A problem with using the BCBS data to examine practice style is that most doctors also see 

patients with other types of insurance. Hence, measures of practice style constructed using 

only the BCBS data could omit many of a doctor’s other patients. We remedy this problem 

by measuring dispersion in prescribing using a second data base from IQVIA which comes 

from their Xponent data base.7 IQVIA (formerly known as IMSQuintiles) is a public 

company specializing in pharmaceutical market intelligence. As of 2014, IQVIA directly 

5Accessing insurance claims data often requires extended negotiations with individual insurance carriers, or with government entities. 
Further information about the BCBS Health of American Initiative, including information about their Axis® data base and contact 
information, is available at: https://www.bcbs.com/the-health-of-america/about.
6Our own calculations using hospital records from six states that participate in the Health Care Utilization Project (Arizona, Florida, 
Kentucky, Maryland, New Jersey, and New York) suggest that in 2014, there were 379.9 ER visits annually per 1000 individuals. Of 
these, 50.9, or 13.4%, listed a mental health diagnosis on the hospital record. This included 5.1% who listed mood disorders and 4.9% 
who listed anxiety. Anti-depressants are frequently prescribed for both of these conditions.
7The IQVIA data are available for purchase to qualified researchers. For further information, contact Allen.Campbell@iqvia.com.
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surveyed 86% of retail pharmacies, with the remaining prescriptions imputed to add to 

industry totals using a patented projection method. The data include information about each 

provider from the American Medical Association. We are able to find a match in the IQVIA 

data for 74.0 percent of the doctors in our BCBS data sample. We also match in doctor 

characteristics such as specialty from the National Plan and Provider Enumeration System 

(NPPES). We follow Berndt et al. (2015) and limit our analysis to doctors who wrote 12 or 

more prescriptions for anti-depressants in the IQVIA data in at least one year of the sample, 

and who were not missing doctor characteristics.

Following Theil (1967) and Shorrocks (1980), we use the Shannon entropy score as our 

main measure of dispersion in doctor prescribing. Results were qualitatively similar if we 

used a Herfindahl index or the share of a doctor’s anti-depressant prescriptions that was for 

their favorite drug.

To define entropy, let p ∈ Δn = p ∈ 0, 1 n Σi pi = 1  be a probability vector. Let n(p) 

denote the number of entries in the vector.

DEFINITION 1: Given a vector p ∈ Δn, then the scaled entropy score is given by 

Φ p = ϕ p /log n ∈ 0, 1 , where ϕ p = ∑k = 1
n pklog 1/pk  is the Shannon entropy index, k is 

the is the number of drugs that are ever available over the sample period, and pk is the share 

of patients who are taking drug k at time t.

The scaled measure has values between zero and 1, and a unique maximum with pk = 1/k. 

There are k minima, each corresponding to pk = 1. Let njt be the number of patients that a 

doctor treats in period t, and let ndjt be the number of prescriptions of drug 

d ∈ D = d1, …, dm , where m is the number of drugs, in period t. Let pdjt =
ndjt
njt

 be the 

fraction of patients of doctor j who are prescribed drug d in period t. This m-dimensional 

vector pjt ∈ [0, 1]m is a measure of the doctor’s practice style at time t. It can be summarized 

using the normalized entropy score defined above. We allow a doctor’s entropy score to vary 

over time, calculating a separate entropy score for each doctor for each calendar year of 

data.8 We match 2013 BCBS data to 2012 doctor entropy data, and so on. Due to data 

limitations, both 2015 and 2016 BCBS data are merged to entropy measures for 2014; 

however, within-doctor entropy changes only slowly over time. Once the IQVIA data are 

matched to the BCBS data, we use the mean entropy score for each doctor over the entire 

treatment interval with that patient. This decision eliminates small changes in entropy scores 

that would otherwise occur whenever the patient’s treatment interval happens to span more 

than one calendar year of data. It means that within-patient changes in entropy are due solely 

to changes in the prescribing doctor. Since there are 33 different anti-depressant molecules 

in use over our sample period, the entropy score is computed using m = 33. However, the top 

eleven molecules accounted for the vast majority of the prescriptions in 2014 (see 

Supplemental Material Table A–I), and when we focus on transitions from one drug to 

8Since the entropy score is a nonlinear function of treatment choice, one might worry about biased estimates for doctors with few 
patients. Simulations of the entropy index showed that the small sample bias is sufficiently small that we can ignore it.
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another, we use these eleven molecules plus “all others” and drug combinations (which we 

dub “cocktails”).

Table I provides information about the breakdown of anti-depressant prescriptions and 

entropy scores across types of providers in the IQVIA data. The vast majority of anti-

depressant scripts are written not by psychiatrists but by general practitioners and other 

doctors who have little specific training in the use of anti-depressants. The model discussed 

below predicts that providers with less expertise should do less experimentation. Table I 

shows that in keeping with this prediction, psychiatrists have the highest entropy scores, 

followed by GPs, with other doctors having substantially lower entropy scores. Entropy 

scores increase with doctor cohort, except among the oldest doctors where they show a 

decline which is consistent with prime age doctors being the most skilled. A limitation of the 

version of the IQVIA data that we were able to obtain is that there is no patient identifier. 

Therefore, we cannot examine experimentation within-patient in these data, and the overall 

entropy scores in the second panel of Table I represent a mix of within-patient and across-

patient prescribing.

In order to give some intuition about how variations in entropy scores correspond to other 

measures, in the bottom panel of the table, we show that among GPs, roughly a quarter of 

prescriptions are for the favorite drug, compared to about 22% among psychiatrists, and 36 

to 42% among other specialties, depending on the cohort.

A second measure of practice style is the extent to which a doctor follows practice 

guidelines. We consider guidelines provided by the American Psychiatric Association 

(Gelenberg et al. (2010)), the UK National Institute for Health and Care Excellence (NICE), 

and the Canadian government. The NICE guidelines suggest that clinicians should start with 

an SSRI, and if that does not work, then they should consider a drug in a different class 

(NICE (2017)). The Canadian guidelines point out that even within drug classes, some drugs 

are more efficacious. They suggest that if the first drug does not work, clinicians should 

switch to a more effective drug. They provide rankings based on comparisons of the 

effectiveness of different drugs as first-line treatments in clinical trials (Kennedy et al. 

(2016)).

The American Psychiatric Association’s (APA) guidelines for treatment of major depressive 

disorder advise that if one drug is not effective, the patient should switch to another, but they 

do not specify what that drug should be. They do, however, note that “the following 

medications are optimal for most patients: SSRIs, SNRIs, Mirtazapine, and Bupropion” 

(Gelenberg et al. (2010, page 31)). This list excludes two drugs that together accounted for 

17.58% of the market in 2014 (see Supplemental Material Table A–I). Since most drug 

combinations have not been evaluated in clinical trials, the possible drug interactions or side 

effects are largely unknown. Hence, all guidelines also urge caution in the use of “drug 

cocktails.”

Diffusion in prescribing and the violation of guidelines are related since following a 

guideline means ruling out potential choices. Figure 1 illustrates this relationship by 

showing the actual distribution of entropy scores compared to the counterfactual distribution 
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that would exist if all doctors adhered to the APA guidelines. In the counterfactual, 

prescriptions for medications that violate guidelines are distributed over the remaining 

options in proportion to actual prescription patterns. Figure 1 shows that if the APA 

guidelines were followed, the right tail of the entropy distribution would be compressed, and 

the whole distribution would shift to the left. Hence, the APA guidance, while loose, would 

still be binding on practice styles if it were followed.

Table II provides an overview of the BCBS data. The table divides patients into those who 

ever saw a psychiatrist as an outpatient, and those who did not. We do not divide patients 

into whether they are currently seeing a psychiatrist or not, because the same patient is more 

likely to start seeing a psychiatrist if their condition deteriorates. Table II shows that most 

patients in our sample never see a psychiatrist over the 12 to 13 months that we follow them. 

Patients who ever see a psychiatrist during the window in which we observe them will be 

seeing more skilled providers on average. On average, patients experience 1.3 changes in 

entropy scores, which coincide with changes in the doctor treating them. When we look at 

drug transitions, we have a slightly smaller sample because we lose the first observation 

when we lag.

The second panel of Table II provides information on how often patients changed 

medications in a way that violated one of the prescription guidelines. The informal APA 

guideline is most likely to be violated. Relatively large numbers of patients receive a cocktail 

of drugs, especially from psychiatrists. To get some understanding of the magnitudes, 

consider that a patient who is in the data for 11 months is observed to have 10 month-to-

month transitions, where “transitions” also include staying on the same medication from 

month to month. Hence, if 4.5 percent of all transitions violate the guideline, the average 

patient has 0.45 violations over the period that we see them.

The third and fourth panels of Table II present data on the costs of care and outcomes. These 

include total monthly costs and costs broken into pharmacy, professional (e.g., doctor visits), 

and facility (e.g., hospital) claims. All of these costs are right-skewed: The modal patient is 

not very expensive, while the 90th percentile (or in the case of facilities costs, the 99th 

percentile) patient incurs considerable monthly costs. These figures represent the actual 

amount paid to the various providers. Patients who saw a psychiatrist at some point have 

higher costs in every category, suggesting that they are sicker on average. We will include 

patient fixed effects to control for differences in the patient’s average severity level. 

Comparing models with and without patient fixed effects also provides information about 

which patients switch to higher skilled physicians, as discussed further below. While costs 

are important, our primary outcomes are indicators for whether the patient used the ER or 

was hospitalized with a mental health indication. Overall, approximately one percent of 

patients had an ER visit or hospitalization with a mental health indication each month.

Although these data are rich, they have some major limitations. The most significant 

limitation in the IQVIA data is the lack of a patient identifier. Arguably, high diffusion in 

drug choices within a patient represents a different sort of experimentation than diffusion 

across patients. High diffusion across patients could even be interpreted as an additional 

measure of skill since it could mean that a doctor is sorting patients into different categories 
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before prescribing to them. Two limitations of the BCBS data are that we do not follow most 

patients very long, and that we only see a subset of each doctor’s patients (those who have 

BCBS coverage). A third limitation of the BCBS data is that many people who are treated 

with anti-depressant drugs lack any indication about why they are being treated. For 

example, if a patient is prescribed anti-depressants in the course of their annual physical, or 

in a followup visit to an obstetrician, the only indication on the claim may be for a general 

visit. Hence, it is possible that some people in our sample are being treated “off-label” for 

another condition such as anxiety. Thus, the most accurate description of our sample is that 

it includes people who are treated with anti-depressants at some point in our sample period.

4. EMPIRICAL FINDINGS

In order to examine the relationship between dispersion in a doctor’s prescribing and patient 

outcomes, we estimate models of the form

Yijt =   a0 +   b1ϕjt − 1 +   b2xi +   b3countyi +   b4yt +   eijt,

or alternatively,

Yijt = ai + b1ϕjt − 1 + b2yt + eijt,

where Y is one of the outcomes discussed above, x are the observable fixed patient 

characteristics (age category and gender), county indicates county fixed effects, and y 
indicates year fixed effects. The second specification, which includes patient fixed effects, 

subsumes the observable patient characteristics and county fixed effects (since most patients 

do not move in the short interval that we observe them). By including a patient fixed effect, 

we control for important unobserved characteristics of the patient including their mean 

overall severity, history prior to appearing in the claims data, taste for medication, and so on. 

We estimate the model separately for patients who ever saw a psychiatrist as an outpatient 

and for those who did not, in order to allow for the effects of entropy to be different for 

patients who see providers with different average skill levels. The doctor’s entropy score is 

measured at t − 1 for an outcome measured at time t, so that the measure of practice style 

always precedes the outcome.

In order to examine the relationship between violations of treatment guidelines and 

outcomes, we estimate models of the following form:

Yijt =   a0 +   b1V ijt − 1 +   b2xi +   b3countyi +   b4yt +   eijt,

or alternatively,

Yijt = ai + b1V ijt − 1 + b2yt + eijt,

where V is a vector of four indicators each equal to 1 if a drug transition between t − 2 and t 
− 1 violated one of the three guidelines discussed above, or if it involved the prescription of 
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a drug cocktail. Hence, we look at the outcome one period after a change in the drug regime, 

that is, at period t. These regression models will show how diffusion in prescribing and the 

violation of guidelines are related to patient outcomes. Although all of these patients are 

being treated in the U.S., we can consider the hypothetical effects of violating guidelines 

from Canada and the UK and thus gain a rough idea of the efficacy of the different 

guidelines.

Including patient fixed effects offers a powerful way to control for patient heterogeneity in 

order to isolate the effects of doctor practice style. There may, however, still be time-

varying, unobserved characteristics of patients that are important. In particular, patients who 

are getting worse may transition to more skilled doctors (e.g., from general practitioners to 

psychiatrists). If higher entropy scores are associated with greater skill but sicker patients 

match with more skilled doctors, then the estimated effects of diffusion in prescribing will 

be biased towards zero so that our estimates will tend to understate any true positive effects 

of entropy. All standard errors are clustered on the doctor’s ID in order to allow for 

correlations in treatment within doctors, both for the same patient over time and between 

patients seeing the same doctor.

Regressions of patient outcomes on provider entropy scores are shown in Table III for the 

full sample, as well as for the two subsamples defined by whether the patient ever saw a 

psychiatrist. Odd-numbered columns control for county fixed effects, broad patient age 

categories, and gender. Even-numbered columns control for patient fixed effects. The first 

row of the first two columns suggests that patient heterogeneity is important: In the 

regressions without patient fixed effects, it appears that provider entropy increases costs, 

whereas once patient fixed effects are included in the model, entropy is shown to have a 

significantly negative relationship with costs. What this tells us is that the sicker patients 

tend to match with the highest entropy providers, leading to a positive bias in the 

relationship between costs and entropy in OLS. When that selection is controlled for by 

looking within patients, we see that more diffuse prescribing (higher entropy) is associated 

with better patient outcomes.

Since the dependent variable is log costs, the coefficient of −0 085 in column (2) can be 

interpreted as an elasticity: A one unit change in entropy would lead to a 8.5% decrease in 

total costs. Entropy varies from around 0.4 to 0.8 as shown in Figure 1, with most mass 

between 0.5 and 0.75. Hence, an entropy measure 0.25 higher is correlated with a 2.1% 

decrease in costs. The columns with fixed effects show that an increase in entropy is 

associated with a large decrease in non-drug costs (a 0.25 increase in entropy is estimated to 

reduce these costs by 4.0%). A small part of this reduction comes from reductions in the 

probability of ER visits and hospitalizations. An increase of 0.25 in entropy is associated 

with a 0.001 point decline in the probability of such visits on a baseline of 2.4%.

These overall patterns mask differences in the estimates by patient group. Patients who saw 

a psychiatrist at some point see more skilled practitioners on average. The patient fixed 

effects models show the differential effects of entropy net of differences in the patients’ 

average conditions. Panel B shows that among patients who ever saw a psychiatrist, more 

diffuse prescribing is associated with a reduction in ER visits and hospitalizations, both 
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overall and specifically for mental health. The corresponding fixed effects models indicate 

that an increase of 0.25 in the provider entropy score is associated with a reduction of 10.2% 

in the probability of any ER visit or hospitalization. The probability of a visit specifically for 

a mental health diagnosis falls by 14.7%. Comparing the OLS and fixed effects estimates of 

the effect of entropy on the probability of an ER/Hospital visit with a mental health 

indication, we see that the sign changes from positive to negative. This change indicates that 

patients who are more likely to go to the ER or be hospitalized are also more likely to switch 

to a higher entropy provider (recall that psychiatrists have more diffuse prescribing on 

average). Hence, OLS estimates of the effect of entropy are biased. When this bias is 

mitigated by including patient fixed effects, we find that among patients seeing more skilled 

doctors, switching to a higher entropy doctor is associated with better patient outcomes, our 

empirical finding #1.

The group of patients who never saw a psychiatrist as an outpatient are seeing less skilled 

providers on average, mainly GPs. The patient fixed effects models show that in this group, 

switching to a higher entropy doctor appears to lower costs, but this is not driven by a 

significant reduction in ER visits or hospitalizations, suggesting that these high entropy GPs 

are just lower cost providers on average. Moreover, although there is no change in the 

propensity to use the ER or hospital, there is a 9.7% increase in the probability of an ER/

hospital visit with a mental health indication. It is possible that this increase reflects a higher 

likelihood of reporting a mental health problem for a given ER/hospital visit. The overall 

takeaway is that in patients seeing this group of relatively less skilled doctors, switching to a 

higher entropy provider does not improve patient outcomes, our empirical finding #2.

Our story that psychiatrists have both more diffuse prescribing and greater skill in treating 

mental health patients is consistent with both sets of results. An alternative story is one in 

which a patient switches doctors following a crisis, but then regresses back towards their 

mean level of illness. However, if this were the case, then we might expect to see a similar 

pattern in the two groups of patients. That is, it might be reasonable to assume that patients 

who experience a crisis are more likely to switch to a doctor willing to prescribe a broader 

portfolio of drugs even if they do not switch to a psychiatrist, and that regression to the mean 

would operate similarly in both groups of patients. To explain our results, it would have to 

be the case that regression to the mean was important in one group (those ever seeing 

psychiatrists) but not in the other.

Table IV shows the estimated relationship between patient outcomes in month t, and having 

had a drug transition from month t − 2 to t − 1 that violated treatment guidelines. Transitions 

that violated the UK guidelines are associated with higher costs and an increase in ER visits 

or hospitalizations in OLS, but not in patient fixed effects models.

This change in significance indicates that patients are more likely to make such transitions 

when they are sicker. Transitions that violate the Canadian or U.S. treatment guidelines are 

associated with uniformly worse patient outcomes including higher costs, and more ER 

visits and hospitalizations with mental health indications. Panel A, which shows estimates 

for all patients, indicates that the coefficient estimates are reduced when patient fixed effects 

are included in the model, showing that doctors are more likely to violate guidelines or to 
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prescribe drug cocktails for sicker patients. But they remain statistically significant: Even 

within-patient, drug transitions that violate guidelines are associated with increases in ER 

visits and hospitalizations with mental health indications. The fixed effects estimates suggest 

that violations of the U.S. guidelines are associated with a 28.2% increase in total costs, an 

increase in the probability of any ER visit or hospitalization of 13.0%, and an increase in the 

probability of an ER visit or hospitalization with a mental health indication of 20.0%.

Prescribing drug cocktails is also associated with increases in ER visits and hospitalizations, 

as well as with a 51.4% increase in total costs. Some of the higher cost is mechanical in the 

sense that taking more drugs will usually involve higher costs than taking less drugs. But 

column (4) shows that total non-drug costs also rise by 36.3%, which may reflect the 20% 

higher probability of having an ER visit or hospitalization with a mental health indication.

The next two panels of Table IV examine the relationship between violations of the different 

treatment guidelines and outcomes in the two subsamples of patients defined by whether or 

not they ever saw a psychiatrist as an outpatient. The relationships are quite similar across 

the two groups, indicating that violations of treatment guidelines are associated with bad 

outcomes whether they are prescribed by more or less skilled practitioners, which is our 

empirical result #3. For instance, although the point estimates on ER visits and 

hospitalizations are higher in the patients who ever saw a psychiatrist as an outpatient, this is 

because the baseline risk of this outcome is higher in this group. In the patient fixed effects 

models, a violation of U.S. guidelines is associated with an increase in the probability of any 

ER visit or hospitalization of 15.6%, and with a 17.6% increase in the probability of an ER 

visit or hospitalization for a mental health condition. Hence, patients who experience a drug 

transition that violates treatment guidelines have a significantly higher probability of a 

subsequent ER visit or hospitalization, and much of this increase is accounted for by visits 

with mental health indications.

In summary, the estimates in Table III indicate that seeing a doctor with more diffuse 

prescribing is associated with better patient outcomes among patients who see more skilled 

practitioners, but not among patients who see less skilled practitioners. Table IV suggests, 

however, that there may be a limit on the extent to which experimentation is beneficial even 

among skilled practitioners, and that therefore there may be a useful role for guidelines that 

restrict some prescribing practices.

5. UNDERSTANDING VARIATION IN DOCTOR PRACTICE STYLE

The empirical evidence shows that diffusion in prescribing and the violation of guidelines 

are two dimensions of doctor practice style that show a great deal of variation in the data. 

Patients are better off with doctors who do not violate treatment guidelines and with 

psychiatrists who use a greater variety of drugs in treatment. In this section, we explore the 

implications of optimal and boundedly rational decision making for practice style. In the 

first subsection, we illustrate the main ideas for a two-drug, two-period example in which we 

can explicitly compute the Bayesian optimal choice. We introduce the notion of a 

reservation probability using ideas from the machine learning literature for solving multi-

armed bandit problems. We show that with two choices, the optimal decision can be 
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implemented with a reservation probability rule. The optimal reservation probability 

increases with the doctor’s skill and decreases with the discount rate.

Currie and MacLeod (2020) extended this idea to the multi-drug choice problem and showed 

that in the multi-drug case, the reservation probability rule converges to the optimal long-run 

treatment at the same rate as the optimal choice rule. Moreover, higher skilled doctors 

converge towards the optimum faster and exhibit both more experimentation and more 

diffuse prescribing in the short run.

However, the short-run properties of the rule depend on small sample statistics, and are 

difficult to understand analytically. The most efficient way to try to understand how the 

algorithm behaves in the short run is through simulation. Hence, in the second subsection 

below, we use data from randomized controlled trials to calibrate the model for the multi-

drug case. We show that doctors with low skill have better outcomes when they have a 

relatively low reservation probability, while higher skilled doctors achieve better outcomes 

with higher reservation probabilities. In the long run, experimentation can lead to better 

outcomes, but since experimentation can involve exposing patients to sub-optimal 

treatments, it also leads to short-term costs. Finally, we observe that restricting choice via 

guidelines can enhance the performance of all doctors when patients are being seen over 

shorter treatment intervals. To keep the analysis as clear as possible, we suppose that there is 

no risk aversion and that doctors and patients have the same preferences over outcomes. 

Since we use a normal-linear framework, the analysis can be extended to deal with risk 

aversion, and such an extension does not affect the qualitative features of choice.

5.1. A Two-Drug, Two-Period Example of Drug Choice

Suppose that doctors follow a procedure that is consistent with optimal choice, but that 

observed behavior may vary depending on doctor characteristics, especially skill. Our 

approach to thinking about the problem follows from Simon (1955). Simon showed that a 

reservation wage provides a parsimonious description of search behavior over time. One 

may not observe worker discount rates or search costs, but knowing the reservation wage 

enables us to predict a worker’s decision to accept a job at wage w or continue to search for 

better wage. Our context is similar: Since the outcome from drug treatment is uncertain, a 

single observation is not sufficient to determine the best choice of drug. The doctor must use 

repeated trials of different drugs in order to find the best choice. At each decision point, 

there is a trade-off between sticking to a treatment or experimenting with other treatments 

that may have higher benefit. In the multi-armed bandit problem, this trade-off is framed as 

the choice between exploitation—continuing with the same arm—or exploration—trying a 

new arm.

The essential building block of our model is a simple index rule for assigning a valuation to 

each choice. Suppose that the doctor is deciding between two drugs, d ∈ {A, B}, where the 

doctor’s beliefs regarding the effect of these drugs are characterized by a Normal 

distribution: ed N μtd, σtd
2 , where μtd is the ex ante mean effect of the drug d in period t and 

σtd
2  is the doctor’s belief regarding the variance of the effect for a patient in this period.
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Now suppose that doctor j’s taste for experimentation at date t can be summarized by a 

reservation probability pjt ∈ [0.5, 1]. The index rule we use to assign a value to drug d ∈ {A, 

B} is

qjtd =   μtd +   F−1 pjt σtd, (5.1)

where F(·) is the cumulative distribution function for the standard Normal distribution. Since 

F−1(pjt) is increasing in pjt, then a higher reservation probability leads to a higher weight on 

the variance. Since etd N μtd, σtd
2 , then in period t for d ∈ {A, B},

Pr etd ≤ qjtd = F
qjtd − μtd

σtd
= pjt .

Observe that when the reservation probability is 50%, then F−1(0.5) = 0. In that case, 

Pr etd ≤ qjtd = μtd = 0.5. In other words, in this case, the valuation is simply the estimated 

effect of treatment, and hence the short-run optimal choice is a special case of a reservation 

probability rule with ρjt = 0.5.

Suppose the mean effect of drug A is greater than that of drug B, but the variance of B is 

higher than the variance of A. When the reservation probability is 50%, the doctor behaves 

like a short-term optimizer and selects the arm with the highest expected effect. Hence, drug 

A would be chosen. Since the variance of treatment B is higher than that of treatment A, 

from (5.1) it follows that, for some probability pAB > 0.5, we have, for all pjt > pAB, that 

qjtB > qjtA.

These possibilities are illustrated in Figure 2. When the reservation probability is 0.5, the 

valuation is equal to the mean of the treatment effect, qjtd
0.5 = μjtd, d ∈ A, B  and qjtA

0.5 > qjtB
0.5 . 

A “behavioral” interpretation of this rule is that if the probability that drug B is better than 

drug A is less than 50%, then the doctor sticks with drug A. When the reservation 

probability is 95%, then qjtB
0.95 > qjtA

0.95, and the doctor will try drug B as long as there is a 5% 

or better chance that it will have a better effect than drug A. We can show that this rule 

corresponds to an optimal choice for the two-period decision once we incorporate physician 

learning.

Suppose patient i’s underlying condition does not change over time, and is summarized by 

an unobserved value: γi0 ∈ ℜ in period t = 0, where γi0 < 0 indicates a severe depression that 

should be treated. A patient taking drug d has (unobserved) condition γid = γi0 + eid ∈ ℜ, 

where eid is the treatment effect of the drug.

The doctor meets the patient twice. In period 1, the doctor observes a signal of the patient’s 

condition, yij1. The doctor then prescribes a drug d1 ∈ {A, B}. The patient takes the drug 

and realizes condition γi1d1 = γi0 + ei1d1 at the end of period 1. At the beginning of period 2, 

the doctor meets again with the patient, observes her condition, yij2, and prescribes a drug d2 

∈ {A, B}. The patient’s condition in period 2 is given by γi2d2 = γi0 + ei2d2.
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We assume that the doctor’s only goal is to improve the patient’s condition. The doctor’s 

payoff is given by

Uj d1, d2 = E 1 − ζj γi1d1 + ζjγi2d2
= E γi0 + E 1 − ζj ei1d1 + ζjei2d2 ,

where ζj ∈ (0, 1) is the relative weight placed on payoffs in periods 2 and 1, and dt is the 

drug prescribed in period t ∈ {1, 2}. When ζj approaches zero, then the doctor only cares 

about outcomes in the first period. When ζ approaches 1, then the doctor is concerned only 

with the long-run wellbeing of the patient, and may use the first period to learn more about 

which drug is most effective for the patient.

The initial condition γ0 of the patient is a fixed effect that is not affected by the doctor’s 

choice in this model. Hence, without loss of generality, we can set

Uj d1, d2 = E 1 − ζj ei1d1 + ζjei2d2 . (5.2)

Thus, the doctor’s goal is to find the drug that has the largest positive treatment effect.

5.1.1. Beliefs—Doctor choice can be modeled as a Bayesian decision problem. The 

Bayesian approach requires the explicit modeling of beliefs for all parameters that are 

relevant for a decision:

1. Patient Condition.: The doctor is assumed to have ex ante beliefs regarding the 

condition of each new patient. Let prior beliefs regarding patient condition be given by

γi N μj0, σj0
2 = 1

ρj0
. (5.3)

The ex ante precision of this belief is given by ρj0 > 0, the inverse of the variance of the 

distribution. We use precision and variance interchangeably, depending upon which is more 

convenient: ρvaluation = 1
σvaluation

2 .

2. Drug Efficacy.: The ex ante belief about the treatment effect of drug d ∈ {A, B} for 

patient i by doctor j is given by

eid N μj0d, 1
ρj0d

, (5.4)

where μj0d > 0 is the mean effect, and ρj0d is the precision of the doctor’s beliefs regarding 

the benefit of drug d before meeting the patient. After treatment with d, the patient has 

condition γid = γi0 + eid, where eid is the true, unobserved, realized effect of drug d. The 

true effect is revealed over the course of treatment.
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3. Diagnostic Skill.: The new ingredient we introduce is the ability of the doctor to 

observe a patient’s underlying condition. For each patient i, there is a true effect of drug d 
given by eid. The true effect is not observed by the doctor, but inferred through observation 

of the patient. At the beginning of period 1, the patient arrives and the doctor observes 

patient condition, yij1:

yij1 = γi + ϵij1, (5.5)

where the error term satisfies ϵij1 N 0, 1
2ξj

 (the factor 2 is included to simplify the 

subsequent expressions in this two-drug case). Here, we follow Currie and MacLeod (2017), 

and view the precision ρj as a measure of a doctor’s diagnostic skill—the extent to which 

they are able to assess a patient’s true underlying condition. A higher ξj corresponds to a 

more skilled doctor. Similarly, at the beginning of period 2, the patient again visits the 

doctor, who receives further information:

yij2 = γi + eid1 + ϵij2,

where ϵij2 has the same distribution as ϵij1.

5.1.2. Decisions—Given these beliefs and the doctor’s skill level, the doctor then makes 

choices to maximize her payoff (5.2). In this simple two-period model, it is assumed μj0d > 

0, and hence it is always optimal to prescribe a drug. Assume that ex ante, drug A is 

preferred to drug B (μj1A ≥ μj1B > 0), and hence, in the absence of new information, the 

doctor (and patient) prefer drug A over drug B, and prefer B over no treatment.

At the beginning of period 1, the doctor’s information is given by I1 = yij1 ∈ ℓ1, the 

diagnosis at the end of the first meeting. Since the outcome of the interview provides no 

information about any of the drug treatments, there is no updating of beliefs regarding drug 

effects. Hence, beliefs in period 1 regarding the effects of the drugs remain unchanged, and 

for d ∈ {A, B}, then μij1d = μj0d, and ρij1d = ρj0d.

At the beginning of period 2, the doctor’s information includes the previous observation, the 

drug chosen, and a new observation of the patient’s condition, I2 = yij1, d1, yij2 ∈ ℓ2. 

Given this information, the doctor’s decisions can be summarized by the function 

δ j = δj1, δj2 , where the choice each period maps information to a drug choice, 

δj1: ℓ1 A, B  and δj2: ℓ2 A, B . The Bayesian optimal decision problem is solved by 

backwards induction. One first solves for the optimal choice in period 2 for any possible 

information set, and then solves for the optimal choice in period 1 given its impact on period 

2 payoffs.

Since ζj > 0, the goal of the doctor in period 2 is to choose a drug that maximizes patient 

wellbeing in period 2:
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δj2* I2 = argmax
d2 ∈ A, B

E eid2 I2 .

Consider first the case in which the doctor chooses d1 = A, and let I2
A = yij1, d1 = A, yij2

We assume that the effects of the drugs are uncorrelated, and hence observing the effect of 

drug A has no effect on the doctor’s beliefs about drug B and

E eiB I2
A = μij2B = μij1B = μj0B > 0.

The doctor uses the outcome from the first period of treatment to update her assessment of 

the success of treatment with drug A. The doctor cannot directly observe true patient 

condition γi0, but can see whether the patient’s condition improves between periods 2 and 

period 1, yij2 − yij1 = eiA + ϵij2 − ϵij1, where the precision/quality of the signal yij2 − yij1  is 

ξj = 1
1

2ξj
+ 1

2ξj

.

From this result, it follows using the optimal updating rule for Normally distributed random 

variables that

μj2A = E eiA I2
A = ρj1Aμj1A + ξj yj2 − yj1

ρj1A + ξj
= μj1A + Δij2A , (5.6)

where Δij2A =
ξj

ρj1A + ξj
yj2 − yj1 − μj1A N 0, σj2A

2  is the new information regarding the 

effect of drug A. Ex ante, this information has mean zero and variance:

σj2A
2 = ξj

ρj1A + ξj

2
σj1A

2 + 2σj2 = 1
ρj1A
2

ξj
+ ρjiA

.
(5.7)

See DeGroot (1972) for an explicit derivation of the one-dimensional case used here.

Notice that the variance of the new information regarding the effect of drug A satisfies 

σj2A
2 ∈ 0, 1 . The variance is increasing with diagnostic skill and decreasing with the 

precision of the doctor’s beliefs regarding the effectiveness of drug A. When the doctor has 

no diagnostic skill, ξj = 0, and observing the outcome from period 1 provides no information 

so σj1A
2 = 0. The variance of beliefs regarding the effect of the drug also remains unchanged, 

ρj2A = ρj1A. In contrast, a skilled doctor (ξj > 0) learns about the effect of a drug by 

observing the patient and updates her beliefs regarding the precision of her estimate of eid:

ρj2A = ρj1A + ξj = 1
var eiA I2

A = 1
σij2A

2 .
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Period 2 is the last period of treatment, and hence the doctor prescribes the drug that she 

believes will provide the largest expected effect. She continues with drug A if and only if

E eiA I2
A > E eiB I2

A ,
μj1A + Δij2A = μj2A ≥ μj2B = μj1B .

This result determines the optimal choice at period 2 given that drug A was prescribed in 

period 1. In order to decide whether or not to try drug A, the doctor has to consider the 

expected benefit of prescribing drug A in period 1 on the improvement in period 2 decision 

making. Letting d2* denote the optimal choice in period 2, the expected benefit computed in 

period 1 is

E eid2* yij1, d1 = A = E max μj1A + Δij2A , μj1B
= μj1A + E max Δij1A , μj1B − μj1A
= μj1A + σj2AV

μj1B − μj1A
σj2A

,

where σj2A is given by (5.7) and V x = E max x, γ = L x + x, where γ ∼ N(0, 1) is the 

standard Normal distribution. The function L(x) is the unit-normal linear loss function, 

which satisfies

L x = E max x, γ − x = 1 − F x ϕ x − x > 0,

where F(x) is the cumulative Normal distribution function and ϕ x = E γ γ ≥ x  is the 

expected value of a lower truncated Normal distribution.9 This function is a measure of the 

value of information from learning the value of γ ∼ N(0, 1), while having x as the alternative 

choice.

The term V j1A ≡ σj2AV
μjB − μjA

σj2A
 represents the option value from choosing drug A in 

period 1. In period 2, one can continue with drug A and get μj1A, or change to drug B. The 

payoff from choosing is drug A in period 1 given optimal decision making in period 2

U d1 = A, d2A* = 1 − ζj μj1A + ζj μj1A + V j1A = μj1A + ζjV j1A . (5.8)

There is a similar expression for drug B where d2B*  represents the optimal choice in period 2 

given that drug B was chosen in period 1:

U d1 = B, d2B* = 1 − ζj μj1B + ζj μj1B + V j1B = μj1B + ζjV j1B . (5.9)

Putting this together, we have the following:

9Raiffa and Schlaifer (2000) provided an extensive discussion of the value of information and the function L(x).
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PROPOSITION 2: A rational Bayesian doctor chooses drug A over drug B in period 1 if and 
only if

μj1A + ζjV j1A ≥ μj1B + ζjV j1B,

an inequality that is satisfied to the first order if and only if

μj1A + τjσj2A ≥ μj1B + τjσj2B,

where τj =
ζj

1 − ζj
L 0 ≃ 0.4

ζj
1 − ζj

.

Thus, to the first order, the optimal choice in period 1 is consistent with a reservation 

probability that is given by

pj* = F τj = F
ζj

1 − ζj
L 0 ∈ 0.5, 1 .

This rule has two interesting features. First, when the doctor cares only about maximizing 

the patient’s current condition (ζj = 0), then the reservation probability is 50% and choice is 

determined by the static optimal choice rule—she chooses the drug with the highest 

expected value. When the doctor cares only about the long run, then ζj → 1 and pj* 1, and 

the choice is completely determined by the variance of the new information, σj2D
2 : The 

physician chooses the highest variance treatment in order to acquire the most information. 

Given that preferences are not observed, the reservation probability rule is equivalent to the 

optimal rule for some value of pj*.

The option value from choosing drug d, Vj1d, is a nonlinear function of the mean effects for 

both drugs. This implies that the Gittins (1979) rule, in which the characteristics of the arms 

are additively separable, is not optimal for finite horizon problems. See Gittins, Glazebrook, 

and Weber (2011) for an extensive discussion of the issue. Given that, in practice, choice is 

over a finite horizon, using a Gittins type index rule to model optimal choice is necessarily 

an approximation.

In this model, there is a clear link between diagnostic skill and experimentation. In 

particular, doctor diagnostic skill increases the value of information from experimentation. 

Expression (5.7) implies that increasing the doctor’s diagnostic skill, ξj, increases the return 

to experimentation:

∂σj2d
∂ξj

> 0, d ∈ A, B .

If ξj = 0, then σj2d
2  for d ∈ {A, B}, and the doctor will choose drug A for both periods 

because it has the highest ex ante value (since we have assumed μj0A > μj0B). Increasing 
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doctor skill, ξj, increases the return from experimentation, and hence the set of situations 

where the doctor will choose B over A, even though A is known to be the treatment with the 

highest expected value ex ante. Thus, this example illustrates that a better doctor who is 

following an optimal decision rule might choose a drug with a lower expected efficacy ex 

ante.

5.2. Simulating Practice Style

Although the BCBS data are very rich, they will not allow us to fully explore the 

implications of our model for patient welfare. In particular, we typically do not follow 

patients in the data very long and so we cannot take account of what may be lengthy patient 

histories to directly measure time paths of drug switching. While we follow doctors for 

longer than patients, we cannot see how they might be grouping patients into types, so we 

also cannot implement the model by examining how doctors sequentially treat similar 

patients. In practice, many treatment intervals are relatively short, suggesting that it would 

be useful to understand finite sample features of our models. In the finite sample case, it is 

difficult to obtain meaningful closed form solutions. Hence, the short-run properties of the 

model are best assessed with simulations.

Given a reservation probability rule, the value of choosing a particular drug depends on the 

characteristics of that drug, as shown in (5.1). Thus, the two-drug case discussed above 

extends naturally to several drugs. Each period, the doctor updates her beliefs about the 

effectiveness of a drug based on the patient’s current condition using Bayes’s rule, and then 

she chooses the drug with the highest value given the reservation probability. This simple 

rule does a very good job of approximating the optimal solution (see Currie and MacLeod 

(2020) for details).10

The simulation illustrates the nonlinear way that doctor skill and reservation probabilities 

can affect provider behavior and patient utility over short time periods. We examine how 

both dispersion in prescribing and patient outcomes are affected by guidelines. An advantage 

of simulations is that we can fix the distribution of patients to be exactly the same for each 

doctor. Even though patients are ex ante identical, the simulations illustrate that whether a 

patient prefers a doctor to experiment or not will depend on the diagnostic skill of the doctor. 

This implies that there cannot be a unique optimal treatment protocol that applies to all 

patients.

The simulations consider a 2 × 3 experiment with 6 doctor types. The doctor is either an 

expected utility maximizer with reservation probability of 50%, or an experimental type with 

a reservation probability of 95%. We also allow doctors to belong to low, medium, and high 

skill groups in terms of diagnostic skill. Let ξj ∈ {10.0, 1.0, 0.1} measure the accuracy with 

which the doctor assesses the patient’s condition. Here, ξj = 10 denotes high skill (H), and ξj 

= 0.1 denotes low skill (L). Suppose that treatment occurs monthly over a period of 36 

months.

10Chapter 14 of Kay (1993) gives a derivation of the n-dimensional linear learning rule for Normally distributed random variables. If 
the effects of the drugs are correlated, then the general learning rule updates the beliefs for both drugs, which in turn improves the 
speed of convergence to the optimal choice.
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In our simulations, we assume that doctor priors are given by data about the mean and 

variance of the effects of drugs from clinical trials. This implies that all doctors are equally 

well informed and hold similar beliefs, which is not likely to be true in practice but is a 

useful counterfactual to consider. Clinical trials for anti-depressants randomly assign 

depressed patients to treatment and control groups. The control group gets a placebo drug 

while the treatment group get the drug under investigation. The level of depression before 

and after the experiment is often measured using the Hamilton 17 score (see Hamilton 

(1960)) in which a score of h > 7 means that the person is depressed. We normalize this 

scale so that positive values indicate that the person is not depressed, and negative values 

indicate depression: The scale is given by log(7) − log(hi), where hi is the patient’s Hamilton 

17 score. Meta-analyses of drug trials appear regularly in the medical literature so that, in 

principle, all professionals have access to current results. See, for example, Linde et al. 

(2015) and Cipriani et al. (2016). The clinical trials data we use are described further in the 

Supplemental Material (Currie and MacLeod (2020)).

The assumptions we make about drug efficacy in order to model doctor beliefs are briefly 

summarized in Table V. The table details the efficacy of each of the top 11 anti-depressant 

drugs (ranked by market share in 2014) in terms of their effects on the improvement in the 

Hamilton 17 score. The placebo effect is quite large. In the case of sertraline (the generic for 

Zoloft), which is the most popular drug, the placebo effect is 80% of the total effect of 

treatment. The fact that the placebo effect is on average responsible for more than 50% of a 

drug’s effect is one factor that can help explain why it is hard to find the most effective 

treatment. To address this large placebo effect, we renormalize the effect of treatment by 

subtracting the placebo effect. We also allow the effect of “no drug” to be correlated with 

each drug within-patient. In other words, “no drug” is assumed to correspond to the placebo 

effect of seeking treatment, which mechanically creates correlation among all the drug 

treatments.

The simulations consider a doctor who has a constant load of 300 patients, all drawn from 

the same k-dimensional normal distribution of people with “true” drug effects taken from the 

clinical trials. Each patient will have a different optimal drug, but at first all patients will 

appear to be identical to the doctor. When doing the simulation, we reseed the random 

number generator for each of the 6 doctor types. This means that each doctor is facing 

exactly the same population of patients and exactly the same signals from the patients. 

Hence, any observed differences in outcomes are due only to differences in the doctor’s 

characteristics. We do 10 runs and take the average over the runs, and then plot doctor utility 

(which depends on the number of deviations from optimal treatment) and dispersion in 

doctor prescribing, characterized using the entropy score (we also tried 100 runs, but the 

results were very similar). Since beliefs are fixed by the clinical data, the simulations 

explore the effects of doctor diagnostic skill and the doctor’s taste for experimentation, as 

captured by the reservation probability.

We consider one additional factor, which is whether there are treatment guidelines. As 

discussed above, following guidelines constrains the doctor’s treatment choices. In the long 

run, eliminating treatment options should make patients strictly worse off. However, we saw 

that empirically, doctors who violate guidelines have worse patient outcomes (empirical 
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finding #3). In the short run, search is costly to patients since it may involve being subjected 

to sub-optimal treatments, so it is possible that eliminating choices that have a low 

probability of being optimal could make patients better off. Poly-pharmacy is a particularly 

interesting example. Even if the best treatment for a patient involves using several drugs, 

having to search over all possible drug combinations would increase search costs and the 

length of time it takes to find the optimal treatment. Since there is little information from 

drug trials about the efficacy of drug combinations, we focused on two-drug combinations 

and assumed that their efficacy was given by a weighted sum of the efficacy of each drug, 

where the weight given to each drug was 0.6. This choice of weights means that in our 

simulations, the optimal treatment is actually more likely to be a two-drug combination than 

a single drug. The variance of each two-drug combination is assumed to be equal to the sum 

of the variances of each drug times the square of 0.6, plus a small amount of idiosyncratic 

noise. The simulations were done with Julia and the diagrams with ggplot. The code and 

data that we are allowed to share are available on dataverse (https://dataverse.harvard.edu/

dataverse/curriemacleod). Table VI outlines the steps, with references to the corresponding 

derivations for the two-period problem. The simulation is based on a multi-period, multi-

drug extension of the two-period model whose theoretical properties were discussed in more 

detail in Currie and MacLeod (2020).

Figure 3 illustrates the evolution of dispersion in a doctor’s prescribing from time 0 to 36 

months as a function of doctor characteristics and whether or not the doctor follows a 

guideline. Dispersion tends to rise among doctors of all skill levels, though it is constrained 

by following guidelines, as one would expect. However, the effect of following guidelines is 

much smaller for doctors with a high reservation probability, who place a high value on 

experimentation. Doctors with a low reservation probability end up with significantly lower 

dispersion if they follow guidelines.

In Figure 4, we plot the doctor’s utility as a fraction of the maximum possible payoff. Since, 

in our model, doctor utility depends only on patient outcomes, higher doctor utility is 

synonymous with better patient outcomes. In this simulation, low skilled doctors have very 

flat payoff functions, though they are slowly increasing over time. In contrast, high skilled 

doctors have payoffs that rise rapidly over the first year of treatment, and then rise more 

slowly over time. Having a higher reservation probability (i.e., being more experimental) is 

associated with higher payoffs, especially among high skilled doctors. Perhaps the most 

remarkable result from this section is that following guidelines is associated with better 

short-run patient outcomes, even though guidelines constrain treatment choice. This is 

consistent with our empirical finding #3, that violating guidelines is associated with worse 

outcomes. The effect of guidelines is greatest for low skilled doctors with high reservation 

probabilities and for high skilled doctors with low reservation probabilities. One 

interpretation is that guidelines constrain low skilled doctors who are inclined to experiment 

on their patients; guidelines also make it less likely that a high skilled doctor who is inclined 

to stop searching early will get stuck on a very sub-optimal treatment.

The qualitative patterns we simulate for high skilled doctors match what we observe in the 

group of patients who ever see psychiatrists. In patients seeing high skilled doctors, higher 

entropy is associated with better patient outcomes (empirical finding #1), suggesting that 
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doctors with more dispersed prescribing patterns are better able to match drugs to patients. 

However, as discussed above, in the patients who see only less-skilled doctors, higher 

dispersion in prescribing is not empirically associated with better patient outcomes 

(empirical finding #2). Our simulations suggest that it is difficult to generate this result in 

our model in which all doctors have similar well-informed priors about drug efficacy and use 

information efficiently. In real life, a doctor may prescribe badly either because of a lack of 

diagnostic skill, or because of faulty priors.

Given prescribing data that followed a doctor over a relatively long time period, included a 

patient identifier, allowed one to track patients who move between doctors, and had 

information about patient outcomes, one might be able to explore different models of 

physician` belief formation. This might be achieved by estimating a structural model that 

examines the empirical relationship between doctors’ beliefs, reservation probabilities, and 

skill levels.

The reservation probability could be measured using the number of times a doctor changed 

drugs within a patient, normalized by the length of time the patient was seen. Data on first 

prescriptions (ideally to patients who had not been taking any drug for some period of time) 

could be used to identify doctors with different priors. For example, a doctor who routinely 

prescribed one drug to new, medication-naive patients could be assumed to have different 

priors than one who routinely prescribed a different drug. Empirically, all of the information 

that can be obtained from the data about possible differences in priors can be summarized by 

differences in actual drug choices conditional on the number of drugs prescribed, so one 

could control for differences in priors by identifying them with doctor types based on these 

choices.

Given an indicator about priors, the reservation probabilities, and information about patient 

outcomes, and assuming that higher skilled doctors will have better outcomes on average, as 

well as outcomes that improve with the length of treatment, the model could allow us to 

back out a distribution of diagnostic skill. It would then be possible to examine the empirical 

relationship between skill and reservation probabilities, conditional on priors. Given rapidly 

evolving access to claims data, and improvements in the quality of such data, it may be 

possible to estimate a model along these lines in the near future.

6. CONCLUSIONS

Using unique data formed by combining information about how doctors prescribe 

antidepressants combined with individual claims data from a large health insurer, we 

characterize doctor practice style by measuring dispersion in prescribing and whether the 

doctor violates prescribing guidelines. In turn, differences in these measures of practice style 

are significantly associated with patient outcomes including total costs, non-drug costs, and 

emergency room visits and hospitalizations.

The relationships between practice style and outcomes are quite different among patients 

who ever saw psychiatrists, and the larger group of patients who were treated only by non-

specialists. Among patients seeing skilled doctors, seeing a doctor with more diffuse 
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prescribing is associated with a reduction in the probability of a subsequent ER visit or 

hospitalization with a mental health indication. In patients seeing unskilled doctors, 

switching to a doctor with more diffuse prescribing is not associated with improvements in 

patient outcomes.

We also look at the effects of transitions from one drug to another. Patients whose doctors 

violate prescribing guidelines pertaining to these transitions have worse outcomes. Estimates 

from models with patient fixed effects suggest that violations of U.S. guidelines are 

associated with a 28.2% increase in total costs, a 13.0% increase in the probability of any 

ER visit or hospitalization, and a 20.0% increase in the probability of an ER visit or 

hospitalization with a mental health indication. These findings indicate that while some 

flexibility in treatment options is likely optimal for skilled providers, guidelines are useful to 

rule out bad practice.

Having shown that practice style is strongly related to patient outcomes, we turn to 

interpreting the estimates using a model of doctor decision making. We think of the 

sequence of drug choices as a classic multi-armed bandit problem. Such problems involve a 

trade-off between experimenting to learn more about what works best for a particular 

patient, and systematically choosing the alternative with the highest expected payoff. In our 

model, the trade-off between experimentation and choosing the drug with the highest 

expected value depends on the physician’s diagnostic skill. If a physician is highly skilled in 

the sense of being able to correctly assess a patient’s condition, that is, has excellent 

diagnostic skill, then the potential gains from experimentation are large.

One insight of the model is that there will not necessarily be a single correct treatment even 

for identical patients since the best treatment will also depend on the doctor’s characteristics. 

Other things being equal, a skilled diagnostician should be more experimental than a less 

skilled diagnostician. Physicians who are more skilled will use a wider variety of drugs for 

their patients, and physicians with better diagnostic skills stand to learn more from 

experimentation and so will be more experimental. This insight is likely to be applicable in 

other markets with expert decision makers. For example, other things being equal, a skilled 

surgeon should perform more surgeries on marginal patients than a less skilled surgeon, and 

a more skillful lawyer should take more cases to trial.

Since finding the optimal treatment entails experimentation, it is likely that some choices 

will turn out to have been sub-optimal ex post. Experimentation may make it more likely 

that the physician finds the optimal treatment, but it may also make it more likely that the 

physician violates prescribing guidelines. Using simulations based on data from clinical 

drug trials and doctors with different assumed levels of skill, we show that in the short run, 

guidelines that rule out some choices can improve patient welfare. Our empirical findings 

are consistent with the model’s insight that experimentation is more beneficial when 

physicians have more skill, and that restrictions on physicians’ choice sets are associated 

with better patient outcomes over the treatment intervals in our data.

Our results have a number of potential implications for health policy. Much of the literature 

about variations in observed practice style begins with the assumption that, conditional on 
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price and patient characteristics, there is a well-defined optimal choice of treatment.11 From 

this perspective, the goal of health policy is mainly to get the price “right” so that the 

optimal choice will be made. Our results show that in the presence of match-specific 

treatment and learning, there cannot be a single “optimal” choice. Rather, the optimal 

practice style varies with doctor skill and with the uncertain information that the doctor 

collects while treating the patient. In short-run treatment settings, patients may be better off 

when guidelines take some treatments off the table, even when those treatments are optimal 

for some patients. The cost of searching over a wide set of treatments may outweigh the 

benefit of finding a somewhat better treatment. Overall, our results suggest that optimal 

policy regarding guidelines does not involve a stark choice between following rules or 

allowing unlimited doctor discretion but should allow doctors to practice medicine within 

well-defined boundaries.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.—. 
Actual and counterfactual distribution of physician entropy scores. This figure shows the 

distribution of actual entropy scores in 2013 (shaded bars) and the distribution that would 

have existed if doctors had followed the APA guidelines for prescribing (white bars). We 

assume prescriptions that are in violation of guidelines would have been distributed in the 

same way as a doctor’s remaining prescriptions had they followed the guidelines.
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Figure 2.—. 
Effect of reservation probability on drug choice.
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Figure 3.—. 
Simulation results on the effects of doctor skill and reservation probabilities on diffusion in 

prescribing, with and without guidelines.
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Figure 4.—. 
Simulation of the effects of doctor skill and reservation probabilities on utility, with and 

without guidelines.
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TABLE I

VOLUME AND DISPERSION OF PHYSICIAN PRESCRIBING IN 2013, BY SPECIALTY
a

All Prescriptions GPs Psychiatrists Other Physicians

# Prescriptions (millions) 231.6 120.7 51.1 15.9

# Prescribers 767,985 267,898 49,523 214,928

Prescriptions/Provider 301.6 450.5 1032.5 73.8

Average Entropy Scores by Medical School Graduation Year

<1975 0.619 0.619 0.656 0.500

1976–1985 0.623 0.631 0.657 0.499

1986–1995 0.618 0.630 0.649 0.479

1996+ 0.608 0.625 0.631 0.445

Average Share of Drugs to Physician’s “Favorite” Drug

<1975 0.257 0.256 0.223 0.364

1976–1985 0.253 0.245 0.218 0.366

1986–1995 0.254 0.242 0.220 0.387

1996+ 0.258 0.242 0.229 0.415

a
Entropy calculations include only providers with ≥ 12 scripts in the year and are based on m = 33 separate drug molecules. Data on prescriptions 

from IQVIA include physician identifiers and are merged to American Medical Association files that provide the doctor’s medical school 
graduation year and specialty.
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TABLE II

SUMMARY OF BCBS PATIENT DATA BY OUTPATIENT PROVIDER
a

Patient Type: All Patients Ever Saw Psychistrist Never Saw Psychiatrist

# members 450,802 82,810 367,992

# member-months 5,409,124 1,117,032 4,292,092

# months/member 11.999 13.489 11.664

# months antidepressants/member 8.303 9.499 8.034

# changes in entropy/member 1.331 1.621 1.265

# member-month with drug transitions 4,716,167 976,768 3,739,399

Percent monthly drug transitions from t − 2 to t − 1 that violate each guideline (as % of row 8)

UK 0.102 0.117 0.098

Canada 2.406 2.177 2.466

US 3.601 4.623 3.334

Cocktail 4.491 8.917 3.335

Average Monthly Costs (in Jan. 2013 dollars)

total monthly cost: 50th p’tile 109.17 218.27 86.87

 90th p’tile 1412.10 2025.83 1242.10

pharmacy cost: 50th p’tile 23.95 48.38 20.16

 90th p’tile 519.57 794.23 447.98

professionals cost: 50th p’tile 0.00 19.75 0.00

 90th p’tile 504.15 699.94 451.30

facility cost: 50th p’tile 0.00 0.00 0.00

 90th p’tile 108.51 198.42 88.72

 99th p’tile 7828.53 9767.20 7232.10

Share with Emergency Room or Hospitalization each Month

1 if any ER/hospitalization 0.0237 0.0323 0.0214

1 if any ER/hosp. for mental health 0.0097 0.0170 0.0077

a
Authors’ calculations from the BCBS data. The treatment period is defined as up to 1 month before the first observed month with an anti-

depressant script up until 3 months after the last observed month with an anti-depressant script. ER/Hosp. visits are considered to have been for 
mental health if that is one of the indications listed. Transitions can be from the same drug to the same drug or from a drug to no drug, for example.
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TABLE V

EFFECT OF ANTI-DEPRESSION DRUGS ON HAMILTON 17 SCORE FOR DEPRESSION SEVERITY FROM CLINICAL TRIALS 

(MEAN SCORE BEFORE TREATMENT IS 25.2)
a

Active Ingredient Brand Name(S) Drug Share 2014 Reduction Deviation

Sertraline Zoloft SSRI 14.63 −9.90 7.78

Citalopram Celexa SSRI 12.83 −10.30 7.08

Fluoxetine Prozac SSRI 10.57 −9.40 6.13

Escitalopram Lexapro SSRI 9.68 −10.40 5.97

Paroxetine Paxil SSRI 5.32 −9.80 6.14

Trazodone Oleptro SARI 9.35 −15.70 9.00

Duloxetine Cymbalta SNRI 6.84 −10.70 7.00

Bupropion Wellbutrin NDRI 10.34 −12.00 8.70

Amitriptyline Elavil Tricyclic 5.18 −14.00 8.70

Venlafaxine Effexor SNRI 7.09 −12.10 8.71

Mirtazapine Remeron Tetracyclic 2.82 −14.00 7.70

Placebo – −8.00 6.67

a
Many anti-depressant drug trials use the Hamilton 17 score for assessing the severity of depression because it is a continuous measure. The mean 

depression reduction and the standard deviations presented here are culled from meta-analyses of drug effects as described further in an 
unpublished appendix that is included in the NBER working paper version of this paper. The market shares are computed by the authors using the 
IQVIA data set.
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TABLE VI

SIMULATION STEPS

1.1. Read in parameters values for drug effects.

1.2. For runs R = 1,…, 100 do the following code:

   2.1. Set new seed(R) = next prime number after seed(R-l).

   2.2. For each of the six doctor types j in J do the following:

      3.1. Seed random number generator with seed(R) (each doctor sees exactly same set of 300 patients)

      3.2. For each patient i in I draw an unobserved vector of treatment effects (5.4) and then:

       4.1. Initialize doctor beliefs (5.3)

        4.2. Each month t = l,…,36 do:

          5.1. Draw an observation yijt using (5.5)

          5.2. Update beliefs regarding treatment effect of drugs ((5.6)–(5.7))

          5.3. Compute value for each treatment given beliefs and reservation probability ((5.8)–(5.9))

          5.4. Compute optimal choice (2) depending upon guideline case.

          5.5. Save results.

      3.3. For each month-doctor type compute mean patient utility and prescription diversity for the 300 patients and save results.

1.3. Average patient utility and prescription diversity over the runs by month-doctor type.

1.4 Plot the results.
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