Table 4.
Models | F-Score of Each DDI Type | Overall | ||||||
---|---|---|---|---|---|---|---|---|
Advice | Effect | Mechanism | Int | Precision | Recall | F-Score | ||
UTurku [12] | 63.0 | 60.0 | 58.2 | 50.7 | 73.20 | 49.90 | 59.40 | |
Feature-based | FBK irst [49] | 69.20 | 62.80 | 67.90 | 54.70 | 64.60 | 65.60 | 65.10 |
method | Kim [14] | 72.50 | 66.20 | 69.30 | 48.30 | - | - | 67.00 |
Raihani [15] | 77.40 | 69.60 | 73.60 | 52.40 | 73.70 | 68.70 | 71.10 | |
CNN [20] | 77.72 | 69.32 | 70.23 | 46.37 | 75.70 | 64.66 | 69.75 | |
SCNN [21] | - | - | - | - | 72.50 | 65.10 | 68.60 | |
MCCNN [22] | 78.00 | 68.20 | 72.20 | 51.00 | 75.99 | 65.25 | 70.21 | |
Neural | GRU [50] | - | - | - | - | 73.67 | 70.79 | 72.20 |
network-based | CNN-GCNs [23] | 81.62 | 71.03 | 73.83 | 45.83 | 73.31 | 71.81 | 72.55 |
method | SVM-LSTM [25] | 71.50 | 72.00 | 73.80 | 54.90 | 75.30 | 63.70 | 69.00 |
Joint-LSTMs [26] | 79.41 | 67.57 | 76.32 | 43.07 | 73.41 | 69.66 | 71.48 | |
Hierarchical RNNs [27] | 80.30 | 71.80 | 74.00 | 54.30 | 74.10 | 71.80 | 72.90 | |
PM-BLSTM [28] | 81.60 | 71.28 | 74.42 | 48.57 | 75.80 | 70.38 | 72.99 | |
Our method | RHCNN | 80.54 | 73.49 | 78.25 | 58.90 | 77.30 | 73.75 | 75.48 |