Skip to main content
. 2019 Feb 15;21(2):184. doi: 10.3390/e21020184
Each element in the weight matrix W is given the following prior distribution:
wi,=γi,wTN[aw,aw](0,σw,02)+(1γi,w)TN[aw,aw](0,σw,12), for   γi,wBernoulli(πw),
where σw,02=(1,000)2, σw,12= 0.001, aw= 0.20, and πw= 0.20.
Each element in the weight matrix U is given the following prior distribution:
ui,r=γi,ruTN[au,au](0,σu,02)+(1γi,ru)TN[au,au](0,σu,12), for   γi,ruBernoulli(πu),
where σu,02=(1,000)2, σu,12= 0.0005, au= 0.20, and πu= 0.025.
Each element in the weight matrix V1 is given the following prior distribution:
v1,k,i=γ1,k,ivGau(0,σv1,02)+(1γ1,k,iv)Gau(0,σv1,12), for   γ1,k,iBernoulli(πv1),
where σv1,02=10,σv1,12= 0.01, and πv1= 0.50.
Each element in the weight matrix V2 is given the following prior distribution:
v2,k,i=γ2,k,ivGau(0,σv2,02)+(1γ2,k,iv)Gau(0,σv2,12), for   γ2,k,iBernoulli(πv2),
where σv2,02= 0.5, σv2,12= 0.05, and πv2= 0.25.
Finally, αGau(0,σα2I), where σα2=(.10)2,    μGau(0,σμ2I), where σμ2=100,    δUnif(0,1),
σϵ2IG(αϵ,βϵ), where αϵ=1 and βϵ=1.