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Abstract: To optimize long-term nocturnal non-invasive ventilation in patients with chronic obstructive
pulmonary disease, surface diaphragm electromyography (EMGdi) might be helpful to detect
patient-ventilator asynchrony. However, visual analysis is labor-intensive and EMGdi is heavily
corrupted by electrocardiographic (ECG) activity. Therefore, we developed an automatic method
to detect inspiratory onset from EMGdi envelope using fixed sample entropy (fSE) and a dynamic
threshold based on kernel density estimation (KDE). Moreover, we combined fSE with adaptive
filtering techniques to reduce ECG interference and improve onset detection. The performance of
EMGdi envelopes extracted by applying fSE and fSE with adaptive filtering was compared to the
root mean square (RMS)-based envelope provided by the EMG acquisition device. Automatic onset
detection accuracy, using these three envelopes, was evaluated through the root mean square error
(RMSE) between the automatic and mean visual onsets (made by two observers). The fSE-based
method provided lower RMSE, which was reduced from 298 ms to 264 ms when combined with
adaptive filtering, compared to 301 ms provided by the RMS-based method. The RMSE was negatively
correlated with the proposed EMGdi quality indices. Following further validation, fSE with KDE,
combined with adaptive filtering when dealing with low quality EMGdi, indicates promise for
detecting the neural onset of respiratory drive.

Keywords: fixed sample entropy; adaptive filtering; root mean square; diaphragm electromyography;
non-invasive mechanical ventilation; chronic obstructive pulmonary disease
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1. Introduction

Chronic obstructive pulmonary disease (COPD) is the fourth leading cause of death in the
world [1,2]. Due to ageing of the population and continuation of risk factors, this problem will keep
increasing in the coming decades. The disease is characterized by an airway obstruction leading
to airflow limitation and, as a consequence, persisted respiratory symptoms such as dyspnea and
production of sputum [1]. Patients with end-stage COPD frequently develop chronic hypercapnic
respiratory failure, which is associated with end-of-life [3]. Long-term application of nocturnal
intermittent non-invasive ventilation (NIV) in patients with chronic hypercapnic respiratory failure
due to neuromuscular and thoracic restrictive disorders improves clinical outcomes and survival.
However, this therapy has long been controversial in COPD patients [3,4]. With the introduction
of high-intensity NIV, benefits of long-term NIV have been shown in stable COPD patients with
chronic hypercapnic respiratory failure [3,5,6]. High-intensity NIV is defined as a mode of ventilation
that delivers sufficient inspiratory positive airway pressure in combination with a higher backup
breathing frequency to decrease arterial carbon dioxide levels. However, for some patients, adapting
to high-intensity NIV is difficult and compliance rates in clinical practice are therefore sometimes
disappointing. Furthermore, the response to NIV in terms of improvement in gas exchange and
patient-centered outcomes such as improvement in health-related quality of life is variable between
patients, despite the application of high-intensity NIV. A reason for a more prolonged adaption period,
lower compliance rates and less effective ventilation might be the occurrence of patient-ventilator
asynchrony with high-intensity NIV [7,8].

The surface diaphragm electromyography (EMGdi) signal provides a real-time indirect measure of
neural respiratory drive, which reflects the load on the respiratory muscles [9]. Its non-invasive nature
makes the method extremely useful during NIV; both to visually detect patient-ventilator asynchrony,
and for repeated measurements [3]. However, for longer recordings, such as whole night recordings,
visual inspection is burdensome and time-consuming. In addition, NIV is normally applied during
sleep. Thus, there is a clear need to develop an automatic method to reliably detect the respiratory
onset from EMGdi signal. This is crucial since the timing of respiratory effort versus the timing of the
ventilator pressure wave determines the control of ventilation.

Nevertheless, the EMGdi signal is heavily contaminated by electrocardiographic (ECG) activity,
compromising inspiratory onset detection. A number of methods have been used to estimate the
envelope of EMGdi and automatically identify inspiratory onset [10–13]. Traditionally, the EMGdi
envelope has been estimated using the average rectified value or the root mean square (RMS) of EMGdi
signal after suppressing all QRS complexes (ECG interference) [11]. Recently, fixed sample entropy
(fSE) has proved to be a more robust technique to estimate the amplitude variation in respiratory
EMGdi signals. In addition, fSE permits extracting the EMGdi envelope without requiring a prior
removal of QRS complexes [12,13]. However, poor EMGdi signal quality or high ECG interference
can reduce the robustness of fSE. The use of adaptive filters has also been proposed to remove ECG
interference and then estimate EMGdi amplitude [10]. However, these methods have been evaluated
separately and in different contexts. Therefore, there is a clear need to explore whether reducing
ECG interference by adaptive filtering can improve EMGdi envelope estimation and consequently
respiratory onset detection.

In this study, we aim to compare the performance of previously proposed methods estimating
EMGdi envelope and respiratory onset, to optimize the automatic detection of the onset of neural
respiratory drive in COPD patients initiated on home NIV. First, to estimate EMGdi envelope, the use
of fSE in combination with adaptive filtering was explored and compared to the RMS-based EMGdi
envelope provided by the EMG acquisition device. Then, a dynamic threshold based on kernel density
estimation (KDE), applied to the EMGdi envelopes, was proposed to detect the respiratory onset.
The performance of the onset detection was validated using EMG-based visual scores completed by
two well-trained clinicians.
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2. Dataset and Visual Scores

2.1. Study Population

The clinical study was performed at the Department of Pulmonary Diseases of the University
Medical Center Groningen (Groningen, The Netherlands). Nine patients with COPD initiated on
home NIV in the hospital were included in this analysis. All patients participated in a randomized
controlled trial of which investigating respiratory EMG and patient-ventilator asynchrony during NIV
initiation was a secondary objective. Both studies, including the EMG measurements, were approved
by the Ethical Committee Groningen (ClinicalTrials.gov NCT02652559 and NCT03053973). All patients
gave written informed consent for participation in the trial and for the EMG measurements. Table 1
summarizes the characteristics and clinical data of the analyzed patients.

Table 1. Characteristics and clinical data of the included COPD patients.

Sex, female/male (n) 5/4
Age (years) 63 (58–72)

BMI (kg/m2) 25 (22–29)
FEV1 (L) 0.59 (0.52–0.75)

FEV1 (%pred) 20 (16–26)
FVC (L) 2.22 (1.43–2.63)

FVC (%pred) 53 (44–66)
FEV1/FVC (%) 28 (23–33)

TLC (L) 8.01 (6.82–9.22)
TLC (%pred) 134 (116–156)

RV (L) 5.29 (4.88–6.21)
RV (%pred) 252 (215–267)
RV/TLC (%) 66 (61–74)

PaCO2 before NIV initiation (kPa) 6.6 (6.2–8.9)
PaO2 before NIV initiation (kPa) 8.3 (5.9–9.4)

BMI, body mass index; FEV1, postbronchodilator forced expiratory volume in 1 s in liters (L); FVC, forced vital
capacity in liters (L); RV, residual volume; TLC, total lung capacity; %pred: percentage of the predicted values [14,15];
PaO2, arterial oxygen pressure at daytime without ventilation; PaCO2, arterial carbon dioxide pressure at daytime
without ventilation; kPa, kilopascal; NIV, non-invasive ventilation. Characteristics are represented by their median
and inter-quartile range.

2.2. Data Acquisition

The EMGdi was measured in the COPD patients once they got used to sleeping with NIV
during the night. In 7 patients nocturnal measurements were performed during the initiation period
performed in the hospital after 2–5 nights NIV acclimatization and titration, and in 2 patients the
EMG measurements were performed after a longer period of NIV used at home (in 1 patient a
nocturnal measurement was performed after 6 months NIV use and in the other patient a daytime
measurement was performed after more than 2 years NIV use). The EMGdi was measured using
two 24 mm surface electrodes (Covidien Kendall Disposable Surface EMG/ECG/EKG Electrodes,
Germany) placed bilaterally midclavicular at the costal margin. A common electrode was placed
on the sternum. Moreover, a pressure sensor was placed between the mask and the ventilator to
measure the pressure changes applied by the ventilator (DEMCON—Macawi Respiratory Systems BV,
Enschede, The Netherlands). Both pressure and EMGdi signals were amplified and transferred to a
laptop by the Dipha-16® (DEMCON—Macawi Respiratory Systems BV, Enschede, The Netherlands).
Data were recorded using Polybench data-acquisition and processing package (Applied Biosignals
GMBH, Weener, Germany), with a sample frequency of 500 Hz [3].

2.3. Visual EMG Onset Detection

The data was transferred to MATLAB (The Mathworks, Inc., vR2014a, Natick, MA, USA) in order
to perform the visual analysis and automatic onset detection. EMGdi signals were filtered with a

ClinicalTrials.gov
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4th-order zero-phase Butterworth band-pass filter between 5 Hz and 400 Hz. Power line interference
at 50 Hz and its harmonics were removed using a 10th-order zero-phase notch filters. For each
patient, one hour of the EMGdi recording was selected. The EMGdi signals were visually evaluated
separately by two physicians. The visual analysis included the onset annotations of every inspiration.
A graphic user interface developed in MATLAB facilitated visually determining the onset points over
the EMGdi signals (see Figure S1). The onset of diaphragm activity was selected as the point at which
the surface EMGdi amplitude exceeds the value of basal expiratory activity. Respiratory cycles where
the visual onset marks significantly differed between both experts (a difference greater than a specific
tolerance value) were considered unreliable and removed from further analysis. The physicians, based
on their clinical experience, set this tolerance value to 150 ms. When the visual onset marks were
within the tolerance value, the mean of the two annotations was considered as the gold standard.
This metric provides a more objective onset value that reduces the subjective judgments of single
scorers, thus minimizing the imperfect nature of visual inspection scorers.

3. Data Analysis

An adaptive filter was applied to remove the cardiac interference from the EMGdi and improve
signal quality for respiratory onset detection. Three EMGdi envelopes were used to automatically
estimate the respiratory onset: the envelopes estimated applying fSE to both EMGdi and adaptively
filtered EMGdi signals, and the envelope provided by the EMG acquisition device, which is based
on the RMS calculation of the QRS-removed EMGdi signal. The performance between each method
and the visual scorer reference onset value was evaluated through the root mean square error (RMSE).
This metric is indifferent to the direction of errors. Therefore, the difference between visual score and
automatic onset detection was taken to evaluate premature or delayed onset detections. In addition,
the relationship between the EMGdi signal quality indexes and RMSE was assessed using the Pearson
correlation coefficient (R). A single average value of EMG signal quality indexes and RMSE for each
patient was used to calculate the R values. p-values lower than 0.05 were considered significant.

3.1. Quantifying EMGdi Signal Quality

The quality of EMGdi was evaluated by estimating the inspiratory activity increment with respect
to basal expiratory activity, and the influence of the ECG interference [16]. The ratio between the mean
power spectral density (PSD) of inspiratory segments without ECG and the mean PSD of expiratory
segments without ECG (Rinex) was used as an expression of the increment of inspiratory EMGdi
activity with respect to basal expiratory EMGdi activity. The higher the Rinex, the greater the difference
between EMGdi inspiratory and expiratory segments. This ratio could be related to the ability of the
automatic method to detect the inspiratory onset. In addition, the ratio between the mean PSD of
inspiratory EMGdi segments without ECG and the mean PSD of expiratory EMGdi segments with
ECG was used as an expression of the ECG interference over the EMGdi signals (Rcardio). The higher
the Rcardio, the greater the difference between the amplitude of the ECG interference with respect to
the inspiratory EMGdi.

Figure 1 depicts the different segments of EMGdi and the corresponding PSD. Inspiratory and
expiratory EMGdi segments without ECG interference were selected, inside the inspiratory and
expiratory cycle, respectively, as the EMGdi activity between the end of the T wave and the start of
the P wave of the next beat. The ECG signal corresponds to a filtered EMGdi signal version between
0.5 Hz and 35 Hz with a zero-phase 4th order Butterworth filter. The PSD was calculated for each type
of signal segment using the modified periodogram with a Hamming window and the discrete Fourier
transform calculated with 4096 points, as described in reference [16].
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Figure 1. (a) EMGdi signal segments from a COPD patient with high quality signal recorded during
non-invasive ventilation at night. Inspiratory cycles are representing by dotted line boxes. EMGdi
inspiratory and expiratory segments without ECG interference (solid magenta and green traces,
respectively), and ECG inspiratory and expiratory segments (solid red and cyan traces, respectively) are
also shown. Solid blue traces shown not included segments. (b) PSD corresponding to ECG inspiratory
and expiratory and (c) PSD corresponding to EMGdi inspiratory and expiratory phases.

3.2. Adaptive Filtering

We implemented an adaptive noise canceler based on event-synchronous cancellation to improve
the quality of EMGdi signals by reducing the ECG interference. The adaptive noise canceler scheme
used was previously proposed by references [17–19]. The EMGdi signal was used as the primary input
to adaptive noise canceler. This signal, band pass filtered between 2 and 40 Hz, was used to detect
the QRS complex. The reference input, uncorrelated with the EMGdi but correlated with the ECG
interference, was artificially generated according to reference [19]. The number of weights of the linear
combiner and the adjustment or adaptive constant of the Least-Mean-Square (LMS) algorithm were set
to 10 and 10−6, respectively. That constant of adaptation minimized the energy difference between the
output or cancellation signal and the reference input signal. The EMGdi-LMS signal represents the
EMGdi signal adaptively filtered using the LMS algorithm (Figure 2(d1,d2)), and fSE-EMGdi-LMS
represents the envelope extracted with fSE (Figure 2(e1,e2)).

3.3. EMGdi Envelope Estimation

3.3.1. RMS-Based Method

The EMGdi envelope provided by the EMG acquisition device was based on the RMS method
(RMSp) proposed by Prechtl et al. [11]. This method removes the electrical heart activity from the
raw EMGdi by means of the gating technique. As was described by Prechtl, the QRS complexes are
stretched into a standard QRS pulse and cut out of the raw EMGdi signal. The remaining EMGdi
signal is averaged with a moving window and the RMS is calculated (Figure 2(b1, b2)) [11].

3.3.2. Fixed Sample Entropy

Sample entropy (SampEn) is a measure of irregularity used to analyze short and noisy
physiological time series [20,21]. It represents the conditional probability that two sequences of
patterns of m consecutive samples, which are similar to each other within a tolerance r, will remain
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similar when one consecutive sample is added (m + 1). SampEn algorithm improves the performance
of the approximate entropy [22] overcoming the bias due to self-matching counted and the lack of
relative consistency [20] by the following procedure:
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Figure 2. Representative examples of EMGdi signal (a1,a2) recorded in two patients with low (left
panels) and high (right panels) signal quality, respectively. Derived root mean square (b1,b2) envelopes
given by the EMG recording system (RMSp). Derived fixed sample entropy (fSE) envelopes over the
EMGdi signal (fSE-EMGdi) (c1,c2). fSE was calculated using m = 1, r = 0.2 × standard deviation of
EMGdi free of electrocardiographic interference and overlapping sliding window of 0.25 s. The EMGdi
signal was adaptively filtered (d1,d2) using an LMS-based adaptive algorithm (EMGdi-LMS) and
fSE (e1,e2) was also calculated (fSE-EMGdi-LMS). Rinex is an expression of increment of inspiratory
EMGdi activity with respect to basal expiratory EMGdi activity, while Rcardio is an expression of the
ECG interference over the EMGdi signals. Expert onset detections are shown in black solid lines (black
and red lines). The onsets of neural respiratory activity (blue dotted lines) were detected through
a dynamic threshold over the fSE-EMGdi and fSE-EMGdi-LMS using the Gaussian kernel density
estimation approach.

Given a time series of N samples x(n) = [x(1), x(2), . . . , x(N)], a subset of N − m + 1 overlapping
vectors Xm(i) of length m are constructed

Xm(i) = [x(i), x(i + 1), . . . , x(i + m− 1)], i = 1, 2, . . . , N −m + 1. (1)

Then, define Chebyshev distance, i.e., the maximum absolute difference between corresponding
pairs of scalar components of m-dimension vectors Xm(i) and Xm(j).

d[Xm(i), Xm(j)] = max
k=0,...,m−1

[|x(i + k)− x(j + k)|], i 6= j. (2)

Bi(r) denotes the number of Xm(j), j = 1, . . . , N−m, i 6= j that resemble Xm(i) and are less than
or equal to a threshold r, such that dm[Xm(i), Xm(j)] ≤ r, i 6= j.

Then, for i = 1, 2, . . . N −m

Bm
i (r) =

Bi(r)
N −m− 1

. (3)

The average for Bm
i (r) es defined as
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Bm(r) =
1

N −m

N−m

∑
i=1

Bm
i (r). (4)

This previous procedure is repeated, increasing the dimension m to m + 1 to obtain

Am(r) =
1

N −m

N−m

∑
i=1

Am
i (r). (5)

Thus, Bm(r) is the probability that two sequences will match for m samples, whereas Am(r) is the
probability that two sequences will match for m + 1 samples.

Sample entropy is then defined as

SampEn(m, r) = lim
n→∞

{
−ln

[
Am(r)
Bm(r)

]}
, (6)

which is estimated by the statistic:

SampEn(m, r, N) = ln
[

Am(r)
Bm(r)

]
. (7)

The m parameter is generally taken as 2 while r parameter is set in range of 0.1 to 0.25 times the
standard deviation of the segment analyzed of length N [23].

The fixed sample entropy (fSE), is a metric based on the original SampEn formulation to quantify
the amplitude variation of complex components of stochastic signals [12,24]. fSE is calculated using
a sliding window with overlap. fSE calculation requires the adjustment of three parameters: the
embedding dimension m, the tolerance value r and the size of the sliding window (N parameter) [24,25].
The main difference between SampEn and fSE is that the latter uses a fixed tolerance value (r) defined
as a fraction of the global standard deviation of the signal instead of the local standard deviation.

To optimize the neural respiratory activity estimation and reduction of ECG interference over
EMGdi signal, the influence of several m, r and N input parameters were investigated in reference [25].
In the present study, based on recommendations of [25], fSE was explored using m equal to 1 and 2, r
equal to 0.1, 0.2 and 0.3 times the standard deviation of the EMGdi signal and a sliding window equal
to 0.25, 0.3, 0.4 and 0.5 s with 90% of overlap. Unlike in reference [25], the standard deviation of the
EMGdi signal was calculated excluding ECG interference segments. The fSE parameters that provided
the lowest geometric mean value of the RMSE were selected as the optimal parameter set.

To compute fSE-based EMGdi envelope we also applied a smoothing filter (using a moving
average filter of 300 ms) and computed the exponential value of the resulting signal, to enhance high
amplitude variations and reduce small amplitude variations, which might optimize onset detection
(Figure 2(c1,c2)).

3.4. Automatic Respiratory Onset Detection

Breathing exhibits nonlinear patterns due to intrinsic changes associated to the respiratory system
dynamic. Static thresholding methods used to detect onsets in EMGdi signals are limited since they
provide only temporal information using the baseline amplitude characteristics of electromyographic
signals [26]. Moreover, they can be affected by baseline variation such as ECG, movements artefacts or
muscle interferences [26]. Thus, we propose the use of a dynamic thresholding that takes into account
the breath by breath respiratory muscle variability [13]. This dynamic thresholding is based on the
KDE, a nonparametric method used for the estimation of the probability density function p(x). KDE
is calculated between two successive inspiratory cycles over the EMGdi envelope, which provides a
smooth amplitude histogram. KDE estimation of the p(x) is given by:
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p̂(x) =
1

Nh

N

∑
i=1

K
(

x− xi
h

)
, (8)

where K(x) is the kernel function, N is the number of samples and h is the bandwidth or the smoothing
parameter. We adopt a Gaussian kernel function of the form

K(x) =
1√
2π

e−
x2
2 . (9)

Assuming that the distribution is Gaussian and using a Gaussian kernel, the optimal bandwidth h
is defined by (9), where σ is the standard deviation of the data [27]

hopt = σ
5

√
4

3N
. (10)

The dynamic threshold for each breathing was determined as the global maximum (mode) of
the p(x). Finally, the inspiratory onset was then defined as the last point the threshold crosses the
EMGdi envelope in upward direction. Figure 2 shows an example of automatic onset detection, with
the different envelope extraction methods, for a patient with high signal quality (left panels) and a
patient with low signal quality (right panels).

4. Results

4.1. Visual Onset Analysis

The scorers manually annotated 8117 breaths using the EMGdi as a reference. The cycles where
the difference between scorers was higher than 150 ms were considered unreliable and excluded
from further analysis (Table 2). The onset difference in ms and percentage of discarded cycles are
represented in Table 2. On average, 26.5% of the cycles were rejected. Moderate negative correlations
were observed between the percentage of discarded cycles and both Rinex (R = −0.63) and Rcardio
(R = −0.43) indices.

Table 2. Onset difference between manual detections considering reliable breaths less than 150 ms.
Percentage of cycles removed.

COPD Differences between Scores (ms) Discarded Cycles (%)

1 −6 ± 77 34.2
2 −32 ± 73 39.3
3 15 ± 74 27.1
4 10 ± 68 21.0
5 −10 ± 70 40.0
6 −13 ± 67 24.4
7 6 ± 81 45.0
8 33 ± 56 5.4
9 16 ± 46 2.2

Mean ± SD 5 ± 69 26.5 ± 15.1

4.2. EMGdi Signal Quality Analysis

In general, the EMGdi quality (Table 3) was varying, with some patients having lots of disturbance
and others (i.e., patient 9) with high quality EMGdi signals, which was reflected by much lower errors
detecting inspiratory onset. At large, both the Rinex and Rcardio indices improved after the adaptive
filter, improving the EMGdi signal quality for monitoring respiratory drive. However, the ECG
interference has not been reduced completely by the LMS approach as shown in Figure 2, leading in
one case to the addition of noise to the filtered signal slightly reducing the Rinex index (i.e., patient 7,
from 3.65 to 3.29).
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Table 3. Rinex and Rcardio indices calculated over the EMGdi signal before and after applying the
LMS-based adaptive algorithm.

Rinex Rcardio

COPD EMGdi EMGdi-LMS EMGdi EMGdi-LMS

1 1.70 1.73 0.0060 0.4019
2 5.09 6.59 0.0009 0.5051
3 6.31 6.57 0.0082 0.3306
4 3.44 4.82 0.0100 0.0790
5 6.65 10.48 0.0035 1.2849
6 9.63 15.18 0.0047 0.6149
7 3.65 3.29 0.0129 0.1493
8 5.82 9.23 0.0011 0.2751
9 43.74 64.30 0.0293 7.2753

EMGdi-LMS: EMGdi signal filtered using an LMS-based adaptive algorithm. Rinex: ratio between the mean power
spectral density (PSD) of inspiratory segments without ECG and the mean PSD of expiratory segments without
ECG. Rcardio: ratio between the mean PSD of inspiratory EMGdi segments without ECG and the mean PSD of
expiratory EMGdi segments with ECG.

4.3. RMSE Compared to Visual Analysis

The geometric mean of the RMSE for all the analyzed patients, between gold standard onsets
and automatic onsets estimated over the fSE envelopes using different settings is shown in Figure 3.
The lower RMSE ranged between 253.7 and 341.6 ms for fSE-EMGdi-LMS (Figure 3). As illustrated, the
parameter set that reduced the geometric mean RMSE detecting the respiratory onset using fSE-EMGdi
(276.4 ms) and fSE-EMGdi-LMS (253.7 ms) was m = 1, r = 0.3, and sliding moving window equal to
0.25 s in both cases. Thus, this parameter set was considered optimal and was applied throughout
the study.
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Figure 3. Root-mean-square error (RMSE) between the visual onset detection and automatic onset
detections. Fixed sample entropy (fSE) was estimated over both the EMGdi signal (fSE-EMGdi) and
filtered EMGdi signal using an LMS-based adaptive algorithm (fSE-EMGdi-LMS). fSE was calculated
for different settings: m = 1 and 2, and tolerance values r = 0.1, 0.2 and 0.3 × standard deviation of
EMGdi free of electrocardiographic interference, and overlapping sliding windows of 0.25, 0.3, 0.4 and
0.5 s. Each RMSE represents the geometric mean of obtained values for the 9 analyzed patients.

The RMSE of each patient obtained between the different techniques and visual analysis is represented
in Table 4. The lowest mean RMSE was observed for fSE-EMGdi-LMS, while the lowest RMSE
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dispersion was shown for RMSp followed by fSE-EMGdi-LMS. In general, RMSE decreases when
the adaptive filter is applied. However, in some patients the RMSE obtained over fSE-EMGdi was
lower than obtained by RMSp. The correlations between Rinex and Rcardio indexes (Table 3) and
RMSE (Table 4) were assessed. Moderate and strong negative correlation were observed between
Rinex and RMSE for fSE-EMGdi (R = −0.62) and fSE-EMGdi-LMS (R = −0.8, p-value < 0.05),
respectively. Moderate and strong negative correlation were also observed between Rcardio and
RMSE for fSE-EMGdi (R = −0.43) and fSE-EMGdi-LMS (R = −0.77, p-value = 0.015), respectively.
The performance of the different techniques was also evaluated against the visual annotations carried
out separately by the two physicians. However, the mean of the two annotations provided more
reliable results than those obtained using a single observer (see Table S1).

Table 4. The RMSE (in ms) of the automatic respiratory onset detection per patient.

COPD fSE-EMGdi fSE-EMGdi-LMS RMSp

1 303 318 353
2 335 316 303
3 317 264 376
4 523 346 282
5 369 293 339
6 278 273 277
7 251 225 333
8 187 220 255
9 116 120 194

Mean ± SD 298 ± 115 264 ± 68 301 ± 56

fSE-EMGdi: fixed sample entropy (fSE) estimated over the EMGdi signal. fSE-EMGdi-LMS: fSE estimated over
filtered EMGdi signal using an LMS-based adaptive algorithm. fSE was calculated using m = 1, tolerance values
r = 0.3 × standard deviation of EMGdi free of electrocardiographic interference and overlapping sliding windows
of 0.25 s. RMSp: root mean square given by the recording system.

4.4. Premature or Delayed Onset Detection Comparison

All automatic methods identified respiratory onset before the visual onset marks (average of
both scorers). This is clearly reflected in Table 5, where the difference between the visual analysis
and automatic onset detection is represented per patient for all studied methods. This effect is clearly
illustrated in Figure 4, where the visual scores and automatic onset detection, with the different
methods are compared, for a patient with high signal quality (left panels) and a patient with low signal
quality (right panels). In both cases the onset was detected before the visual scores and the mean error
and dispersion was clearly higher for the patient with lower EMGdi signal quality.

Table 5. The difference (in ms) between the visual scores (average detection of two visual scorers) and
the automatic onset detection per patient.

COPD fSE-EMGdi fSE-EMGdi-LMS RMSp

1 101 ± 286 99 ± 302 220 ± 276
2 211 ± 260 233 ± 214 239 ± 186
3 157 ± 276 138 ± 226 223 ± 302
4 309 ± 422 204 ± 280 174 ± 222
5 222 ± 296 204 ± 210 255 ± 224
6 199 ± 194 180 ± 205 209 ± 181
7 80 ± 238 47 ± 221 89 ± 321
8 129 ± 136 163 ± 148 183 ± 177
9 30 ± 112 47 ± 110 139 ± 136

Mean ± SD 159 ± 261 152 ± 218 196 ± 221

fSE-EMGdi: fixed sample entropy (fSE) estimated over the EMGdi signal. fSE-EMGdi-LMS: fSE estimated over
filtered EMGdi signal using an LMS-based adaptive algorithm. fSE was calculated using m = 1, tolerance values
r = 0.3 × standard deviation of EMGdi free of electrocardiographic interference and overlapping sliding windows
of 0.25 s. RMSp: root mean square given by the recording system.
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Figure 4. Comparison between the onset average detection of two visual scorers (tonV) and the
automatic onset detection, including all studied methods, in two representative patients with low (left
panels) and high (right panels) quality signal, respectively. Automatic detections were estimated from
RMS-based (a1,a2) envelopes provided by the acquisition device (RMSp), fSE-based envelopes (b1,b2)
over the EMGdi signal (fSE-EMGdi), and fSE-based envelopes (c1,c2) from the LMS-based adaptively
filtered EMGdi signal (fSE-EMGdi-LMS). Upper red dots represent early detection and lower blue dots
represent late detection of the automatic methods.

5. Discussion

In the present study, we developed a new approach to automatically detect respiratory onset
from EMGdi. We proposed a novel method using sample entropy to compute the envelope of EMGdi
and a Gaussian-KDE based threshold to non-invasively estimate the onset of the inspiratory activity
in COPD patients initiated on home NIV in the hospital. The envelope, derived using fSE (mean
RMSE = 298 ms), showed slightly higher values in estimating the onset compared to the RMS-based
envelope (mean RMSE = 301 ms) provided by the EMG acquisition device; both evaluated during day
and/or night, and with poor EMG signal-to-noise ratios.

In addition, this study is the first to our knowledge to introduce the combination of the fSE and
the adaptive filtering techniques to improve the estimation of EMGdi envelope when dealing with low
quality EMGdi signals, which further reduced the RMSE to 264 ms. Furthermore, we proposed EMGdi
quality indexes to assess the impact of EMGdi signal quality detecting inspiratory onset. This showed
that there are significant moderate to strong negative correlations between the quality indices and
RMSE. However, as observed for patient 7, the LMS approach slightly reduced the Rinex index from
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3.65 to 3.29, without compromising the performance of the automatic onset detections. All automated
methods detected the onset before the visual scores; with a mean premature detection of 159 ms, 152 ms
and 196 ms, for fSE-EMGdi, fSE-EMGdi-LMS and RMSp, respectively. The mean and dispersion of
onset detection errors were higher for patients with lower EMGdi signal quality.

The estimation of inspiratory onset is the necessary key step to detect patient-ventilator
asynchrony, which is normally done by visual inspection. In an attempt to automatize patient-ventilator
asynchrony detection, we showed that it is feasible to automatically detect inspiratory onset from
EMGdi. However, compared to visual analysis, the automatic methods estimate the onset prematurely
with an error ranging from 30 ms to 309 ms, 47 ms to 233 ms, and 89 ms to 255 ms, using fSE-EMGdi,
fSE-EMGdi-LMS and RMSp, respectively.

Nevertheless, it should be considered that the variability between visual scorers was very high.
The lack of exact mathematical definition of the EMGdi onset represents a challenging problem [28].
This is reflected by the percentages of cycles removed, up to 45% in one patient with low EMGdi signal
quality, because the inter-scorers difference was very high. Only cycles where the scorers agreed within
a tolerance of 150 ms were included in the analysis. The mean between both scores was considered
the reference onset, which included some error in our analysis, as both marks could be 150 ms apart.
The main source of variability was the onsets that lay close to QRS complexes. In addition, the visual
marks were performed in the EMGdi signal, without the adaptive filter that reduced ECG interference,
which might have negatively influenced the visual onset detection. This can be observed in Figure 2,
where the automatic marks look more reliable than the visual marks.

Several studies based on sample entropy analysis have properly estimated respiratory onset
without removal of ECG artifacts from good quality EMGdi signals [13,29,30]. The main challenge
on onset detection studies using the fSE technique is to determine the optimal parameters.
Recommendations for estimating respiratory muscle activity using fSE on EMGdi for different
levels of inspiratory effort developed by a healthy subject in seated position were established by
Estrada et al. [25]. However, such recommendations were not made considering surface EMGdi signals
from COPD patients with home mechanical ventilation. Therefore, we investigated the effect of fSE
parameters: r values of 0.1, 0.2 and 0.3 times the standard deviation of the EMGdi signal excluding
ECG interference segments, m = 1 and 2, and overlapping sliding windows between 0.25 s to 0.5 s
on estimation of neural onset. The optimal parameters were set to m = 1, r = 0.3, and sliding moving
window equal to 0.25 s, based on the lowest geometric mean RMSE found for fSE-EMGdi (276.4 ms)
and fSE-EMGdi-LMS (253.7 ms). Interestingly, the selected parameters were in accordance with the
recommendations made by Estrada et al. [25], and were suitable to extract respiratory muscle activity
in COPD patients undergoing NIV.

Other problems related to background noise presented during EMG signal recording and signal
to noise ratio notably could also affect the accuracy of onset detection [31]. In studies with EMGdi
signals, the interference and frequency overlap between ECG and EMGdi signals can affect the
analysis and interpretation of researchers and clinicians. ECG and EMGdi signals could be viewed as
being derived from two dynamic systems with different complexity characteristics [29]. Despite fSE
permits extracting the EMGdi envelope without removing ECG interference, the quality of EMGdi is
a key factor in robust envelope estimation. Thus, in this study, for the first time, we proposed EMG
quality indices and a combined adaptive filter with fSE to detect respiratory onset when dealing with
challenging EMGdi signals. These quality indices enabled quantifying the performance of adaptive
filtering. Although the ECG interference was not completely removed, the quality of the EMGdi signal
improved, which enhanced the fSE performance and the automatic onset detection. Nevertheless,
despite being beneficial in low quality signals, adaptive filtering is very time consuming and could be
avoided when working with high quality signals since the improvement could be minimal.

Patient-ventilator interaction is generally evaluated through indirect estimates of neural onset
time based on a drop in esophageal pressure and the onset of airflow at the mouth. However,
indirect estimates of neural onset can be affected by physiological factors such as intrinsic positive
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end-expiratory pressure (PEEPi), or mechanical changes of rib cage [32]. Therefore, more direct
measures of respiratory muscle electrical activity have been proposed to alleviate imprecisions whilst
using surrogate estimates of neural onset in mechanical ventilation. Although it is possible to detect
diaphragm EMG with esophageal or even needle electrodes, these invasive methods are impractical
in patients on chronic home NIV. Therefore, we focused on using surface EMG, being aware of its
drawbacks in terms of more signal noise and crosstalk by other muscles, to detect respiratory neural
drive in patients on home mechanical ventilation.

The present study does have certain limitations. Firstly, it is a study with a relatively small sample
size that could limit the generalization of the results. A second limitation is that despite the visual EMG
onset detection approach being the gold standard and considered to provide accurate onset detection,
this method strongly depends on the experience of the expert. It is highly subjective and with poor
reproducibility, and thus could be heavily biased by personal skills [28]. A third limitation is the fact
that the EMGdi signals, unlike EMG signals recorded in other muscles, have low signal-to-noise ratio
and the manual annotations are more difficult to make. Therefore, in future works, we plan to make
manual annotations over the EMGdi-LMS signals and compare them with those made on the EMGdi
signal. Another limitation of the study is that the implemented adaptive noise canceler filter was
based on a fixed ECG template. In the future, we will investigate whether generating an adaptive
noise canceler that better represents the variability of the cardiac pattern, improves the cancelation
of ECG interference. In this sense, different templates obtained every 5 min will be used instead
of single template. We will also explore the use of other adaptive filtering algorithms such as the
Recursive-Least-Squares algorithm.

6. Conclusions

In this work, a new fSE-based approach to detect neural onset from muscle respiratory signals was
proposed for COPD patients during non-invasive ventilation. The performance of fSE was improved
including an adaptive filtering step that allowed us to reduce cardiac interference when evaluating
EMGdi recordings with low signal quality. The fSE combined with the KDE resulted in a suitable tool
for onset detection where the muscle activation profile can be difficult to evaluate. Our findings suggest
that using fSE is promising to detect neural onset from muscle respiratory signals in COPD patients
during non-invasive ventilation. We recommend using fSE alongside adaptive filtering when EMGdi
recordings have low signal-to-noise ratio. More research is required to further validate our findings in a
larger cohort and to investigate whether it can be used to detect and treat patient-ventilator asynchrony
in order to improve clinical outcomes.
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