Skip to main content
. 2019 Mar 20;21(3):300. doi: 10.3390/e21030300

Table 5.

The optimal SI-value of different brain network models for networks modeling in the stage from NC to AD. ξC represents the relative error in clustering coefficient between synthetic networks and the real target brain network (TN); ξEloc represents the relative error in local efficiency; ξM is the relative error in modularity; ξL is the relative error in the characteristic path length; ξEglob is the relative error in global efficiency; and ξT is the relative error in transitivity.

Models λ η ξC ξEloc ξM ξL ξEglob ξT SI
CN 0.4 1.2 0.0426 0.0491 0.1263 0.0665 0.1460 0.0419 2.1169
PA 0.2 1.6 0.0194 0.0289 0.0395 0.0551 0.1377 0.0515 3.0111
AA 0.2 1.6 0.0386 0.0339 0.1291 0.0576 0.0551 0.0881 2.4851
RA 0.2 2.0 0.0448 0.0245 0.1370 0.0732 0.0496 0.0758 2.4697
JC 0.4 0.4 0.0653 0.0661 0.1249 0.0364 0.0786 0.0709 2.2614
MINM 0.2 1.8 0.0432 0.0358 0.0835 0.0253 0.0303 0.0368 3.9231
Random 0.0888 0.1355 0.2304 0.0534 0.0611 0.1476 1.3951