Table 3.
Dataset | Method | Accuracy (%) | Time (s) |
---|---|---|---|
Sonar (208 samples) | LUCCK | 87.42 | 1.5082 |
3-NN | 81.66 | 0.0178 | |
5-NN | 81.05 | 0.0178 | |
Adaboost | 82.19 | 1.0239 | |
SVM | 81.00 | 0.0398 | |
Random Forest (10) | 78.14 | 0.1252 | |
Random Forest (100) | 83.39 | 1.1286 | |
LDA | 74.90 | 0.0343 | |
Glass (214 samples) | LUCCK | 82.56 | 0.3500 |
3-NN | 68.72 | 0.0161 | |
5-NN | 67.04 | 0.0162 | |
Adaboost | 50.82 | 0.5572 | |
SVM | 35.57 | 0.0342 | |
Random Forest (10) | 75.31 | 0.1062 | |
Random Forest (100) | 79.24 | 0.9319 | |
LDA | 63.28 | 0.0155 | |
Iris (150 samples) | LUCCK | 95.93 | 0.1508 |
3-NN | 96.09 | 0.0135 | |
5-NN | 96.54 | 0.0135 | |
Adaboost | 93.82 | 0.4912 | |
SVM | 96.52 | 0.0143 | |
Random Forest (10) | 94.81 | 0.0889 | |
Random Forest (100) | 95.29 | 0.7686 | |
LDA | 98.00 | 0.0122 | |
E. coli (336 samples) | LUCCK | 87.61 | 0.5937 |
3-NN | 85.08 | 0.0190 | |
5-NN | 86.43 | 0.0193 | |
Adaboost | 74.13 | 0.6058 | |
SVM | 87.53 | 0.0448 | |
Random Forest (10) | 84.56 | 0.1075 | |
Random Forest (100) | 87.34 | 0.9265 | |
LDA | 81.46 | 0.0182 |