Skip to main content
. 2019 Apr 28;21(5):442. doi: 10.3390/e21050442

Table 3.

Comparison of our proposed method (LUCCK) with other machine learning methods in terms of accuracy and running time, averaged over 10 folds.

Dataset Method Accuracy (%) Time (s)
Sonar (208 samples) LUCCK 87.42 1.5082
3-NN 81.66 0.0178
5-NN 81.05 0.0178
Adaboost 82.19 1.0239
SVM 81.00 0.0398
Random Forest (10) 78.14 0.1252
Random Forest (100) 83.39 1.1286
LDA 74.90 0.0343
Glass (214 samples) LUCCK 82.56 0.3500
3-NN 68.72 0.0161
5-NN 67.04 0.0162
Adaboost 50.82 0.5572
SVM 35.57 0.0342
Random Forest (10) 75.31 0.1062
Random Forest (100) 79.24 0.9319
LDA 63.28 0.0155
Iris (150 samples) LUCCK 95.93 0.1508
3-NN 96.09 0.0135
5-NN 96.54 0.0135
Adaboost 93.82 0.4912
SVM 96.52 0.0143
Random Forest (10) 94.81 0.0889
Random Forest (100) 95.29 0.7686
LDA 98.00 0.0122
E. coli (336 samples) LUCCK 87.61 0.5937
3-NN 85.08 0.0190
5-NN 86.43 0.0193
Adaboost 74.13 0.6058
SVM 87.53 0.0448
Random Forest (10) 84.56 0.1075
Random Forest (100) 87.34 0.9265
LDA 81.46 0.0182