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Abstract: In this paper, we present a new effective infrared (IR) and visible (VIS) image fusion
method by using a deep neural network. In our method, a Siamese convolutional neural network
(CNN) is applied to automatically generate a weight map which represents the saliency of each
pixel for a pair of source images. A CNN plays a role in automatic encoding an image into a feature
domain for classification. By applying the proposed method, the key problems in image fusion,
which are the activity level measurement and fusion rule design, can be figured out in one shot.
The fusion is carried out through the multi-scale image decomposition based on wavelet transform,
and the reconstruction result is more perceptual to a human visual system. In addition, the visual
qualitative effectiveness of the proposed fusion method is evaluated by comparing pedestrian
detection results with other methods, by using the YOLOv3 object detector using a public benchmark
dataset. The experimental results show that our proposed method showed competitive results in
terms of both quantitative assessment and visual quality.
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1. Introduction

Infrared (IR) and visual (VIS) image fusion technology is utilized to generate a composite image
from multiple spectral source images for combining complementary information of the same scene.
The input source images are captured from different imaging modalities with different parameter
settings. The fused image is expected to be more suitable for human perception than any of
the individual input image. Due to this advantage, image fusion techniques have wide applications
in image processing and computer vision areas to improve the visual ability of human and machine
vision. The general framework of image fusion is extracting representative salient features from source
images of the same scene, and then the salient features are integrated into a single image by a proper
fusion method.

IR images are highly influenced by the external environment, such as light, fog, and smog. [1,2].
IR images are superior to VIS images in areas where the VIS image is invisible due to low-light
conditions. [3,4]. Normal VIS imaging sensors capture the reflective properties of the objects, which can
be edges and detail texture of objects. They are able to provide information for human visual perception.
As stated above, due to differences in imaging mechanism, the intensities at the same pixel location in
IR and VIS images often vary distinctly. A good IR and VIS image fusion method should be able to
simultaneously keep the thermal radiation information in IR images and the texture detail information
in VIS images.

In the last decade, many image processing methods have been proposed to extract salient features,
such as multi-scale decomposition-based methods. In general, multi-scale decomposition consists
of three steps, namely, decomposition, fusion, and reconstruction. Pyramids [5,6], wavelets [7–9],
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and shearlets [10–12] are the typical multi-scale transforms that are usually used in image fusion.
Sparse coding is also a popular image encoding method, which has also been successfully applied
to fuse multi-modality images [13–15]. With the prosperity of deep learning, using a convolutional
neural network (CNN) or generative adversarial network (GAN) [16] has become a trend. In [16],
a GAN-based method simultaneously keeps the radiation information from the IR images and the detail
texture in VIS images. The drawback of this method is low computational efficiency.

One of the most important problems in image fusion is to calculate a weighted map that
incorporates information about pixel activity from different source images. In most existing image
fusion methods, the goal is two-fold: namely, activity level measurement and weight allocation.
In a traditional transform domain fusion method, the sum of the absolute values of the decomposed
coefficients is used to measure activity level, and the “selected maximum” or “weighted average”
rule is applied to other sources, depending on the measurement acquired. Distinctly, this kind of
activity measurement and weight allocation is vulnerable to several factors, such as noise, distortion,
and the intensity difference. Several activity level design and weight allocation methods have been
proposed in recent articles [17,18] to improve convergence. However, it is not easy to design a feasible
activity level measurement nor weight allocation strategy that can actually take into account all
the key issues of convergence. Moreover, these two stages are designed individually without effective
combinations in many fusion methods, which can significantly limit algorithm performance.

In this paper, we address this problem from a different view point to overcome difficulties in
(1) designing robust activity level measurement and (2) weight allocation strategies. Specifically, it trains
a CNN [19], which encodes an image patch into a feature to map the source images directly to the weight
map. CNN is a type of multi-layer neural network, which differs from the usual artificial neural
network. It learns a layered feature representation for image data through multi-connected layers.
Specifically, each layer contains a certain number of feature maps, which can be considered as the size
of feature dimension in that layer. Each weight in a feature map is called a neuron. The operations,
such as convolution, activation, and max-pooling, applied to neurons are used to connect multiple
layers of feature maps [19].

To cope with two major difficulties in image fusion, we proposed a new effective deep learning
based framework for CNN model training to combine the activity measurement and weight map
generation for image fusion. The main contribution of this paper can be summarized as follows:

(1) We designed a CNN based learning scheme to measure the activity measurement and to generate
the weight map automatically according to the saliency property of each pixel in the source
image pair.

(2) The source image pairs were decomposed into low and high-frequency sub-bands by using
a 3-level wavelet transform, and the fused image was obtained by reconstructing wavelet images
with the scaled weight maps. It produced fewer undesirable artifacts for good consistency with
human visual perception.

(3) We analyzed the experimental results systematically on both quantity and quality point of
view. Quantitative assessment was carried out on twelve benchmark data, and the results
were compared with those of eighteen representative prior art methods. In addition, the visual
qualitative effectiveness of the proposed fusion method was evaluated by comparing pedestrian
detection results after fusion by using YOLOv3 object detector on a public benchmark dataset.

2. Related Works

A review of recent IR and VIS image fusion techniques is summarized in [20]. Recently, image fusion
technique has become a popular research field, and IR and VIS image fusion techniques are the crucial
components. In terms of algorithms used, typically they can be classified in three general categories:
pixel level, feature level, and decision level.

First, the pixel-level based methods can be categorized as spatial domain-based methods
and transform domain-based methods. Representative spatial domain-based algorithms are weighted
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average and block-based methods. The well-known transformation-based IR and VIS fusion
algorithms are pyramid, contour, NSST, and other decomposition and reconstruction based methods.
In addition to the methods mentioned above, there are various other methods of IR and VIS image
fusion, such as sparse representation (SR), Markov random fields (MRFs), and principal component
analysis-based method. Pixel-level based method is a trendy study for the whole image fusion area.

Second, feature level-based methods rely on synthetic features and structural characteristics of
images, such as edges, corner points, and textures, to segment the image or get a target distribution
information from a local area of image. Then, information from the source images will be extracted
and combined by applying certain fusion rules. The representative methods are based on object
detection, edge extraction, saliency map extraction, and image segmentation. The feature level-based
method requires a manual feature selection, as well as a manually designed fusion rule, and the fusion
performance highly depends on the features and fusion rules.

Third, decision level fusion is the most advanced option among the three levels, where a decision
is made to integrate the targets based on a discriminative information according to a designed
fusion rule. The fusion strategy is based on learning-based classifiers that generally quantify
the reliability of classification. The shortcoming of decision level is the high dependency on detection
for classification results.

The rest of this paper is organized as follows. The image fusion scheme based on automatic
activity level measurement and weight map generation is introduced in Section 3. The performance
evaluation and result analysis are discussed in Section 4. Finally, the conclusions are summarized in
Section 5.

3. Fusion Scheme Based on Automatic Activity Level Measurement and Weight Map Generation

The aim of this work was to develop a CNN-based learning scheme to measure the activity
level and to generate weight map automatically, according to saliency property of each pixel in
the source images. In this work, we mainly focused on situations where the IR and VIS image pair was
pre-registered. It can be seen from Figure 1 that the proposed method consists of three main steps:
(1) CNN model generation by training a Siamese network, (2) weight map generation from a pair of IR
and VIS images, and (3) image decomposition and image reconstruction. We designed a CNN-based
training scheme to generate a two-class classification model that can compute the probability of each
class. A large number of IR and VIS image patches with the size of 16 × 16 were used as training
dataset. In weight map generation phase, the input were a pair of IR and VIS images, and weight map
for the image pair was generated by using the trained CNN model. The weight map was the output of
the training phase. The input image pairs were decomposed into low and high-frequency sub-bands,
and weight maps were scaled to average the decomposed image pair. Lastly, the fused image was
generated through weighted average and reconstruction.
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3.1. CNN Design

For this study, we regarded IR and VIS image fusion as a two-class classification task. The target
is to generate a weight map whose value is ranging from 0 to 1 through training a CNN model.
The coefficients in the weight map can be considered as the fusion rule that indicates the portion
of each corresponding pixel intensity value in the source image during the weighted-average step.
Figure 2 shows the weight map generation scheme of the proposed method. The input image pairs are
encoded by Siamese network, and they are given a score which represents the saliency property of
each source (VIS or IR). Consecutively, the probability calculated by using Softmax operation becomes
the weight value in the weight map. The pixels with thermal radiation information in the IR image or
the pixels belonging to detail texture in VIS image get higher probability. A weight map with the same
size of the input image pair is calculated by using the pre-trained CNN model. In the weight map W,
the brighter pixel indicates a value close to 1, and the darker is close to 0. For instance, if the value of
a pixel(x, y) in the weight map is 0.95, then the weight of IR pixel is 95%, and the weight of VIS pixel
is 5% at (x, y). The averaged pixel value is computed by IR_VIS(x,y) = IR(x,y) * W(x,y) + VIS(x,y) *
(1-W(x,y)), where IR_VIS(x, y), IR(x, y), VIS(x, y), and W(x,y) denote the pixel value of the weighted
averaged image, IR image, VIS image, and the weight value at a certain position (x, y), respectively.
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A Siamese neural network was selected as the deep learning model in this work. Siamese
neural networks are designed as twin networks, connected by their last layer by means of distance
layer that is trained to predict whether two images belong to the same class or not. For instance,
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the two branches of CNN shown in Figure 3 are not different but are two copies of the same network.
Therefore, they share the same parameters. Image 1 and image 2 are passed through the CNN to be
encoded into a fixed-length of feature vector. If the two input images are from the same class, then
their feature vectors must also be similar, while if the two input images are different, then their feature
vectors will also be different. Thus, the element-wise absolute difference between the two flattened
fully-connected feature vectors must be very different in the case of Figure 3. The fully connected
layer of the two networks are then fed to a contrastive loss function based on the Euclidian distance,
which calculates the similarity between two classes. Smaller Euclidian distance stands for higher
similarity. This is the main concept of Siamese networks.Entropy 2019, 21, x 5 of 16 
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Figure 4 shows the CNN model used in the proposed fusion method. There are three convolutional
layers and one max-pooling layer in each branch of the Siamese network. Table 1 shows specific
parameter of the proposed CNN. Selecting image patch size is important. There is trade-off relationship
between patch size and classification performance. A large patch size results in higher accuracy since
more image features are encoded by neural network, but this increases the size of fully-connected
layer significantly, which affects the efficiency. On the other hand, the training accuracy by using
small patch size is not robust. By considering the above concerns and the size of the dataset image,
we used 16 × 16 patches in this work. We concatenated the 256 feature maps obtained by each branch
and fully-connected it with a 256-dimensional feature vector. Then a 2-dimensional vector is further
fully connected with the first fully connected layer for Softmax operation. Lastly, the 2-dimensional
vector is fed to a 2-way Softmax layer which generates a probability score of two classes. The full
connection operation can be viewed as convolution with the kernel size that equals to the size of
the input image. Assuming the size of the input image is h × w, then the size of the output weight
map is [ceil(h/ 2) − 8 + 1] × [ceil(w/ 2) − 8 + 1], since the input image size is decimated to half after
max-pooling operation, which is from 16 × 16 to 8 × 8. Conceptually, convolution, max-pooling,
and concatenation play the role of feature extractor. Then, fully connected layers and the Softmax
function classify the image patch pair with probabilistic values between 0 and 1.
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Table 1. Parameter setting of CNN.

Layer Patch Size Kernel Size Stride Feature Dimension

Conv 1 16 × 16 3 × 3 1 64
Conv 2 16 × 16 3 × 3 1 128

Max-Pooling 8 × 8 3 × 3 2 128
Conv 3 8 × 8 3 × 3 1 256

Concatenation 8 × 8 N/A N/A 512
FC 1 8 × 8 8 × 8 N/A 256
FC 2 8 × 8 8 × 8 N/A 2

3.2. Training

The image patches for training are gathered from the TNO image fusion dataset and the OTBVS
benchmark dataset. We made use of 2000 IR and VIS image pairs and divided them into small patches
for training, instead of using whole images, as the input of CNN. We can use image of arbitrary size
by doing so, and we extract image patches with stride of 2 pixels, for better efficiency, instead of
doing it in a sliding window manner. Each training example is an image patch pair from source
images. Let p1 be a patch from IR and p2 is the corresponding patch from VIS; then a training
example {p1, p2} is defined as a positive example if its label is 1. On the contrary, the example is
defined as a negative example if the label is 0. The training dataset consists of 400,000 positive samples
and 400,000 negative samples.

The Softmax loss function is used as the objective of the proposed network. The stochastic
gradient descent (SGD) is applied to minimize the loss function with iteration number of 50,000.
The batch size is set to 128 for training. We trained our Siamese network on a popular Deep Learning
Platform [21], which is based on the Caffe library. The initial weights of each convolutional layer
are set by using the Xavier algorithm [22], which adaptively determines the scale of initialization
according to the number of input and output neurons. The biases in each layer are initialized as 0.
We set a same leaning rate of 0.0001 for all layers. We get a Siamese network model via loss function
optimization after 50,000 iterations by using the 800,000 training examples. The model contains all
weights and biases from each layer of network. The decreasing trend of the Softmax loss through
iteration is shown in Figure 5.
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3.3. Final Weight Map Generation and Fusion Scheme

A CNN model is generated through training with a large number of IR and VIS image patch
pairs. Since the output of CNN is a two-class probability distribution by using a Softmax classifier,
a weight map w is obtained. In the training phase, since the kernel size and stride size of max-pooling
is 2 × 2 and 2, the weight map size is reduced as mentioned in Section 3.1. By taking this into account,
we know that every adjacent coefficient in w indicates the saliency property of an image path pair
with size of 16 × 16. In order to make a weight map W that has the same size with source images,
we redistributed the coefficients in w to a 16 × 16 patch with step size of 2 pixels, and took the average
of overlapping patches. It can be considered as a reverse max pooling operation. Figure 6 shows
an example of the weight map generation scheme with a weight map w of size 2 × 2. For instance,
assume the weight map w consists of four pixels with values of R, O, Y, and G. Then, the final weight
map W is obtained by assigning each pixel value in w to a 16 × 16 patch with stride of 2 pixels.
Then, the pixel values of which multiple patches are overlapped can be calculated by averaging them.
For example, in Figure 6, the value of the central pixels in W is (R + O + Y + G)/4. As mentioned in
the Section 3.1, when the source images are of size h×w, the size of the output weight map is [ceil(h/ 2)
− 8 + 1] × [ceil(w/ 2) − 8 + 1]. In reverse calculation, the size of the weight map should be [(ceil(h/2) − 8
+ 1) × 2 + 14] × [(ceil(w/2) − 8 + 1) × 2 + 14], which is eventually equal to the size of the source image.
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The IR and VIS images are captured by different imaging modalities, while the transform domain
fusion method is suitable to produce less unexpected artifacts for good consistency with human visual
perception. To cope with this issue, we decomposed both IR and VIS images by using a 3-level 2-D
Haar wavelet transform [23], and the input image pairs were decomposed into low and high-frequency
sub-bands. Since the size of the original image is down sampled during wavelet transform in each level,
the weight map is scaled to match the size of down sampled images. Lastly, the fused image is obtained
by reconstructing the 3-level wavelet images which cooperates with the weighted average by the scaled
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weight maps. The number of levels depends on the size of image to decompose. In this study, most
of the images were sized (350–400) × (400–450) pixels. Images are down sampled and low-pass
filtered in each level. If the number of levels is too large, images can be blurred due to the lack
of high frequency component, which affects the reconstruction performance. The number of levels
is selected by considering these factors. Details of wavelet transform-based image decomposition
and reconstruction are introduced in [23]. The wavelet transform-based fusion scheme is illustrated
in Figure 7.

Entropy 2019, 21, x 7 of 16 

 

with size of 16x16. In order to make a weight map W that has the same size with source images, we 
redistributed the coefficients in w to a 16x16 patch with step size of 2 pixels, and took the average of 
overlapping patches. It can be considered as a reverse max pooling operation. Figure 6 shows an 
example of the weight map generation scheme with a weight map w of size 2 × 2. For instance, assume 
the weight map w consists of four pixels with values of R, O, Y, and G. Then, the final weight map W 
is obtained by assigning each pixel value in w to a 16x16 patch with stride of 2 pixels. Then, the pixel 
values of which multiple patches are overlapped can be calculated by averaging them. For example, 
in Figure 6, the value of the central pixels in W is (R + O + Y + G)/4. As mentioned in the Section 3.1, 
when the source images are of size h×w, the size of the output weight map is [ceil(h/ 2) − 8 + 1] × 
[ceil(w/ 2) − 8 + 1]. In reverse calculation, the size of the weight map should be [(ceil(h/2) − 8 + 1) × 
2+14] x [(ceil(w/2) − 8 + 1) × 2 + 14], which is eventually equal to the size of the source image.  

 
Figure 6. Mechanism for generating the weight map from input source images with the same size. 

The IR and VIS images are captured by different imaging modalities, while the transform 
domain fusion method is suitable to produce less unexpected artifacts for good consistency with 
human visual perception. To cope with this issue, we decomposed both IR and VIS images by using 
a 3-level 2-D Haar wavelet transform [23], and the input image pairs were decomposed into low and 
high-frequency sub-bands. Since the size of the original image is down sampled during wavelet 
transform in each level, the weight map is scaled to match the size of down sampled images. Lastly, 
the fused image is obtained by reconstructing the 3-level wavelet images which cooperates with the 
weighted average by the scaled weight maps. The number of levels depends on the size of image to 
decompose. In this study, most of the images were sized (350–400) × (400–450) pixels. Images are 
down sampled and low-pass filtered in each level. If the number of levels is too large, images can be 
blurred due to the lack of high frequency component, which affects the reconstruction performance. 
The number of levels is selected by considering these factors. Details of wavelet transform-based 
image decomposition and reconstruction are introduced in [23]. The wavelet transform-based fusion 
scheme is illustrated in Figure 7.  

 
Figure 7. A 3-level wavelet transform-based image fusion scheme. Figure 7. A 3-level wavelet transform-based image fusion scheme.

4. Experimental Results

4.1. Benchmark Dataset and Experiment Environment

To evaluate the performance of the proposed approach, we gathered images for training and fusion
from TNO image fusion dataset and OTBVS benchmark dataset. The TNO Image Fusion Dataset contains
multispectral imagery of different military relevant scenarios, registered with different multiband
camera systems [24]. OTCBVS is a public available benchmark dataset for testing and evaluating novel
and state-of-the-art computer vision algorithms [25]. Twelve test image pairs from the two image fusion
datasets are shown in Figure 8. The VIS and IR images are strictly aligned to avoid the ghosting artifact
in fused images. Furthermore, we used the Tokyo multi-spectral object detection dataset [26] to evaluate
the effectiveness of the proposed method for pedestrian detection in low visibility circumstances.
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We used a computer containing Intel i7 core CPU, 16GB RAM (Random Access Memory),
under Linux operating system for CNN model training. An NVIDIA TITAN X GEFORCE GTX GPU
(NVDIA, CA, USA) are used for accelerating the training process. The fusion experiment was carried
out on a Windows system with an Intel i7 core CPU and 8GB memory with MATLAB implementation.
For the objective performance evaluation, we ran the YOLOv3 object detector [27] on the same system
with CNN training.
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4.2. Performance Assessment

Multi-spectral image fusion techniques have been extensively applied in a variety of areas,
including object detection, target tracking, and surveillance. However, the practical applications
heavily depend on the quality of the image fusion method. Therefore, the fusion performance should
be evaluated in both a qualitative and quantitative manner [28]. Many assessment methods have
been proposed to evaluate the performance of various IR and VIS image fusion methods and can be
categorized as subjective and objective methods [29]. Subjective evaluation methods play an important
role in evaluating the quality of fused images based on the visual perception. Subjective criteria includes
image detail, object completeness, and image distortion. Nevertheless, the most straightforward
subjective evaluation method is to apply a certain object detector on fused image, which as was carried
out in this study.

On the contrary, objective evaluation methods can quantitatively evaluate the performance of
image fusion. They are very consistent with visual perception and are not easily biased by observers.
A variety of objective methods based on fusion metrics have been proposed in recent years. They can
be classified into information theory-based methods, image structure similarity-based methods, image
feature-based methods, and human perception-based methods. Several representative image fusion
method evaluation metrics are introduced and utilized in the experiment. Entropy (EN) and Mutual
Information (MI) are the typical information-based methods. The EN of an image represents the amount
of the information within an image on the basis of information theory [30]. MI measures the dependency
between two images. More specifically, it quantifies the amount of information of source images is
transferred to the fused image [31]. The structural similarity (SSIM) of image is a perceptual metric that
quantifies the quality loss caused by processing [32]. Gradient information based metric QAB/F [30]
quantifies the amount of edge information transferred from the source image to the fused image.
Visual information fidelity (VIF) is a human perception-based metric [28], which addresses the notion
of the image information extracted by the human visual system. For each of the assessment metrics
above, a lager value indicates the better fusion result.

4.3. Results Analysis

We selected 18 representative prior art methods that were surveyed in the most recent paper [33] for
comparing VIS and IR fusion performance with our proposed method. There were two main motivations
for selecting prior art methods in this paper: (1) Prior art methods surveyed in the paper are representative,
and the test codes of all prior art methods and evaluation metrics are available for performance evaluation.
(2) The test images for performance evaluation and CPU time measurements are sufficient in terms
of coverage and quantity. The typical methods surveyed in [32] are LP, Wavelet, NSCT3, dual-tree
multi-resolution discrete cosine transform (DTMDCT), cross bilateral filter (CBF), hybrid multi-scale
decomposition (HMSD), guided filtering-based fusion (GFF), anisotropic diffusion-based fusion (ADF),
ASR, LP and SR (LPSR), orientation information-motivated PCNN (OI-PCNN), SF motivated PCNNs in
NSCT domain (NSCT-SF-PCNN), directional discrete cosine transform and PCA (DDCTPCA), FPDE,
two-scale image fusion based on visual saliency (TSIFVS), local edge-preserving LC (LEPLC), gradient
transfer fusion (GTF), and IFEVIP. The LP, Wavelet, NSCT, DTMDCT, CBF, HMSD, GFF, and ADF are
typical multi-scale transform-based methods, ASR and LPSR belongs to SR-based methods, OIPCNN
and NSCT-SF-PCNN are typical neural network-based methods, DDCTPCA and FPDE are typical
subspace based methods, TSIFVS and LEPLC are typical saliency-based methods, and GTF and IFEVIP
belong to other method classes.

We tested 18 reference methods and our proposed methods on 12 representative VIS and IR image
pairs from the TNO dataset for qualitative and quantitative comparisons. Tested image pairs are
exactly the same as the images tested in [31]. We used five typical assessment metrics, i.e., EN, MI,
SSIM, QAB/F, and VIF, to evaluate the performances of different IR and VIS image fusion methods.
For each of the assessment metrics, a lager value indicates the better fusion performance.
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Figure 9. Qualitative performance comparison of 18 reference methods and proposed method on
twelve IR and VIS image pairs. From left to right: Athena, Bench, Bunker, Tank, Nato_camp,
Sandpath, Kaptein, Kayak, Octec, Street, Steamboat and Road. From top to bottom: LP, Wavelet,
NSCT, dual-tree multi-resolution discrete cosine transform (DTMDCT), cross bilateral filter (CBF),
hybrid multi-scale decomposition (HMSD), GFF, anisotropic diffusion-based fusion (ADF), ASR, LP
and SR (LPSR), orientation information-motivated PCNN (OIPCNN), N-S-P, directional discrete cosine
transform and PCA (DDCTPCA), FPDE, two-scale image fusion based on visual saliency (TSIFVS),
local edge-preserving LC (LEPLC), gradient transfer fusion (GTF), IFEVIP, and ours.
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We have tested and reviewed subjective visual quality comparisons of the 18 reference methods
and proposed method on 12 IR VIS and IR image pairs. We evaluated qualitative performance according
to the criterion of brightness preservation, artifact, and detail texture. Figure 9 shows the qualitative
performance of 18 reference methods and the proposed method. The fusion results of DTMDCT are
commonly brighter than other methods. The SR -based methods showed comparable results on both
brightness preservation and artifact point of view. The results of neural network-based methods
lack consistency with different test images. The sub-space-based methods and the saliency-based
methods also produce comparable fusion results in terms of brightness and detail texture preservation.
The proposed method exhibits excellent visual quality in preserving both thermal radiation intensity
and detail textures, without bringing up unexpected artifacts.

To further demonstrate the qualitative performance of the proposed method in the sense of
detail texture and brightness preservation, we selected three typical methods to compare with ours,
which are shown in Figure 10. Four sets of images, Bunker, Nato_camp, Kaptein, and Street, are selected
from the benchmark dataset. NSCT is the representative multi scale transform-based method, ASR is
the typical SR-based method, and NSCT-SF-PCNN is the representative neural network-based method.
The sub-regions of images to compare are labeled by using yellow and magenta rectangles in VIS
and IR images, respectively. The corresponding sub-regions are labeled by using red rectangle in
fused images. (1) Bunker: In the proposed method, the detail textures and brightness from VIS
image are well-preserved, which contrasts with the other three methods. (2) Nato_camp and Kaptein:
In the proposed method, the thermal energy radiated from the human being is transferred more
sufficiently from IR images to the fused image than other methods. The vertical yard pattern in the VIS
image is also preserved in fused images. (3) Street: The brightness of the signboard is distinctly different
in the proposed method and other methods. The overall performance of the proposed method shows
promising visual quality on brightness and detail texture preservation point of view, without bringing
up artifacts.

For objective quantity comparison, we reported the results of the five metrics using the 18 reference
methods and our proposed method. Table 2 shows the metric values of 12 image pairs with proposed
method, and the average value of respective metrics are compared in Table 3, in which the largest
value in bold at each column indicates the best performance. For better observing the metrics value
tendency, Table 3 is visualized as a stick chart in Figure 11. The OIPCNN and LEPLC methods show
relatively high EN values, thus the fused image contains a large amount of information. The neural
network-based methods achieve good values in MI, but poor values in SSIM. This result is coincident
with distinct artifacts in the qualitative experiments. GFF and OIPCNN achieve good performance in
QAB/F, which indicates a relatively large amount of edge information is transferred from the source
image to the fused image. The LEPLC and GFF methods exhibit good VIF values, which also matches
with qualitative results. The proposed method produced the best results in EN, SSIM, QAB/F, and VIF.
For MI, the PCNN-based methods showed the best performance but exhibited low values in SSIM.
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Table 2. Metric values of proposed fusion method on 12 benchmark image pairs. EN = entropy;
MI = mutual information; SSIM = structural similarity; VIF = visual information fidelity.

EN MI SSIM QAB/F VIF

Athena 7.2536 3.1623 0.6704 0.5797 0.8248
Bench 7.5477 4.4664 0.5558 0.7107 0.3162

Bunker 7.4693 3.2233 0.6282 0.6597 0.3683
Tank 7.7237 2.5543 0.4161 0.5280 0.2060

Nato_camp 7.1018 1.9957 0.7068 0.5042 0.4695
Sandpath 7.1106 2.5651 0.6540 0.5067 0.3771
Kaptein 7.1012 2.0924 0.7304 0.5565 0.4297
Kayak 6.9795 2.9931 0.6734 0.7590 0.5534
Octec 6.9670 4.2087 0.7733 0.7125 0.5512
Street 6.7090 2.6521 0.6409 0.6627 0.6720

Steamboat 6.9728 2.4326 0.8365 0.6042 0.3413
Road 7.4247 2.9362 0.6127 0.6338 0.6275

Average 7.1967 2.9402 0.6582 0.6181 0.4781
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Table 3. Metric value comparisons of reference methods and proposed method on 12 benchmark
image pairs.

EN MI SSIM QAB/F VIF

LP 6.7053 1.9353 0.4938 0.6011 0.4363
Wavelet 6.3003 2.4895 0.4869 0.2939 0.3028
NSCT 6.5850 1.8830 0.4945 0.5753 0.4213

DTMDCT 6.9425 1.8486 0.4431 0.3952 0.2956
CBF 6.5989 1.7220 0.4843 0.4752 0.3696

HMSD 6.9609 2.6005 0.4891 0.5284 0.3943
GFF 6.9890 3.5612 0.4344 0.6180 0.4681
ADF 6.3511 2.2094 0.4786 0.3823 0.3270
ASR 6.4384 2.0770 0.4898 0.5125 0.3767
LPSR 6.3580 2.0916 0.4856 0.3199 0.2910

OIPCNN 7.1803 4.9356 0.3906 0.6106 0.4069
N-S-P 6.9947 2.6022 0.4312 0.5015 0.4060

DDCTPCA 6.5567 1.8382 0.4851 0.5068 0.3927
FPDE 6.3974 1.9024 0.4617 0.4167 0.3338

TSIFVS 6.6270 1.8646 0.4898 0.5059 0.3632
LEPLC 7.0770 2.4172 0.4943 0.4810 0.4569

GTF 6.5819 2.1623 0.4236 0.3804 0.3440
IFEVIP 6.8685 3.8723 0.4865 0.4805 0.4061
Ours 7.1967 2.9402 0.6582 0.6181 0.4780
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In addition to the qualitative and quantitative performance comparisons, we tested the effectiveness
of the proposed method by using night-time pedestrian detection. We applied a pedestrian detector
integrated with the YOLOv3 on the VIS image, IR image, and fused image, respectively. The fused
images are obtained by our proposed method. The pedestrians are missed due to low visibility in
low-light or in night-time environments. By contrast, the missed pedestrians are detected in the IR
image and the fused image, as shown in Figure 12. The percentage numbers marked in the images
indicate the confidence value of the detection results, the higher the better. In most of the cases,
the confidence values of pedestrian detection are higher in fused images than in IR images, except in
the case of image b (81% vs 91%), in which the pedestrian area is overlapped with background
objects. The proposed fusion method exhibits advantages on brightness and detail texture preservation,
which affects the pedestrian detection performance.
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The CPU timestamps were compared on the two sequences are shown in Table 4. The image size
of the sequence is 270 × 360, and each value in the table indicates the average and standard deviation
of the CPU timestamps of each method on two sequences. The results show that the efficiency of
multi-scale transform-based methods are fast and stable. However, some approaches, such as ASR,
NSCT_SF_PCNN, and DDCTPCA, are also relatively slow due to the complexity of algorithm.
Our method takes around 19 s to process a pair of images. For real-time operation, the code
transportation and parallel computing with hardware acceleration will be necessary, which remains
a major part of future work.

Table 4. CPU time comparisons of the proposed method and reference methods on
benchmark sequences.

Method Nato_Camp Duine

LP 0.004 ± 0.0007 0.0044 ± 0.0002
Wavelet 0.155 ± 0.0382 0.1592 ± 0.0018
NSCT 1.439 ± 0.0092 1.4402 ± 0.0096

DTMDCT 0.035 ± 0.0018 0.0337 ± 0.0019
CBF 6.143 ± 0.0213 6.1211 ± 0.0304

HMSD 0.544 ± 0.0558 0.5492 ± 0.0328
GFF 0.087 ± 0.0067 0.0927 ± 0.0091
ADF 0.177 ± 0.0031 0.1730 ± 0.0075
ASR 94.638 ± 0.3782 94.6380 ± 0.3199
LPSR 0.011 ± 0.0026 0.0087 ± 0.0005

OIPCNN 0.400 ± 0.0021 0.3995 ± 0.0018
N-S-P 72.047 ± 0.2027 72.0280 ± 0.1884

DDCTPCA 36.901 ± 0.1771 37.1020 ± 0.1162
FPDE 0.092 ± 0.0040 0.0925 ± 0.0043

TSIFVS 0.010 ± 0.0019 0.0102 ± 0.0014
LEPLC 0.149 ± 0.0085 0.1575 ± 0.0056

GTF 0.992 ± 0.0609 1.3706 ± 0.1052
IFEVIP 0.052 ± 0.0012 0.0542 ± 0.0015

Proposed 19.773 ± 0.178 19.1633 ± 0.132
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5. Conclusions

In this paper, we proposed a deep learning based IR and VIS image fusion method. In our method,
a CNN-based image feature encoding and feature classification approach was applied to generate
a weight map which indicated the probability of each source pixel to fuse from a pair of source images.
By applying the proposed method, the key problems in image fusion, which are the activity level
measurement and fusion rule design could be figured out at once. The visual quality of the method
was proved by comparing performances using an object detector on a public benchmark dataset.
The quantitative assessment results show that the CNN-based fusion method was more effective than
manually designed methods in terms of noise, distortion, and the intensity difference. We believe
that our method is very effective and robust fusion of pre-registered multi-spectral images. As future
works, we intend to develop new deep neural networks for image fusion and to improve the efficiency
of fusion procedure by implementing the algorithm with parallel computing units.

Author Contributions: J.P. developed the idea and implemented the experiments. Y.C. collaborated in dataset
preparation and validation. H.S. supervised the research and performed revisions and improvements.

Funding: This material is based upon work supported by the Ministry of Trade, Industry & Energy (MOTIE, Korea)
under Industrial Technology Innovation Program (10080619).

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Zhang, B.; Lu, X.; Pei, H.; Zhao, Y. A fusion algorithm for infrared and visible images based on saliency
analysis and non-subsampled Shearlet transform. Infrared Phys. Technol. 2015, 73, 286–297. [CrossRef]

2. Jin, H.; Wang, Y. A fusion method for visible and infrared images based on contrast pyramid with teaching
learning based optimization. Infrared Phys. Technol. 2014, 64, 134–142. [CrossRef]

3. Cui, G.; Feng, H.; Xu, Z.; Li, Q.; Chen, Y. Detail preserved fusion of visible and infrared images using regional
saliency extraction and multi-scale image decomposition. Opt. Commun. 2015, 341, 199–209. [CrossRef]

4. Fan, X.; Shi, P.; Ni, J.; Li, M. A thermal infrared and visible images fusion based approach for multi target
detection under complex environment. Math. Probl. Eng. 2015. [CrossRef]

5. Du, J.; Li, W.; Xiao, B.; Nawaz, Q. Union Laplacian pyramid with multiple features for medical image fusion.
Neurocomputing 2016, 194, 326–339. [CrossRef]

6. Toet, A. A morphological pyramidal image decomposition. Pattern Recognit. Lett. 1989, 9, 255–261. [CrossRef]
7. Singh, R.; Khare, A. Fusion of multimodal medical images using Daubechies complex wavelet transform c

a multiresolution approach. Inf. Fusion 2014, 19, 49–60. [CrossRef]
8. Li, H.; Manjunath, B.; Mitra, S. Multi sensor image fusion using the wavelet transform. Graph. Models

Image Process. 1995, 57, 235–245. [CrossRef]
9. Lewis, J.; Callaghan, O.; Nikolov, S.; Bull, D.; Canagarajah, N. Pixel- and region-based image fusion with

complex wavelets. Inf. Fusion 2007, 8, 119–130. [CrossRef]
10. Yang, L.; Guo, B.; Ni, W. Multimodality medical image fusion based on multiscale geometric analysis of

contourlet transform. Neurocomputing 2008, 72, 203–211. [CrossRef]
11. Zheng, L.; Bhatnagar, G.; Wu, Q. Directive contrast based multimodal medical image fusion in nsct domain.

IEEE Trans. Multimedia 2013, 15, 1014–1024.
12. Wang, L.; Li, B.; Tan, L. Multimodal medical volumetric data fusion using 3-d discrete shearlet transform

and global-to-local rule. IEEE Trans. Biomed. Eng. 2014, 61, 197–206. [CrossRef]
13. Yang, B.; Li, S. Pixel-level image fusion with simultaneous orthogonal matching pursuit. Inf. Fusion 2012,

13, 10–19. [CrossRef]
14. Li, S.; Yin, H.; Fang, L. Group-sparse representation with dictionary learning for medical image denoising

and fusion. IEEE Trans. Biomed. Eng. 2012, 59, 3450–3459. [CrossRef]
15. Liu, Y.; Wang, Z. Simultaneous image fusion and denosing with adaptive sparse representation.

IET Image Process. 2015, 9, 347–357. [CrossRef]
16. Ma, J.; Yu, W.; Liang, P.; Li, C.; Jiang, J. FusionGAN: A generative adversarial network for infrared and visible

image fusion. Inf. Fusion 2019, 48, 11–26. [CrossRef]

http://dx.doi.org/10.1016/j.infrared.2015.10.004
http://dx.doi.org/10.1016/j.infrared.2014.02.013
http://dx.doi.org/10.1016/j.optcom.2014.12.032
http://dx.doi.org/10.1155/2015/750708
http://dx.doi.org/10.1016/j.neucom.2016.02.047
http://dx.doi.org/10.1016/0167-8655(89)90004-4
http://dx.doi.org/10.1016/j.inffus.2012.09.005
http://dx.doi.org/10.1006/gmip.1995.1022
http://dx.doi.org/10.1016/j.inffus.2005.09.006
http://dx.doi.org/10.1016/j.neucom.2008.02.025
http://dx.doi.org/10.1109/TBME.2013.2279301
http://dx.doi.org/10.1016/j.inffus.2010.04.001
http://dx.doi.org/10.1109/TBME.2012.2217493
http://dx.doi.org/10.1049/iet-ipr.2014.0311
http://dx.doi.org/10.1016/j.inffus.2018.09.004


Entropy 2019, 21, 570 16 of 16

17. Shen, R.; Cheng, I.; Basu, A. Cross-scale coefficient selection for volumetric medical image fusion. IEEE Trans.
Biomed. Eng. 2013, 60, 1069–1079. [CrossRef]

18. Liu, Y.; Liu, S.; Wang, Z. A general framework for image fusion based on multi-scale transform and sparse
representation. Inf. Fusion 2015, 24, 147–164. [CrossRef]

19. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based leaning applied to document recognition.
Proc. IEEE 1998, 86, 2278–2324. [CrossRef]

20. Jin, X.; Jiang, Q.; Yao, S.; Zhou, D.; Nie, R.; Hai, J.; He, K. A survey of infrared and visible image fusion
methods. Infrared Phys. Technol. 2017, 85, 478–501. [CrossRef]

21. DLP: Deep Learning Platform. Available online: http://www.ai-dlp.com/ (accessed on 1 March 2019).
22. Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks.

In Proceedings of the thirteenth International Conference on Artificial Intelligence and Statistics, Sardinia,
Italy, 13–15 May 2010.

23. Liu, J.; Yin, Q.; Guo, P. A New Strategy to Improve Image Fusion Effect. In Proceedings of the 2016 International
Conference on Machine Learning and Cybernetics, Dalian, China, 13–16 August 2006; pp. 3770–3775.

24. FigShare. Available online: https://figshare.com/articles/TNO_Image_Fusion_Dataset/1008029 (accessed on
1 March 2019).

25. OTCBVS Benchmark Dataset Collection. Available online: http://vcipl-okstate.org/pbvs/bench/ (accessed on
1 March 2019).

26. Multispectral Object Detection Dataset. Available online: https://www.mi.t.u-tokyo.ac.jp/projects/mil_
multispectral/ (accessed on 1 March 2019).

27. YOLO: Real-Time Object Detection. Available online: https://pjreddie.com/darknet/yolo/ (accessed on
1 March 2019).

28. Han, Y.; Cai, Y.; Cao, Y.; Xu, X. A new image fusion performance metric based on visual information fidelity.
Inf. Fusion 2013, 14, 127–135. [CrossRef]

29. Chen, Y.; Blum, R. A new automated quality assessment algorithm for image fusion. Image Vis. Comput.
2009, 27, 1421–1432. [CrossRef]

30. Roberts, J.; Van Aardt, J.; Ahmed, F. Assessment of image fusion procedures using entropy, image quality,
and multispectral classification. J. Appl. Remote Sens. 2008, 2, 023522.

31. Qu, G.; Zhang, D.; Yan, P. Information measure for performance of image fusion. Electron. Lett. 2002,
38, 313–315. [CrossRef]

32. Wang, Z.; Bovik, A. A universal image quality index. IEEE Signal Process. Lett. 2002, 9, 81–84. [CrossRef]
33. Ma, J.; Ma, Y.; Li, C. Infrared and visible image fusion methods and applications: A survey. Inf. Fusion 2019,

14, 153–178. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TBME.2012.2211017
http://dx.doi.org/10.1016/j.inffus.2014.09.004
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1016/j.infrared.2017.07.010
http://www.ai-dlp.com/
https://figshare.com/articles/TNO_Image_Fusion_Dataset/1008029
http://vcipl-okstate.org/pbvs/bench/
https://www.mi.t.u-tokyo.ac.jp/projects/mil_multispectral/
https://www.mi.t.u-tokyo.ac.jp/projects/mil_multispectral/
https://pjreddie.com/darknet/yolo/
http://dx.doi.org/10.1016/j.inffus.2011.08.002
http://dx.doi.org/10.1016/j.imavis.2007.12.002
http://dx.doi.org/10.1049/el:20020212
http://dx.doi.org/10.1109/97.995823
http://dx.doi.org/10.1016/j.inffus.2018.02.004
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Works 
	Fusion Scheme Based on Automatic Activity Level Measurement and Weight Map Generation 
	CNN Design 
	Training 
	Final Weight Map Generation and Fusion Scheme 

	Experimental Results 
	Benchmark Dataset and Experiment Environment 
	Performance Assessment 
	Results Analysis 

	Conclusions 
	References

