Skip to main content
. 2019 Jul 8;21(7):665. doi: 10.3390/e21070665
Algorithm 4: AKDB
Input: Training set T with features L={X1,,Xn,C} and k.
Output: AKDB model.
1 Calculate I(Xi;C)(1in) from T for each feature and AMI;
2 Calculate I(Xi;Xj|C)(ij) from T for every pair of features and ACMI;
3 Let L be a list which includes all Xi in decreasing order of I(Xi;C);
4 Initialize the network structure G = LearnStructure(T,L,k);         // Algorithm 1
5 G = FeatureSelection(T,G,L, AMI);                      // Algorithm 2
6 G = DependenceSelection(T,G, ACMI);                    // Algorithm 3
7 return G;